Introduktion. Philip Bille

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Introduktion. Philip Bille"

Transkript

1 Introduktion Philip Bille

2 Plan Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3

3 Algoritmer og datastrukturer Hvad er det? Algoritmisk problem: præcist defineret relation mellem input og output. Algoritme: metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige skridt. Matematisk abstraktion af program. Datastruktur: Metode til at organise data så det kan søges i eller manipuleres.

4 Eks: Max i tabel Maxproblemet: givet en tabel A[1..n] find et tal i, således at A[i] er maksimal. Input: tabel A[1..n]. Output: et tal i, 1 i n, så A[i] A[j] for alle indgange j i. Algoritme til maxproblemet: Gennemløb A og vedligehold nuværende maximale indgang. Returner den til slut.

5 Beskrivelse af algoritmer Naturligt sprog. Program. Pseudokode.

6 public static int findmax(int[] A) { int max = 0; for(i=0; i< n; i++) if (A[i] > A[max]) max = i; return max; } int findmax(int* A, n) { int max = 0; for(i=0; i< n; i++) if (A[i] > A[max]) max = i; return max; } def findmax(a): max = 0 for i in range(len(a)): if A[i] > A[max]: max = i return max fun findmax [] = raise Empty findmax [x] = x findmax (x::xs) = max(x, findmax xs)

7 Pseudokode FindMax(A, n) max = 0 for i = 1 to n if (A[i] > A[max]) then max = i return max Som (imperativt) programmeringssprog men uden sprogspecifikke ting. Nemt at implementere og analysere.

8 Beskrivelse af algoritmer Naturligt sprog, pseudokode eller program?

9 Toppunkter

10 Toppunkter Lad A[1..n] være en tabel. En indgang A[i] er et toppunkt hvis det ikke er mindre end dets naboer: A[i-1] A[i] A[i+1] A[1] toppunkt hvis A[1] A[2] og A[n] er toppunkt hvis A[n-1] A[n]. (Tænk A[0] = A[n+1] = - )

11 Toppunkter Toppunktsproblemet: Givet en tabel A[1..n] find et tal i, således at A[i] toppunkt. Som input/output relation: Input: En tabel A[1..n]. Output: Et tal i, 1 i n, så A[i] er et toppunkt.

12 Algoritme For hver indgang i A, check om den er et toppunkt. Returner det første toppunkt.

13 Pseudokode Toppunkt1(A, n) if A[1] A[2] return 1 for i = 2 to n-1 if A[i-1] A[i] A[i+1] return i if A[n-1] A[n] return n

14 Teoretisk analyse T(n) = antallet af skridt som en algoritmen udfører på et input af størrelse n. Skridt = Læsning/skrivning til hukommelse (x := y, A[i], i++,...), aritmetiske/ boolske operationer (+,-,*,/,%,&&,, &,, ^,~), sammenligninger (<,>,,, =, ) og program-flow (if-then-else, while, for, goto, funktionskald,..) T(n) kaldes tidskompleksiten eller køretiden af algoritmen. Interesseret (næsten altid) i værstefaldstidskompleksitet = maksimal køretid over alle input af størrelse n.

15 Køretid Toppunkt1(A, n) if A[1] A[2] return 1 for i = 2 to n-1 if A[i-1] A[i] A[i+1] return i if A[n-1] A[n] return n c 1 (n-2) c 2 c 3 T(n) = c1 + (n-2) c2 + c3 T(n) er lineær funktion af n: T(n) = an + b, for passende konstanter a,b>0 I asymptotisk notation: T(n) = Θ(n)

16 Eksperimentiel analyse Hvordan opfører algoritmen sig i praksis? Passer den teoretisk analyse med den eksperimentielle analyse?

17 70 Alg 1 52,5 sek. for 1000 kørsler 35 17, k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m tabel str.

18 Algoritme 1 Givet en tabel A[1..n] løser Algoritme 1 toppunktsproblemet i Θ(n) tid. Stemmer overens med praksis. Kan vi gøre det bedre?

19 Algoritme Algoritme 2 = FindMax Det maximale element er også et toppunkt.

20 Algoritme 2 findmax(a, n) max = 1 for i = 1 to n if A[i] > A[max] max = i return max c 4 n c 5 c 6 T(n) = c4 + n c5 + c6 = Θ(n) Samme asymptotisk køretid som algoritme 1. Bedre konstanter?

21 70 Alg 1 Alg 2 52,5 sek. for 1000 kørsler 35 17, k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m tabel str.

22 Algoritme 2 Givet en tabel A[1..n] løser Algoritme 2 toppunktsproblemet i Θ(n) tid. Er hurtigere i praksis en algoritme 1. Kan vi gøre det betydeligt bedre?

23 Snedig ide: Kig på en vilkårligt indgang A[i] og dens naboer A[i-1] og A[i+1]. A[i] er et toppunkt => returner i. Ellers: A er lokalt voksende i mindst en retning.!!! => Der findes et toppunkt i den voksende retning. => Vi kan smide resten af tabellen væk og stå tilbage med enten A[1..i-1] eller A[i+1..n].

24 Algoritme Kig på miderste indgang A[m] og dens naboer A[m-1] og A[m+1]. A[m] er et toppunkt => returner m. Ellers: A er lokalt voksende i mindst en retning. Find toppunkt i en lokalt voksende retning rekursivt.

25 Toppunkt3(A,i,j) m = floor((i+j)/2) if A[m-1] A[m] A[m+1] return m elseif A[m-1] > A[m] return Toppunkt3(A,i,m-1) elseif A[m] < A[m+1] return Toppunkt3(A,m+1,j) Kig på miderste indgang A[m] og dens naboer A[m-1] og A[m+1]. A[m] er et toppunkt => returner m. Ellers: A er lokalt voksende i mindst en retning. Find toppunkt i en lokalt voksende retning rekursivt.

26 Køretid Et rekursivt kald tager konstant tid. Hvormange rekursive kald laver vi? Et rekursivt kald halverer størrelsen af tabellen vi kigger på. Vi stopper når tabellen har størrelse rekursive kald: n/2 2. rekursive kald: n/4. k te. rekursive kald: n/2 k. => Efter log2 n rekursive kald har tabellen størrelse 1. => Køretiden er Θ(log n)

27 70 Alg 1 Alg 2 Alg 3 52,5 sek. for 1000 kørsler 35 17, k 300k 500k 700k 900k 1.1m 1.3m 1.5m 1.7m 1.9m tabel str.

28 Algoritme 3 Givet en tabel A[1..n] løser Algoritme 3 toppunktsproblemet i Θ(log n) tid. Meget, meget hurtigere end algoritme 1 og 2.

29 Opsummering Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Analyse af algoritmer

Analyse af algoritmer Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid

Læs mere

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Asymptotisk analyse af algoritmers køretider

Asymptotisk analyse af algoritmers køretider Asymptotisk analyse af algoritmers køretider Analyse af køretid Recall: Vi ønsker at vurdere (analysere) algoritmer på forhånd inden vi bruger lang tid på at implementere dem. De to primære spørgsmål:

Læs mere

Datalogi C + Datastrukturer og Algoritmer

Datalogi C + Datastrukturer og Algoritmer Datalogi C + Datastrukturer og Algoritmer Velkommen til DatC erne Dagens emne: Hvad er D&A, mål for effektivitet Kursuslærer: Henning Christiansen henning@ruc.dk, http://www.ruc.dk/~henning Hjælpelærer

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Introduktion til datastrukturer. Philip Bille

Introduktion til datastrukturer. Philip Bille Introduktion til datastrukturer Philip Bille Plan Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Datastrukturer Datastrukturer Datastruktur: Metode til at organise data så det kan søges

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Asymptotisk analyse af algoritmers køretider

Asymptotisk analyse af algoritmers køretider Asymptotisk analyse af algoritmers køretider Analyse af køretid (RAM-modellen vs. virkeligheden) public class Linear { public static void main(string[] args) { long time = System.currentTimeMillis(); long

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer.

14 Algoritmeanalyse. Noter. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. Køretid for forskellige kontrolstrukturer. 14 Algoritmeanalyse. Algoritmebegrebet. Hvad er algoritmeanalyse? Problemstørrelse og køretid. O og Ω. Køretid for forskellige kontrolstrukturer. Eksempler på algoritmeanalyse. Eksponentiel og polynomiel

Læs mere

Rolf Fagerberg. Forår 2013

Rolf Fagerberg. Forår 2013 Forår 2013 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM536 og DM537 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM536 og DM537 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Algoritmer og Datastrukturer 1

Algoritmer og Datastrukturer 1 Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Analyseværktøjer [CLRS, 1-3.1] Eksempler på en beregningsprocess Puslespil ved ombytninger Maximum delsum Hvad er udførselstiden for en algoritme? Maskinkode

Læs mere

Introduktion til datastrukturer

Introduktion til datastrukturer Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Philip Bille Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Algoritmisk geometri

Algoritmisk geometri Algoritmisk geometri 1 Intervalsøgning 2 Motivation for intervaltræer Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Antag, at vi ønsker at

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Bits DM534. Rolf Fagerberg, 2012

Bits DM534. Rolf Fagerberg, 2012 Bits DM534 Rolf Fagerberg, 2012 Resume af sidst Overblik over kursus Introduktion. Tre pointer: Datalogi er menneskeskabt og dynamisk. Tidslinie over fremskridt mht. ideer og hardware. Algoritme er et

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Introduktion Til Konkurrenceprogrammering

Introduktion Til Konkurrenceprogrammering Introduktion Til Konkurrenceprogrammering Søren Dahlgaard og Mathias Bæk Tejs Knudsen {soerend,knudsen}@di.ku.dk Version 0.1 Indhold Indhold i Introduktion 1 1 Palindromer 3 1.1 Introduktion til Python...............

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt.

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Merging og hashing Mål Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Dette emne er et uddrag af kurset DM507 Algoritmer og datastrukturer

Læs mere

Sortering ved fletning (merge-sort)

Sortering ved fletning (merge-sort) Sortering 1 Sortering ved fletning (merge-sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2 Del-og-hersk Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data S i to disjunkte

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 3, 009 Algorithms and Architectures II. Introduction to analysis and design of

Læs mere

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm6: More sorting algorithms: Heap sort and quick sort - October 9, 008 Algorithms and Architectures II. Introduction

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl Skriftlig Eksamen Algoritmer og Datastrukturer 1 Datalogisk Institut Aarhus Universitet Mandag den. marts 00, kl..00 11.00 Navn Gerth Stølting Brodal Årskort 1 Dette eksamenssæt består af en kombination

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Flowchart og Nassi ShneidermanN Version. Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller.

Flowchart og Nassi ShneidermanN Version. Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller. Flowchart Et flowchart bruges til grafisk at tegne et forløb. Det kan fx være et programforløb for en microcontroller. Et godt program til at tegne flowcharts med er, EDGE-Diagrammer, eller Smartdraw.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

Plan. Introduktion. Eks: Max i tabel. Algoritmer og datastrukturer. Algoritmer og datastrukturer. Toppunkter. Algoritme 1. Algoritme 2.

Plan. Introduktion. Eks: Max i tabel. Algoritmer og datastrukturer. Algoritmer og datastrukturer. Toppunkter. Algoritme 1. Algoritme 2. Plan Algoritmer og datastrukturer Toppunkter Introduktion Philip Bille Algoritme Algoritme Algoritme Algoritmer og datastrukturer Eks: Max i tabel Hvad er det? Algoritmisk problem: præcist defineret relation

Læs mere

Introduktion til funktioner, moduler og scopes i Python

Introduktion til funktioner, moduler og scopes i Python Denne guide er oprindeligt udgivet på Eksperten.dk Introduktion til funktioner, moduler og scopes i Python Denne artikel er fortsættelsen af "I gang med Python", som blevet publiceret her på sitet for

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )?

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )? Eksamen juni Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) I det følgende angiver log n -tals-logaritmen af n. n+n er O(n)? n 6 er O(n )? nlogn er O(n /logn)? n er O(n )? n er O(n )?

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008 1 Algorithms and Architectures II 1. Introduction to analysis and

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Ordbøger Ordbøger. Vedligehold en dynamisk mængde S af elementer.

Læs mere

Sekvensafstand DM34 - Eksamensopgave. Jacob Aae Mikkelsen

Sekvensafstand DM34 - Eksamensopgave. Jacob Aae Mikkelsen Sekvensafstand DM34 - Eksamensopgave Jacob Aae Mikkelsen 19 10 76 kokken@grydeske.dk 27. maj 2005 Resumé Rapporten her beskriver tre forskellige rekursive metoder til at sammenligne tekst strenge med.

Læs mere

Introduktion til programmering. Uge 40 Computer Science, kap (minus kap 8.6).

Introduktion til programmering. Uge 40 Computer Science, kap (minus kap 8.6). Introduktion til programmering Uge 40 Computer Science, kap 5 + 8 (minus kap 8.6). Kompendier Købes mellem 12 og 13 i 014 i Wienerbygningen Pris 70 kr. Sidste gang Funktioner som metode til at skrive anvendelsesorienterede

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms

Læs mere

17 Søgning og Søgetræer.

17 Søgning og Søgetræer. 17 Søgning og Søgetræer. Lineær og inær søgning i lister. inære søgetræer. Søgning efter knude i træ. Indsættelse af knude i træ. Søgning i og sortering af inært søgetræ. Sletning af knude i inært søgetræ.

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Ordbøger. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[x] fra et univers af nøgler U og satellitdata data[x]. Ordbogsoperationer. SEARCH(k): afgør om element

Læs mere

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =

Læs mere

DM13-1. Obligatoriske Opgave - Kredsløbs design

DM13-1. Obligatoriske Opgave - Kredsløbs design DM13-1. Obligatoriske Opgave - Kredsløbs design Jacob Christiansen moffe42@imada.sdu.dk Institut for MAtematik og DAtalogi, Syddansk Universitet, Odense 1. Opgaven Opgaven består i at designe et kredsløb,

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere