Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Størrelse: px
Starte visningen fra side:

Download "Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2"

Transkript

1 Økonometri 1 Den simple regressionsmodel 11. september 2006

2 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap ) Motivation for gennemgangen af SLR Definition af SLR Antagelser for SLR Udledning af OLS estimatoren (tavlegennemgang) Forudsagte værdier og residualer Mekaniske egenskaber ved OLS estimatoren Eksempel på en simpel regressionsmodel Variablernes enheder

3 Motivation for simpel regressionsmodel (SLR) Vi beskæftiger os med modeller, hvor vi ønsker at forklare y med x. Eksempler: 1. Hvordan påvirker kunstgødning udbyttet af sojabønner (Ex 1.3)? 2. Hvordan påvirker uddannelsesniveauet timelønnen (Ex. 1.4)? 3. Hvordan afhænger virksomhedens afkast af direktørens løn (Ex. 2.3)? Regressionsmodellen vil være den samme som i Teoretisk Statistik. Estimatoren OLS er også den samme. De statistiske antagelser for modellen er (lidt) anderledes: Ofte mere realistiske for økonomiske anvendelser Grundlag for generalisering/alternativer senere i kurset

4 Motivation (fortsat) Når modellen opstilles, er vi nødt til at forholde os konkret til flg. spørgsmål: Hvad nu, hvis x ikke er den eneste faktor, som har betydning for y? Hvilken funktionel form kan beskrive sammenhængen mellem y og x? Kan y fx beskrives som en lineær funktion af x? Eller log(x)? Eller kan y beskrives som en funktion af x? log(x)? Kan modellen bruges til ceteris paribus fortolkninger?

5 Definition af SLR Den simple regressionsmodel y = β + β x+ u 0 1 Kaldes også for den bivariate regressionsmodel y: afhængig variabel x: forklarende variabel u: (uobserveret) fejlled β 0 : konstantled (intercept) sjældent fortolkeligt β 1 : hældningskoefficient ( slope ) Konstantleddet og den forklarende variabel kaldes under ét regressorerne

6 Definition (fortsat) Når vi opskriver den simple regressionsmodel, besvarer vi implicit spørgsmålene i motivationen: Andre faktorer: Andre faktorer (end x), som påvirker y: Er indeholdt i fejlleddet u Fejlleddet u indeholder derfor: Udeladte faktorer/variable Målefejl Hvad indeholder u i eksemplet med uddannelse og løn?

7 Definition (fortsat) Funktionel form: Vi antager, at variablerne er bragt på en form, så y kan beskrives som en lineær funktion af x. En ændring i y kan forklares ved en ændring i x (forudsat Δu=0) Δ y = β Δx 1 Parameteren β 1 angiver hældningskoefficienten for y som funktion af x.

8 Definition (fortsat) Ceteris paribus fortolkning af parameter: Vi kan ikke generelt lave ceteris paribus fortolkninger af parameterne. Fortolkningen af β 1 som effekten af x på y forudsætter at Δu=0. I uddannelse løn eksemplet, hvad kan problemet med ceteris paribus antagelsen være?

9 Statistiske antagelser for regressionsmodellen Antagelse 1 - (2.5) i Wooldridge. Middelværdien af u er lig 0 Eu ( ) = 0 Samme antagelse som i Teoretisk Statistik Antagelsen er normalt uproblematisk, så længe det er effekten af x, som er den interessante parameter, og der er et konstantled i modellen men gør også tit fortolkningen af konstantleddet problematisk

10 Antagelser (fortsat) Antagelse 2 - (2.6) i Wooldridge. Den betingede middelværdi af u givet x er lig 0 Eu ( x) = Eu ( ) = 0 Denne antagelse er ofte kritisk Lidt om antagelsen (se Appendix B.4): x og u er uafhængige E(u x)=e(u) (appendix B, CE.3, side 751) (enhver funktion af) x og u er ukorrelerede (appendix B, CE.5, side 752)

11 Antagelser (fortsat) Antagelse 1 Teoretisk Statistik E(u)=0 Økonometri 1 E(u)=0 Antagelse 2a Antagelse 2 x givne (ikke stokastisk) E(u x)=e(u) følger af (2a) x stokastisk E(u x)=e(u) per antagelse

12 Antagelser (fortsat) Eksempel: Timeløn og uddannelse Vi har følgende model: timeløn = β + β ( ) 0 1 uddannelse + u Fejlleddet u indeholder blandt andet evner og arbejdsiver. Er følgende antagelsen rimelig? E( evner uddannelse = 9) = E( evner uddannelse = 17)

13 Udledning af OLS estimatoren OLS estimatoren udledes vha. moment metoden (Method of Moments) Ideen med moment metoden illustreres ved et eksempel: Antag at man har en tilfældig stikprøve af n observationer af en variabel x. x har en ukendt middelværdi μ, som man er interesseret i at bestemme. Dvs. Ex ( ) = μ. Hvad vil være et naturligt estimat for middelværdien? Gennemsnittet!! n = 1 n i = 1 Moment estimation går ud på at erstatte teoretiske momenter med data momenter (her: Gennemsnittet) μˆ x i

14 Udledning (fortsat) Resten af udledningen af OLS estimatoren foregår som tavlegennemgang

15 Forudsagte værdier og residualer Forudsagte værdier: Populations regressionsfunktionen E( y x) Ud fra estimaterne for parametrene kan de forudsagte værdier af y bestemmes: y ˆi = β + β x 0 1 = ˆ β + ˆ β x 0 1 Residualer: Residualerne kan bestemmes som forskellen mellem den faktiske og forudsagte værdi af y: uˆ = y yˆ = y ˆ β ˆ β x i i i 0 1 i i

16 Forudsagte værdier og residualer (fortsat) For residualerne (baseret på en OLS estimation med konstantled) gælder følgende sammenhænge mekanisk: n i= 1 uˆ = 0 i i= 1 ux ˆ = 0 Hvorfor er dette ikke så underligt? OLS estimatoren kan ækvivalent opnås ved at minimere residualkvadratsummen: Sådan blev OLS estimatoren udledt i Teoretisk Statistik n N N 2 2 uˆ ˆ ˆ i = ( yi β0 β1xi) i= 1 i= 1 i i

17 Flere egenskaber ved OLS Variansanalyse: Den afhængige variabel y dekomponeres i to komponenter: Forudsagte værdi: y ˆ ˆ ˆi = β0 + β1x i Residualet: u ˆi Variationen i y (total sum of squares) : hvor n SST = ( y y) y i= 1 i 1 n yi n i = 1 = 2

18 Flere egenskaber ved OLS (fortsat) Den totale variation kan også dekomponeres i to dele: SST=SSE+SSR n 2 Explained sum of squares SSE = ( yˆ i y) i= 1 Residual sum of squares SSR n = ( uˆ i ) i= 1 2 I Teoretisk Statistik kaldes SST for SAK, SSR for SRK

19 Egenskaber ved OLS (fortsat) Goodness of fit: På baggrund af variansanalysen kan man definere et mål for, hvor meget variation modellen (den forklarende variabel) forklarer: 2 SSE SSR R = = 1 SST SST Hvilke værdier kan R 2 antage?

20 Eksempel: Timeløn og uddannelse I dette eksempel estimeres en simpel model for timelønnen: timeløn = β ( ) 0 + β1 uddannelse + u i i i Til estimationen benyttes danske registerdata fra Danmarks Statistik. Data består af 2000 tilfældigt udtrukne individer. For disse personer har vi en række oplysninger om arbejdsmarkedsforhold i perioden Datasættet ligger på forelæsningssiden under Eksempler

21 Eksempel (fortsat) Til analysen benyttes følgende variabler: Timelønnen beregnet på baggrund af årlig lønindkomst (registreret hos SKAT) divideret med det årlige antal arbejdstimer udregnet på baggrund af ATP indbetalinger Uddannelse er antallet af års gennemført uddannelse Vi benytter data vedr Data består af personer: år Lønmodtagere Timelønnen er større end 20 kr.

22 Enhederne på variablerne: Hjemmeopgave Hvad sker der, hvis man skifter enhed på den afhængige variabel? Hvad sker der med estimaterne, hvis timelønnen omregnes til kr. (dvs. timeløn = timeløn 1980 *2.155 )? Hvad sker der med R 2? Hvad sker der, hvis den forklarende variabel skifter enhed? Hvad sker der med estimaterne, hvis uddannelse opgøres i antal måneder i stedet for år? Hvad sker der med R 2?

23 NB er fra denne forelæsning At skelne mellem Den simple lineære regressionsligning Og den regneregel, vi bruger til at opnå et estimat af ligningens koefficienter (her: OLS estimatoren). At skelne mellem Statistiske antagelser om populationen (fx Eu ( x ) = 0) Og de mekaniske egenskaber som fremkommer ved at anvende en given regneregel (her: OLS estimatoren) på data i en given stikprøve. x De forklarende variabler opfattes som udgangspunkt som stokastiske variabler

24 Næste gang Fredag om kapitel Husk: Hjemmeopgaven om enheder på variablerne. Øvelserne starter i denne uge: Læs Ugeseddel 1 om estimation af Engelkurver (ugeseddel og data ligger på hjemmesiden). Læs Varian Intermediate Microeconomics kap Medbring Elementær indføring i SAS og Statistik med SAS

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Gentagne tværsnit og paneldata Kvantitative metoder 2 Gentagne tværsnit og panel data II 9. maj 2007 I dag: To-periode panel data: Følger de samme individer over to perioder (13.3-4) Unobserved effects

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II.

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II. Gentagne tværsnit (W 13.1-): Opsamling. Økonometri 1 Gentagne Tværsnit og Paneldata II Kombinerer tværsnit indsamlet på forskellige tidspunkter. Partial pooling: Tillader koefficienterne til nogle af variablerne

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 11

Økonometri 1 Efterår 2006 Ugeseddel 11 Økonometri 1 Efterår 2006 Ugeseddel 11 Program for øvelserne: Gruppearbejde og plenumdiskussion Introduktion til SAS øvelser SAS øvelser Øvelsesopgave: Paneldata estimation Sammenhængen mellem alder og

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen 1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad

Læs mere

Økonometri 1 Forår 2006 Ugeseddel 11

Økonometri 1 Forår 2006 Ugeseddel 11 Økonometri 1 Forår 2006 Ugeseddel 11 Program for øvelserne: Gruppearbejde og plenumdiskussion Introduktion til SAS øvelser SAS øvelser Øvelsesopgave 5: Paneldata estimation af indkomstligninger på danske

Læs mere

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata 1 Intoduktion Før man springer ud i en øvelse om paneldata og panelmodeller, kan det selvfølgelig være rart at have en fornemmelse af, hvorfor de er så vigtige i moderne mikro-økonometri, og hvorfor de

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 22. februar 2005 Denne note er skrevet til kurset Økonometri 1 på 2. årsprøve af polit-studiet.

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007 Dagens program: Økonometri 1 Afslutningsforelæsning 23. maj 2007 6-trins procedure til IV estimation. Afrunding af IV: Rygning og fødselsvægt. Afrunding og perspektivering af Kvant 2. Opfølgning af introduktionsforelæsningen.

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag: Kvantitative metoder Beskrivende statistik og analyse af kvalitatitive data 1. februar 007 Test i multinomialfordelingen: Q-testet (BL.13.1-) Opsamling fra sidste gang To eksempler To-dimensionale

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Økonometri 1. Økonometri 1 Forår Introduktionsforelæsning 1. februar Begrebet økonometri. Dagens program:

Økonometri 1. Økonometri 1 Forår Introduktionsforelæsning 1. februar Begrebet økonometri. Dagens program: Økonometri 1 Forår 2006 Økonometri 1 Introduktionsforelæsning 1. februar 2006 Forelæser: Mette Ejrnæs Lektor ved Økonomisk Institut Kontor på Bispetorvet, 3. sal. Hans Christian Kongsted Lektor ved Økonomisk

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Note om Monte Carlo eksperimenter

Note om Monte Carlo eksperimenter Note om Monte Carlo eksperimenter Mette Ejrnæs og Hans Christian Kongsted Økonomisk Institut, Københavns Universitet 9. september 003 Denne note er skrevet til kurset Økonometri på. årsprøve af polit-studiet.

Læs mere

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark

Økonomisk Kandidateksamen 2004II Økonometri 1. Læsefærdigheder hos skoleelever i Danmark Økonomisk Kandidateksamen 2004II Økonometri 1 Læsefærdigheder hos skoleelever i Danmark Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig at du kan få adgang

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1 Rettevejledning til Økonomisk Kandidateksamen 004I, Økonometri Vurderingsgrundlaget er selve opgavebesvarelsen og bilaget. Programmer og data som er afleveret på diskette/cd bedømmes som sådan ikke, men

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Økonometri 1. Økonometri 1 Efterår Introduktionsforelæsning 3. september Begrebet økonometri. Dagens program:

Økonometri 1. Økonometri 1 Efterår Introduktionsforelæsning 3. september Begrebet økonometri. Dagens program: Økonometri 1 Efterår 2004 Økonometri 1 Introduktionsforelæsning 3. september 2004 Forelæsere: Mette Ejrnæs Lektor ved Økonomisk Institut Kontor på Bispetorvet, 3. sal. Hans Christian Kongsted (HC) Lektor

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Kvantitative metoder 1

Kvantitative metoder 1 Forår 2007 Kvantitative metoder 1 5. februar 2007 Præsentation af forelæserne Forelæser: Dorte Grinderslev Specialkonsulent i det økonomiske råd Mette Ejrnæs Lektor ved Økonomisk Institut Kontor på Bispetorvet,

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Kapitel 8.1-8.3 Tilfældig stikprøve (Random Sampling) Likelihood Eksempler på likelihood funktioner Sufficiente statistikker Eksempler på sufficiente statistikker 1 Tilfældig stikprøve Kvantitative

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere