Ja! det beviste vi uge 16+17

Størrelse: px
Starte visningen fra side:

Download "Ja! det beviste vi uge 16+17"

Transkript

1 Ugens emner Lukketheds- og afgørlighedsegenskaber [ ] lukkethed under,,,, * lukkethed under homomorfi og invers homomorfi pumping -lemmaet beslutningsproblemer: membership, emptiness, finiteness subset, equality beslutningsprocedurer i Java-pakken Kontekstfri grammatikker [ ] definition af kontekstfri sprog eksempler Lukkethedsegenskaber Givet to regulære sprog, L 1 og L 2, er L 1 L 2 regulært? er L 1 L 2 regulært? er L 1 regulært? er L 1 L 2 regulært? er L 1 * regulært? Ja! det beviste vi uge betyder komplement som i bogen En kontraponering Homomorfier [Martin, opg.4.46] Lukkethedsegenskaber kan bl.a. bruges til at vise, at visse sprog er ikke-regulære Eksempel: Klassen af regulære sprog er lukket under Antag vi har bevist, at sproget S ikke er regulært Hvis S = P R og R er regulært, så kan P ikke være regulært Antag g: Σ 1 Σ 2 * hvor Σ 1 og Σ 2 er alfabeter Definer h: Σ 1 * Σ 2 *ved Λ hvis x=λ h(x) = h(y)g(a) hvis x=ya, y Σ 1 *, a Σ 1 h opfylder at h(xy)=h(x)h(y) og kaldes en homomorfi Definer h(l) = { h(x) x L } for alle L Σ 1 * og h -1 (L) = { x h(x) L } for alle L Σ 2 * 3 4

2 Eksempel Regulære sprog og homomorfier Σ 1 ={0,1}, Σ 2 ={a,b} Lad g: Σ 1 Σ 2 * være defineret ved g(0)=ab g(1)=λ Lad h: Σ 1 * Σ 2 * være homomorfien defineret fra g Der gælder f.eks.: h(0011) = ababλλ = abab h({1}{0}*{1}) = {Λ}{ab}*{Λ} = {ab}* h -1 ({ab}*) = {0,1}* Hvis h: Σ 1 * Σ 2 * er en homomorfi og L Σ 1 * er et regulært sprog, så er h(l) også regulært Hvis h: Σ 1 * Σ 2 * er en homomorfi og L Σ 2 * er et regulært sprog, så er h -1 (L) også regulært Dvs. klassen af regulære sprog er lukket under både homomorfi og invers homomorfi 5 6 Eksempel på anvendelse Er følgende sprog over alfabetet Σ={0,1,2} regulært? L = { x2y y=reverse(x), x,y {0,1}* } Vi ved (fra uge 15) at sproget pal = { x {0,1}* x=reverse(x) } ikke er regulært En (utilstrækkelig) intuition: L minder om pal, men måske symbolet 2, der markerer midten af strengen, gør, at vi kan lave en FA for L? Eksempel, fortsat Definer tre funktioner g 1,g 2,g 3 : {0,1,2} {0,1}* ved g 1 (0)=0 g 2 (0)=0 g 3 (0)=0 g 1 (1)=1 g 2 (1)=1 g 3 (1)=1 g 1 (2)=Λ g 2 (2)=0 g 3 (2)=1 og lad h 1,h 2,h 3 være de tilhørende homomorfier h 1 (L) h 2 (L) h 3 (L) = pal så L er ikke regulært, idet pal ikke er regulært og klassen af regulære sprog er lukket under forening og homomorfi 7 8

3 Bevis, del 1 Bevis, del 2 Hvis h: Σ 1 * Σ 2 * er en homomorfi og L Σ 1 * er et regulært sprog, så er h(l) også regulært Hvis h: Σ 1 * Σ 2 * er en homomorfi og L Σ 2 * er et regulært sprog, så er h -1 (L) også regulært Bevis: strukturel induktion i regulære udtryk... (erstat hver a Σ 1 i udtrykket med h(a)) Bevis: Givet en FA M=(Q, Σ 2, q 0, A, δ) hvor L(M)=L, definer en ny FA M =(Q, Σ 1, q 0, A, δ ) ved δ (q, a) = δ*(q, h(a)) Påstand: L(M ) = h -1 (L) (bevises ved induktion) 9 10 Endnu en egenskab ved regulære sprog Pumping -lemmaet for regulære sprog Antag M=(Q, Σ, q 0, A, δ) er en FA og x L(M): x Q Ved en kørsel af x på M vil mindst én af tilstandene blive besøgt mere end én gang q 0 u v Hvis vi betragter den første af disse tilstande kan vi konkludere: u,v,w Σ*: x=uvw uv Q v >0 δ*(q 0, u)=δ*(q 0, uv) w x = uvw 11 Hvis L er et regulært sprog, så gælder flg.: n>0: x L hvor x n: u,v,w Σ*: x=uvw uv n v >0 m 0: uv m w L Bevis: vælg n som antal tilstande i en FA, der genkender L, og kør m gange rundt i løkken... 12

4 Pumping-lemmaet og ikke-regulære sprog Hvis n>0: x L hvor x n: u,v,w Σ* hvor x=uvw, uv n og v >0: m 0: uv m w L så er L ikke regulært Bevis: kontraponering af pumping-lemmaet Pumping-lemmaet som kvantor-spil Antag vi prøver at vise, at L er ikke-regulært Vi skal vise noget på form n...: x...: u,v,w...: m...:... Fjenden vil prøve at modarbejde os 1. Fjenden vælger n 2. Vi vælger x (efter reglerne, dvs. så x L og x n) 3. Fjenden vælger u,v,w (efter reglerne...) 4. Vi vælger m Hvis vi uanset fjendens valg kan opnå at uv m w L, så har vi vundet, dvs. bevist at L er ikke-regulært Eksempel 1 Eksempel 2 Lad L = { 0 i 1 i i 0 } Vi vil vise vha. pumping-lemmaet at L ikke er regulært Fjenden vælger et n>0 Vi vælger x=0 n 1 n som opfylder x L og x n Fjenden vælger u,v,w så x=uvw, uv n og v >0 Vi vælger m=2 Da x=uvw=0 n 1 n, uv n og v >0sågælder at v=0 k for et k>0 dvs. uv m w = uv 2 w = 0 n+k 1 n L så L er ikke regulært Lad pal = { x {0,1}* x=reverse(x) } (som uge 15) Vi vil vise vha. pumping-lemmaet at pal ikke er regulært Fjenden vælger et n>0 Vi vælger x=0 n 10 n som opfylder x pal og x n Fjenden vælger u,v,w så x=uvw, uv n og v >0 Vi vælger m=2 Da x=uvw=0 n 10 n, uv n og v >0 så gælder at v=0 k for et k>0 dvs. uv m w = uv 2 w = 0 n+k 10 n pal så pal er ikke regulært 15 16

5 Eksempel 3 Lad L = { 0 i i er et primtal } Vi vil vise vha. pumping-lemmaet at L ikke er regulært Mere om pumping-lemmaet Pumping-lemmaet kan ikke bruges til at vise, at et givet regulært sprog er regulært Fjenden vælger et n>0 Vi vælger x = 0 p hvor p er et primtal større end n+1 Fjenden vælger u,v,w så x=uvw, uv n og v >0 Vi vælger m=p-k hvor k= v uv m w = uv p-k w = uw + (p-k) v = p-k + (p-k) k = (k+1) (p-k) og begge disse led er >1, dvs. uv m w er ikke et primtal så L er ikke regulært Eksempel: L = { a i b j c j i 1 og j 0 } { b j c k j,k 0 } L er ikke regulært, men L har pumping-egenskaben (dvs. n...: x...: u,v,w...: m 0: uv m w L) Beslutningsproblemer Membership-problemet Membership: Givet en FA M og en streng x, tilhører x sproget af M? Emptiness: Givet en FA M, er sproget for M tomt? Finiteness: Givet en FA M, er sproget for M endeligt? Subset: Givet to FA er, M 1 og M 2, er sproget for M 1 en delmængde af sproget for M 2? Givet en FA M og en streng x, tilhører x sproget af M? (Dvs. er x L(M)?) Algoritme: Kør x på M, startende i starttilstanden, og se om den ender i en accepttilstand Equality: Givet to FA er, M 1 og M 2, er sprogene for M 1 og M 2 ens? alle disse problemer er afgørlige! 19 20

6 Emptiness-problemet Givet en FA M, er sproget for M tomt? (Dvs. er L(M)=Ø?) Algoritme 1: Afprøv for alle x Σ* om x L(M) ved hjælp af algoritmen fra membership-problemet Algoritme 1: Afprøv for alle x hvor x < Q om x L(M) ved hjælp af algoritmen fra membership-problemet en reduktion til membership-problemet Algoritme 2: Undersøg om der findes en accepttilstand (se uge 17) Algoritme 2: Undersøg om der findes en accepttilstand, som er opnåelig fra starttilstanden (se uge 17) 21 Finiteness-problemet Givet en FA M, er sproget for M endeligt? (Dvs. er L(M) en endelig mængde?) Algoritme 1: Afprøv for alle x hvor Q x < 2 Q om x L(M) ved hjælp af algoritmen fra membership-problemet L(M) er endeligt hvis og kun hvis der ikke eksisterer en sådan streng (Bevis for korrekthed: se bogen...) Algoritme 2: Ide: Udnyt at L(M) er uendeligt hvis og kun hvis der i M eksisterer en cykel, der kan nås fra starttilstanden, og som kan nå til en accepttilstand 22 Subset-problemet Givet to FA er, M 1 og M 2, er sproget for M 1 en delmængde af sproget for M 2? (Dvs. er L(M 1 ) L(M 2 )?) Equality-problemet Givet to FA er, M 1 og M 2, er sprogene for M 1 og M 2 ens? (Dvs. er L(M 1 )=L(M 2 )?) Algoritme: Lav med produktkonstruktionen en FA M 3 som opfylder L(M 3 ) = L(M 1 ) - L(M 2 ) og afgør med en algoritme til emptiness-problemet om L(M 3 )=Ø Algoritme: Afgør med algoritmen til subset-problemet om L(M 1 ) L(M 2 ) og L(M 2 ) L(M 1 ) (Bevis for korrekthed: L(M 1 ) L(M 2 ) L(M 1 ) - L(M 2 ) = Ø) 23 24

7 dregaut Java-pakken FA.accepts(String) FA.isEmpty() FA.isFinite() FA.subsetOf(FA) FA.equals(FA) beslutningsprocedurer for de nævnte beslutningsproblemer FA.getAShortestExample() finder en korteste sti fra starttilstanden til en accepttilstand (hvis sproget er ikke-tomt) 25 getashortestexample String getashortestexample() { pending = [ q 0 ] // queue of states that need to be visited paths = [ ] // paths[i ] is a shortest path from q 0 to pending[i ] visited = { q 0 } // set of states that have been visited while pending Ø do q = pending.removefirst() bredde-først gennemløb af automaten path = paths.removefirst() if q A then return path else for each c Σ do p = δ(q, c) if p visited pending.addtoend(p) paths.addtoend(path++c) visited = visited {p} return null // return null if no accept state is found } 26 Status Regulære udtryk og endelige automater Kontekstfri grammatikker Eksempel: Kontekstfri grammatikker sentence subject verb object subject person person Morten Ole Henrik verb spurgte sparkede object thing person thing fodbolden computeren [Chomsky, 1956] 27 Nonterminal-symboler: sentence, subject, person, verb, object, thing Terminal-symboler: Morten, Ole, Henrik, spurgte, sparkede, fodbolden, computeren Start-symbol: sentence Eksempel på derivation: sentence subject verb object... Ole spurgte computeren 28

8 Formel definition af CFG er En kontekstfri grammatik (CFG) er et 4-tupel G = (V, Σ, S, P) hvor V er en endelig mængde af nonterminal-symboler Σ er et alfabet af terminal-symboler og V Σ= Ø S V er et start-symbol P er en endelig mængde af produktioner på form A α hvor A V og α (V Σ)* Derivationer repræsenterer ét derivations-trin, hvor en nonterminal erstattes ifølge en produktion dvs. er en relation over mængden (V Σ)* Hvis α 1,α 2 (V Σ)* og (A γ) P (dvs. grammatikken indeholder produktionen A γ) så gælder α 1 Aα 2 α 1 γα 2 ( er i denne sammenhæng ikke et logisk medfører tegn) Sproget af en kontekstfri grammatik Definer relationen * som den refleksive transitive lukning af, dvs. α * β hvis og kun hvis α β Sproget af G defineres som L(G) = { x Σ* S * x } 0 eller flere derivationstrin Eksempel 1 Sproget A = { a n b n n 0 } kan beskrives af en CFG G=(V,Σ,S,P) hvor V = {S} Σ = {a,b} P = {S asb, S Λ} alternativ notation: S asb Λ Et sprog L Σ* er kontekstfrit hvis og kun hvis der findes en CFG G hvor L(G)=L 31 dvs. L(G) = A (bevis følger...) 32

9 Bevis for korrekthed Påstand: L(G) = A Bevisskitse: (udnyt at x L(G) S * x) L(G) A: givet x hvor x L(G), lav induktion i antal derivationsskridt i S * x A L(G): givet x hvor x A, lav induktion i længden af x Eksempel 2 Sproget pal = { x {0,1}* x=reverse(x) } kan beskrives af en CFG G=(V,Σ,S,P) hvor V = {S} Σ = {0,1} P = {S Λ, S 0, S 1, S 0S0, S 1S1} alternativ notation: S Λ 0 1 0S0 1S Hvorfor navnet kontekstfri? Anvendelser af kontekstfri grammatikker α 1 Aα 2 α 1 γα 2 hvis grammatikken indeholder produktionen A γ dvs. γ kan substituere A uafhængigt af konteksten (α 1 og α 2 ) Praktisk: til beskrivelse af syntaks for programmeringssprog (ofte med BNF-notationen) Teoretisk: som karakteristik af en vigtig klasse af formelle sprog 35 36

10 En kontekstfri grammatik for Java Klasser af formelle sprog klassen af alle sprog (over et givet alfabet) de rekursivt numerable sprog (svarer til Turing-maskiner) de regulære sprog En tekst er et syntaktisk korrekt Java-program hvis den kan deriveres af denne grammatik de endelige sprog de kontekstfri sprog Resume Opgaver Regulære sprog: lukkethed under,,,, *, homomorfi og invers homomorfi pumping -lemmaet beslutningsproblemer: membership, emptiness, finiteness, subset, equality Kontekstfri grammatikker: definition af kontekstfri grammatikker og sprog 39 [Martin]: Anvend pumping-lemmaet Lukkethedsegenskaber Flere beslutningsproblemer Kontekstfri grammatikker Java: Studér udleverede programdele: isfinite, equals Implementér FA metoder: isempty,subsetof, getashortestexample Oversæt regulært udtryk til automat, tilbage til regulært udtryk, tilbage til automat, og sammenlign de to automater Gæt-et-regulært-udtryk spillet Pumping-spillet Ugens finurlige opgave: Endelige automater og multiplikation af binære tal Afleveringsopgave: Anvend pumping-lemmaet 40

Regularitet & Automater Eksamensnotater

Regularitet & Automater Eksamensnotater Regularitet & Automater Eksamensnotater Michael Lind Mortensen, 20071202, DAT4 10. juni 2008 Indhold 1 Regulære udtryk (1.5 & 3.1) 4 1.1 Disposition............................ 4 1.2 Noter...............................

Læs mere

Regulære udtryk og endelige automater. Ugens emner

Regulære udtryk og endelige automater. Ugens emner Ugens emner Endelige automater [Martin, kap. 3.2-3.5] endelige automater og deres sprog skelnelighed produktkonstruktionen Java: dregaut.fa klassen automater til modellering og verifikation Regulære udtryk

Læs mere

Regularitet og Automater. Tobias Brixen Q4-2012

Regularitet og Automater. Tobias Brixen Q4-2012 Regularitet og Automater Tobias Brixen Q4-2012 1 Noterne er skrevet med inspiration fra http://cs.au.dk/ illio/courses/dregaut/dregautnoter.pdf Contents 1 Regulære udtryk 3 1.1 RegEx.................................

Læs mere

Regulære udtryk og endelige automater

Regulære udtryk og endelige automater Regulære udtryk og endelige automater Regulære udtryk: deklarative dvs. ofte velegnede til at specificere regulære sprog Endelige automater: operationelle dvs. bedre egnet til at afgøre om en given streng

Læs mere

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er

En karakteristik af de regulære sprog. Ugens emner. FA minimering [5.1-5.2] MyHill-Nerode-sætningen en algoritme til minimering af FA er Ugens emner FA minimering [.-.] MyHill-Nerode-sætningen en algoritme til minimering af FA er En karakteristik af de regulære sprog Et sprog L er regulært hvis og kun hvis L beskrives af et regulært udtryk

Læs mere

Noter til DM517 Beregnelighed

Noter til DM517 Beregnelighed Noter til DM517 Beregnelighed Jonas Nyrup 23. oktober 2011 Indhold 1 Et par noter 2 2 Regulære sprog 2 2.1 DFA................................. 2 2.1.1 Eksempler.......................... 3 2.2 NFA.................................

Læs mere

Ugens emner. Regulære sprog og digitale billeder. Adressering af områder. Et alfabet. Dette billede: kan repræsenteres af en FA med 832 tilstande

Ugens emner. Regulære sprog og digitale billeder. Adressering af områder. Et alfabet. Dette billede: kan repræsenteres af en FA med 832 tilstande Ugens emner Regulære sprog og digitale billeder Digitale billeder og regulære sprog Regulære udtryk i Java og Unix Dette billede: Turing-maskiner [uddrag af Martin kap. 9-0] Church-Turing tesen, beregnelighed

Læs mere

1. Seminar EVU RegAut

1. Seminar EVU RegAut 1. Seminar EVU RegAut Sigurd Meldgaard Datalogisk Institut Århus Universitet stm@cs.au.dk 27/08 2010 S. Meldgaard (AU) 1. Seminar EVU RegAut 27/08 2010 1 / 105 Plan Introduktion Hvad er Regularitet og

Læs mere

DM517:Supplerende noter om uafgørlighedsbeviser:

DM517:Supplerende noter om uafgørlighedsbeviser: DM517:Supplerende noter om uafgørlighedsbeviser: Jørgen Bang-Jensen October 9, 2013 Abstract Formålet med denne note er at give en form for kogebogsopskrift på, hvorledes man bygger et uafgørlighedsbevis

Læs mere

Eksamensopgaver i DM17, Januar 2003

Eksamensopgaver i DM17, Januar 2003 Eksamensopgaver i DM17, Januar 2003 Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Institut for Matematik & Datalogi Syddansk Universitet Odense Universitet Lørdag, den 18. Januar 2003 Alle sædvanlige

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 1 November 212, kl. 1 14 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af computer

Læs mere

Regularitet og Automater

Regularitet og Automater Plan dregaut 2007 Regularitet og Automater Hvad er Regularitet og Automater? Praktiske oplysninger om kurset Ugens emner Introduktion til ugens opgaver 2 Regularitet og Automater Formål med kurset: at

Læs mere

Seminar 1 Regularitet og Automater 28/1-2012

Seminar 1 Regularitet og Automater 28/1-2012 Seminar 1 Regularitet og Automater 28/1-2012 Jesper Gulmann Henriksen jgh@wincubate.net Agenda Introduktion Hvad er Regularitet og Automater? Praktiske Oplysninger om Kurset Regulære Udtryk + Øvelser Induktion

Læs mere

1. Seminar EVU RegAut

1. Seminar EVU RegAut 1. Seminar EVU RegAut Sigurd Meldgaard Datalogisk Institut Århus Universitet stm@cs.au.dk 27/08 2010 S. Meldgaard (AU) 1. Seminar EVU RegAut 27/08 2010 1 / 105 Plan Introduktion Hvad er Regularitet og

Læs mere

It og informationssøgning Forelæsning november 2006 Nils Andersen. Regulære udtryk og formelle sprog

It og informationssøgning Forelæsning november 2006 Nils Andersen. Regulære udtryk og formelle sprog It og informationssøgning Forelæsning 11 22. november 2006 Nils Andersen Regulære udtryk og formelle sprog Regulært udtryk Forening, sammenstilling og Kleene-gentagelse Andre notationer og operatorer Modulet

Læs mere

Skriftlig Eksamen Automatteori og Beregnelighed (DM17)

Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Skriftlig Eksamen Automatteori og Beregnelighed (DM17) Institut for Matematik & Datalogi Syddansk Universitet Odense Campus Lørdag, den 15. Januar 2005 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

1 Beregnelighed. 1.1 Disposition. 1.2 Præsentation. Def. TM. Def. RE/R. Def. 5 egenskaber for RE/R. Def. NSA. Bevis. NSA!RE. Def. SA. Bevis. SA!

1 Beregnelighed. 1.1 Disposition. 1.2 Præsentation. Def. TM. Def. RE/R. Def. 5 egenskaber for RE/R. Def. NSA. Bevis. NSA!RE. Def. SA. Bevis. SA! 1 Beregnelighed 1.1 Disposition Def. TM Def. RE/R Def. 5 egenskaber for RE/R Def. NSA Bevis. NSA!RE Def. SA Bevis. SA!R Bevis. SA RE Def. Beslutningsproblem Arg. Self-Accepting er uløselig 1.2 Præsentation

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 31 Oktober 2011, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af lommeregner

Læs mere

Skriftlig Eksamen Beregnelighed (DM517)

Skriftlig Eksamen Beregnelighed (DM517) Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 7 Januar 2008, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af lommeregner

Læs mere

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.

Læs mere

Oversættere, ugeopgave 3

Oversættere, ugeopgave 3 Oversættere, ugeopgave 3 Anders jerg Pedersen (andersbp@me.com) 29. november 2009 Opgave 1 Vi konsrer først NFA er for grammatikken fra opgave 3.22 med produktionen tilføjet: Produktion NFA 0 A 1 C D 2

Læs mere

Syntaks og syntaksgenkendelse, særligt regulære udtryk og tilstandsmaskiner og lidt om anvendelser i bioinformatik

Syntaks og syntaksgenkendelse, særligt regulære udtryk og tilstandsmaskiner og lidt om anvendelser i bioinformatik Datalogi C, RUC Forelæsning 22. november 2004 Henning Christiansen Syntaks og syntaksgenkendelse, særligt regulære udtryk og tilstandsmaskiner og lidt om anvendelser i bioinformatik Dagens program Hvad

Læs mere

Dat 2/F6S: Syntaks og semantik 2005 Centrale emner og eksamenspensum

Dat 2/F6S: Syntaks og semantik 2005 Centrale emner og eksamenspensum Dat 2/F6S: Syntaks og semantik 2005 Centrale emner og eksamenspensum Hans Hüttel 14. juni 2005 Indhold 1 Centrale emner 1 2 Fuldt pensum 2 3 Reduceret pensum 3 3.1 Hvad er fjernet her?........................

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Oversættere Skriftlig eksamen onsdag d. 24. januar 2007

Oversættere Skriftlig eksamen onsdag d. 24. januar 2007 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Skriftlig eksamen onsdag d. 24. januar 2007 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet ved hver opgave. Den skriftlige

Læs mere

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

1 Opsumering fra tidligere. 2 Dagsorden 3 BIMS. 4 Programtilstande. Statements/kommandoer (Stm) i bims. 3.1 Abstrakt syntaks for bims

1 Opsumering fra tidligere. 2 Dagsorden 3 BIMS. 4 Programtilstande. Statements/kommandoer (Stm) i bims. 3.1 Abstrakt syntaks for bims 1 Opsumering fra tidligere Hvis A er kontekstfrit, S er der et p > 0 s Alle s A hvor s p kan splittes op som s = uvxyz så argument 1-3 holder A er ikke kontekstfrit, hvis for ethvert bud på p kan findes

Læs mere

83 - Karakterisation af intervaller

83 - Karakterisation af intervaller 83 - Karakterisation af intervaller I denne opgave skal du bevise, at hvis A er en delmængde af R med følgende egenskab: x, y, z R : x, y A og x < z < y z A (1) så er A enten et interval eller en mængde

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

Matematiske metoder - Opgavesæt

Matematiske metoder - Opgavesæt Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller

Læs mere

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger

Kursusgang Rekursive definitioner. 14. april Mystiske eksempler. Hvad er en rekursiv definition egentlig? Partielle ordninger Kursusgang 15 14. april 2011 1 Rekursive definitioner Hvad er en rekursiv definition egentlig? Partielle ordninger cpo er (fuldstændige partielle) ordninger Monotone og kontinente funktioner Sætning om

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007

Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 24. januar 2007 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte Helle Sørensen Uge 9, onsdag SaSt2 (Uge 9, onsdag) Normalfordelingens venner 1 / 20 Program Resultaterne fra denne uge skal bruges

Læs mere

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer BRP 13.9.2006 Tal. Om computer-repræsentation og -manipulation. Logaritmer 1. Opgaverne til i dag dækker det meste af stoffet 2. Resten af stoffet logaritmer binære træer 3. Øvelse ny programmeringsopgave

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Indhold 1 Compilerens opbygning 2 Leksikalsk analyse 3 Grammatikker 4 LL-parsing 5 LR-parsing 6 Det abstrakte syntaks-træ 7 Attribut-grammatikker

Indhold 1 Compilerens opbygning 2 Leksikalsk analyse 3 Grammatikker 4 LL-parsing 5 LR-parsing 6 Det abstrakte syntaks-træ 7 Attribut-grammatikker Indhold 1 Compilerens opbygning 4 1.1 Compilerensfunktion... 4 1.2 Fasericompileringen... 4 1.3 TinyogC-... 7 2 Leksikalsk analyse 9 2.1 Strengeogsprog... 9 2.2 Regulæreudtryk... 10 2.3 Deterministiskeendeligeautomater...

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 10. juni, 2016. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede sider med ialt 16 opgaver. Alle opgaver

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Note om endelige legemer

Note om endelige legemer Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på

Læs mere

Oversættere. Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005

Oversættere. Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005 Københavns Universitet Naturvidenskabelig Embedseksamen Oversættere Vejledende løsninger til Skriftlig eksamen onsdag d. 20. april 2005 Eksamenstiden er to timer. Opgavernes vægt i procent er angivet ved

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Chomsky hierarkiet af sprogklasser

Chomsky hierarkiet af sprogklasser Chomsky hierarkiet af sprogklasser Torben Mogensen Juli 2001 I oversætterbogen [Mog01] beskrives to klasser af sprog: De regulære sprog, beskrevet med regulære udtryk og endelige automater samt de kontekstfri

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)}

.. if L(u) + w(u, v) < L(v) then.. begin... L(v) := L(u) + w(u, v)... F (v) := u.. end. med længde L(z)} Procedure Dijkstra(G = (V, E): vægtet sh. graf,. a, z: punkter) { Det antages at w(e) > 0 for alle e E} For alle v V : L(v) := L(a) := 0, S := while z / S begin. u := punkt ikke i S, så L(u) er mindst

Læs mere

1 Program for forelæsningen

1 Program for forelæsningen 1 Program for forelæsningen Udvidelser af Bims (Kontrolstrukturer) Repeat-løkker For-løkker Non-determinisme God Ond parallelitet Alle emner hører under semantisk ækvivalens. 1.0.1 Fra tidligere.. Bims

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2015/16 Institution Hansenberg Gymnasium Uddannelse Fag og niveau Lærer Hold htx Programmering,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

26 Programbeviser I. Noter. PS1 -- Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler.

26 Programbeviser I. Noter. PS1 -- Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler. 26 Programbeviser I. Bevis kontra 'check af assertions' i Eiffel. Betingelser og bevisregler. Hvad er programverifikation? Bevisregel for 'tom kommando'. Bevisregel for assignment. Bevisregler for selektive

Læs mere

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2. Bevis ved stærk induktion. Basisskridt: P (2) er sand og P (3) er sand. Induktionsskridt: Lad k 2 og antag P

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2019 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 10. april, 2019 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Matematisk Metode Notesamling

Matematisk Metode Notesamling Matematisk Metode Notesamling Anders Bongo Bjerg Pedersen Stud.Scient, Matematisk Institut, KU 21. november 2005 Bemærkninger til noterne: Hosliggende noter er fra faget Matematisk Metode, afholdt i blok

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Nogle grundlæggende begreber

Nogle grundlæggende begreber BE2-kursus 2010 Jørgen Larsen 5. februar 2010 Nogle grundlæggende begreber Lidt simpel mængdelære Mængder består af elementer; mængden bestående af ingen elementer er, den tomme mængde. At x er element

Læs mere

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides

01017 Diskret Matematik E12 Alle bokse fra logikdelens slides 01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Taylors formel. Kapitel Klassiske sætninger i en dimension

Taylors formel. Kapitel Klassiske sætninger i en dimension Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003

Mordell s Sætning. Henrik Christensen og Michael Pedersen. 17. december 2003 Mordell s Sætning Henrik Christensen og Michael Pedersen 17. december 2003 Mordells sætning siger at gruppen C(Q) af rationale punkter over en ellipse C er en endeligt frembragt abelsk gruppe. Elliptiske

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Gult Foredrag Om Net

Gult Foredrag Om Net Gult Foredrag Om Net University of Aarhus Århus 8 th March, 2010 Introduktion I: Fra Metriske til Topologiske Rum Et metrisk rum er en mængde udstyret med en afstandsfunktion. Afstandsfunktionen bruges

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

BRP 6.9.2006 Kursusintroduktion og Java-oversigt

BRP 6.9.2006 Kursusintroduktion og Java-oversigt BRP 6.9.2006 Kursusintroduktion og Java-oversigt 1. Kursusintroduktion 2. Java-oversigt (A): Opgave P4.4 3. Java-oversigt (B): Ny omvendings -opgave 4. Introduktion til næste kursusgang Kursusintroduktion:

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Tekniske Fakultet for TT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 29. maj 2017. Kl. 9-13. Nærværende eksamenssæt består af 11 nummererede

Læs mere

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Arne Jensen 7. 11. marts 2005 1 Indledning I forbindelse med kurset i Reelle og Komplekse Funktioner afholdes et fordybelsesprojekt med et omfang

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

K 7 - og K 4,4 -minors i grafer

K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske Fag K 7 - og K 4,4 -minors i grafer Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Institut for Matematiske

Læs mere

Dat 2/BAIT6/SW4: Syntaks og semantik En manual for studerende

Dat 2/BAIT6/SW4: Syntaks og semantik En manual for studerende Dat 2/BAIT6/SW4: Syntaks og semantik En manual for studerende Hans Hüttel Foråret 2011 Indhold Indhold 1 1 Kurset er lavet om! 1 2 Kursets indhold 2 2.1 Kursets emner................................ 2

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. 22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327

Læs mere

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A +

Strings and Sets: set complement, union, intersection, etc. set concatenation AB, power of set A n, A, A + Strings and Sets: A string over Σ is any nite-length sequence of elements of Σ The set of all strings over alphabet Σ is denoted as Σ Operators over set: set complement, union, intersection, etc. set concatenation

Læs mere

Datastrukturer (recap) Datastruktur = data + operationer herpå

Datastrukturer (recap) Datastruktur = data + operationer herpå Dictionaries Datastrukturer (recap) Datastruktur = data + operationer herpå Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data (ofte underforstået, også

Læs mere

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed

Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Klasserne af problemer, der kan løses i deterministisk og i ikke-deterministisk polynomiel tid; polynomiel reduktion; N P-fuldstændighed Videregående algoritmik Cormen et al. 34.1 34.3 Fredag den 12. december

Læs mere

Introduktion til prædikatlogik

Introduktion til prædikatlogik Introduktion til prædikatlogik Torben Braüner Datalogisk Afdeling Roskilde Universitetscenter 1 Plan Symbolisering af sætninger Syntaks Semantik 2 Udsagnslogik Sætningen er den mindste syntaktiske enhed

Læs mere

Tirsdag 12. december David Pisinger

Tirsdag 12. december David Pisinger Videregående Algoritmik, DIKU 2006/07 Tirsdag 12. december David Pisinger Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P = {L : L genkendes af en algoritme

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer.

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer. 14 Algoritmeanalyse. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. O og Ω. Køretid for forskellige kontrolstrukturer. Eksempler på algoritmeanalyse. Eksponentiel og polynomiel

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM58) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 7 Januar 010, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger,

Læs mere

Skriftlig eksamen, Programmer som Data Onsdag 6. januar Spørgsmål 1 (20 %): Regulære udtryk og automater

Skriftlig eksamen, Programmer som Data Onsdag 6. januar Spørgsmål 1 (20 %): Regulære udtryk og automater Skriftlig eksamen, Programmer som Data Onsdag 6. januar 2010 Dette eksamenssæt har 5 sider. Tjek med det samme at du har alle siderne. Eksamens varighed er 4 timer. Der er fire spørgmål. For at få fuldt

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Netværksalgoritmer 1

Netværksalgoritmer 1 Netværksalgoritmer 1 Netværksalgoritmer Netværksalgoritmer er algoritmer, der udføres på et netværk af computere Deres udførelse er distribueret Omfatter algoritmer for, hvorledes routere sender pakker

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere