Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet"

Transkript

1 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller princippet Beregn invers matrix To ubekendte grafisk Figur y x y, skæringspunkt x x + y To ligninger i to ubekendte Calculus - 6 Uge Calculus - 6 Uge Ligninger på matrix form Koefficient matrix Definition 6.-3 Ved m lineære ligninger med n ubekendte forstås a x a n x n b a x a n x n b. a m x a mn x n b m På matrix form A a ij m n-matrix, b b i m-søjle, x x j n-søjle Ax b Definition 6.4 Givet ligningssystemet. A koefficientmatrix. b homogent system 3. b inhomogent system Ax b 4. Partikulær løsning en funden løsning, fuldstændig løsning mængden af alle løsninger Calculus - 6 Uge Calculus - 6 Uge srummet Uendelig mange løsninger Sætning smængden til et homogent lineært ligningssystem med n ubekendte Ax er et lineært underrum N A R n kaldet løsningsrummet eller nulrummet. Dimensionen dim N A Sætning 6. For et homogent ligningssystem Ax er følgende ækvivalent:. Der er en løsning.. Der er uendelig mange løsninger. 3. Nulrummet N A. 4. Antallet af frihedsgrader er >. Benyt, at et ikke-nul underrum er en uendelig mængde. er antal frihedsgrader. Ax, Ay Ax + y Calculus - 6 Uge Calculus - 6 Uge ligninger 4 ubkendte Eksempel 6.. og x.. og kan vælges frit. x + + ligninger 4 ubkendte Eksempel 6.- fortsat x + x srummet er span af vektorerne, Calculus - 6 Uge Calculus - 6 Uge

2 Uafhængige søjler er og nulrum Sætning 6.3 Søjlerne a,..., a n i en m n-matrix A er lineært uafhængige, hvis og kun hvis nulrummet N A. Matrixmultiplikationen giver Sætning 6.5 Givet en partikulær løsning u til det lineære ligningssystem med n ubekendte Ax b så er løsningsmængden Ax j x j a j {x R n Ax b} u + N A Så x N A er, når søjlerne er lineært uafhængige. Simple regneregler for matrix multiplikationen giver Au b, Ax Au + x b Calculus - 6 Uge Calculus - 6 Uge Test smængde ligninger 4 ubkendte Test Betragt et inhomogent lineært ligningssystem A x b b. Hvilket af følgende udsagn er sandt uanset hvordan A ser ud a er altid en løsning. b er aldrig en løsning. c b er altid en løsning. Gør prøve Afkryds det sande: A b a b c Eksempel 6.7 x + +., x og. Giver en partikulær løsning x,,,,,, Calculus - 6 Uge Calculus - 6 Uge ligninger 4 ubkendte Konsistens Eksempel fortsat + x + x smængden er,,, plus en vilkårlig vektor fra underrummet af alle linearkombinationer af vektorerne Sætning 6.8 Det lineære ligningssystem med n ubekendte Ax b har en løsning, hvis og kun hvis b Spana,..., a n, altså b er en linearkombination af søjlerne i koefficientmatricen. Matrixmultiplikationen giver en linearkombination af søjler,,,,,,, Ax j x j a j b Calculus - 6 Uge Calculus - 6 Uge Søjlerum og rang 3 ligninger 4 ubekendte Definition 6.- For en m n-matrix A er søjlerummet R A Spana,..., a n underrummet i R m udspændt af søjlerne i A og rækkerummet R A T Spana,..., a m underrummet i R n udspændt af rækkerne i A. Dimensionen af søjlerummet kaldes rangen Eksempel 7. - rækkereduktion 3x 4 3 x x rang A dim Spana,..., a n Calculus - 6 Uge Calculus - 6 Uge

3 Eliminer en ubekendt Eliminer endnu en Eksempel 7. - fortsat Eksempel 7. - fortsat x Calculus - 6 Uge Calculus - 6 Uge En ubekendt er fri Brug matrixform Eksempel 7. - fortsat Heraf x Eksempel 7. - fortsat x 4 3 På matrix form x x x Calculus - 6 Uge Calculus - 6 Uge Eliminations strategi Skalpellen frem, fjern ubekendte Definition 7.3 Rækkeoperationer Ombytning af to ligninger Multiplikation af ligning med tal Addition af et multiplum af en ligning til en anden. Bevarer løsningsmængden.. Bringer ligningssystemet på række-echelon form, trappeform. 3. smængden kan opskrives ved baglæns substitution. Eksempel 7.4 3x 4 3 x x Calculus - 6 Uge Calculus - 6 Uge Skær videre Videre x Calculus - 6 Uge Calculus - 6 Uge

4 Afslut bagfra En fri tre bundne Heraf x x 6 x På matrix form x 3 Calculus - 6 Uge Calculus - 6 Uge Rækkeoperationer reduceret matrix Strategi på matrix form Definition 7.5 Rækkeoperationer på en matrix Ombytning af to rækker Multiplikation af række med tal Addition af et multiplum af en række til en anden Bringer matricen på reduceret række-echelon form trappeform, på pivot indgange?????? Bemærkning 7.6 Fra et lineært ligningssystem tilordnes en augmenteret matrix Ax b A b Rækkeoperationer på et ligningssystem svarer til rækkeoperationer på den augmenterede matrix. Det reducerede ligningssystem opskrives fra den reducerede matrix. Calculus - 6 Uge Calculus - 6 Uge Strategi på matrix form Øvelse gør mester Eksempel igen 3x 4 3 x Calculus - 6 Uge Calculus - 6 Uge Atter øvelse Afslut elegant Det reducerede ligningssystem 6 x + 6 Calculus - 6 Uge Calculus - 6 Uge

5 En fri tre bundne Struktur er sagen x 6 x På matrix form x 3 hvor vælges frit. Calculus - 6 Uge Sætning 7.8 Givet et ligningssystem, hvor der er flere ubekendte end ligninger.. Hvis systemet er homogent, så har det uendelig mange løsninger.. Hvis systemet er konsistent, så har det uendelig mange løsninger. Den reducerede koefficientmatricen har mindst pivotfri søjle.?????? Calculus - 6 Uge Konsistens Test ligningssystem Sætning 7. Det inhomogene ligningssystem Ax b er konsistent, hvis og kun hvis række-echelon formen af den augmenterede matrix A b ikke har en pivot i sidste søjle. Række-echelon formen???? c?? c c r giver løsning x ji c i og øvrige x j. Calculus - 6 Uge Test Et homogent lineært ligningssystem med 4 ubekendte og 3 ligninger har: a Altid højst løsning. b Altid uendelig mange løsninger. c Undertiden ingen løsninger. d Mindst løsning. Afkryds de to rigtige: Sætning 7.8 sikrer uendelig mange løsninger. a b c d Calculus - 6 Uge En sjov variation Eksempel 7. Løs matrixligningen x x 5 3 Skrives som ligningssystemet x + 5x + 3 x + 5x + 3 Det er rigtig sjovt , x x 3 5 Calculus - 6 Uge Calculus - 6 Uge Operationer og multiplikation Smart overbevisende Sætning 8.3 Rækkeoperationer på en m n-matrix A fremkommer ved Udfør rækkeoperationen på m m-enhedsmatricen og få en elementærmatrix E Venstre multiplicer den oprindelige matrix med den fremkomne elementærmatrix EA. Ombytning af to rækker a a a a a a a a Multiplikation af række med tal r a a a a r a a ra ra Addition af et multiplum af en række til en anden r a a a + ra a + ra a a a a Calculus - 6 Uge Calculus - 6 Uge

6 Rangformlen Enten-eller Sætning 8.4 For en m n-matrix A gælder:. Antal pivot er er rangen rang A.. Antal pivot er dimensionen af rækkerummet rang A T. 3. Antal af søjler uden pivot er er antal af frihedsgrader dim N A. 4. Antal frihedsgrader plus antal pivot er er antal søjler, rangformlen dim N A + rang A n Sætning 8.7 En kvadratisk matrix kan ved rækkeoperationer enten føres over i identitetsmatricen eller føres over i en matrix med en nulrække nederst Matricen på reduceret trappeform? Calculus - 6 Uge Calculus - 6 Uge Ensidig invers er tosidig Invertibel som produkt Sætning 8.8 Lad A, B være kvadratiske matricer af samme størelse. Så gælder AB I BA I En højre invers er også en venstre invers. Hvis AB I har alle ligningssystemer Ax b en løsning x Bb. Den reducerede form af A kan da ikke have en -række og er derfor enhedsmatricen I. Altså findes en matrix C så CA I. Til slut er C CAB CAB B. Sætning 8. En invertibel matrix kan skrives som et produkt af elementærmatricer. Hvis E,..., E k er elementærmatricer svarende til rækkeoperationer, som fører en matrix A i identitetsmatricen, så er A E E k Der findes en følge af elementærmatricer E,..., E k så produktet E k E A I. Så fås, at A E E k og da de inverse til elementærmatricer igen er elementærmatricer haves produktfremstillingen. Calculus - 6 Uge Calculus - 6 Uge Invers ved operationer Invers x-matrix Sætning 8.3 En kvadratisk matrix A er invertibel, hvis og kun hvis dens reducerede form er enhedsmatricen I. I så fald er den augmenterede matrix A I I A Den inverse matrix beregnes ved rækkeoperationer på den augmenterede matrix. Eksempel 8.4 Løs matrixligningen, i.e. beregn invers, x x Calculus - 6 Uge Calculus - 6 Uge Invers x-matrix Invers x-matrix Eksempel fortsat Rækkereduktionen giver den inverse Eksempel - forsat Gør prøve 5 3 Udregn Calculus - 6 Uge Calculus - 6 Uge

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

DesignMat Lineære ligningssystemer og Gauss-elimination

DesignMat Lineære ligningssystemer og Gauss-elimination DesignMat Lineære ligningssystemer og Gauss-elimination Preben Alsholm Uge Forår 010 1 Lineære ligningssystemer og Gauss-elimination 11 Om talrummet R n Om talsæt bestående af n tal R n er blot mængden

Læs mere

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 8 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,...,

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2 Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2. Eksempel = ( 1) = 10 Oversigt [LA] 9 Nem vej til rel Nøgleord og begreber Helt simple determinnter Determinnt defineret Effektive regneregler Genkend determinnt nul determinnt nul Produktreglen Inversreglen inversregel og

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl 2. udgave, oktober 207 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 6. udgave 2016 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler dels med regnemidler.

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer Lineære ligningssystemer Olav Geil Januar 000 Eksempel 1 Ligningssystemet 1) kan også skrives Matricen kaldes for koefficientmatricen for ligningssystemet 1) Ligningssystemet 1) er fuldstændig beskrevet

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 0 4 4 0 0 0 4 x x x x 6 udgave 06 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

Matematik H1. Lineær Algebra

Matematik H1. Lineær Algebra Matematik H Forelæsningsnoter til Lineær lgebra Niels Vigand Pedersen Udgivet af smus L Schmidt Københavns Universitet Matematisk fdeling ugust ii oplag, juli 4 Forord Gennem en særlig aftale varetages

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Lineær Algebra. Differentialligninger

Lineær Algebra. Differentialligninger Lineær Algebra og Differentialligninger til Calculus 1 og 2 Århus 2005 Anders Kock og Holger Andreas Nielsen Indhold 1 Koordinatvektorer........................ 1 2 Matricer..............................

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen LINEÆR ALGEBRA 31. januar 2003 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003. Udtrykt meget groft gennemgås kapitel 1 3. Som regel

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af lommeregner (TI89) og programmerne TI-Nspire og Mathcad 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 3 udgave 03 FORORD Dette notat giver en

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver!

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver! LINEÆR ALGEBRA 30. januar 2004 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003; i store træk bliver det kapitel 1 3 og 5.1 5.3. Som

Læs mere

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 LinAlg 2013 Q3 Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 1 Lineær algebra Dispositioner - Dispo 0 2013 Contents 1 Løsninger, og MKL, af lineære ligningssystemer 3 2 Vektorrum

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 4 udgave 04 FORORD Dette notat giver en gennemgang af de matrixoperationer,

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

LINEÆR ALGEBRA DIFFERENTIALLIGNINGER

LINEÆR ALGEBRA DIFFERENTIALLIGNINGER LINEÆR ALGEBRA DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 006 NIELSEN - SALOMONSEN INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 006 Indhold Forord 5. Vektorer og linearkombinationer 7. Basis og dimension

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

MATRICER LINEÆRE LIGNINGER

MATRICER LINEÆRE LIGNINGER MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 4 4 0 0 0 4 x x x x 5 udgave 05 FORORD Dette notat viser hvorledes man kan dels kan løse lineære

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Lineære Afbildninger. enote 8. 8.1 Om afbildninger

Lineære Afbildninger. enote 8. 8.1 Om afbildninger enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er

Læs mere

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab)

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Nikolai Plambech Nielsen, LPK331 Version 10 2 februar 2016 Indhold 1 Introduktion, lineære afbildninger og matricer 3 11 Talrum (R & C) 3 12

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere