LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer."

Transkript

1 LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer 4 6 Farkas lemma 5 7 Dualitetssætningen 6 Resumé Disse noter handler om dualitet i lineære optimeringsprogrammer 1 Introduktion Hvad er et lineært maksimeringsprogram? Lad I og J være endelige mængder med delmængder I I og J J Vi kan feks tænke på at I = {1,, m} og J = {1,, n}) Mængden I vil blive brugt til at indicere problemets bibetingelser, g i ), og mængden J til at indicere problemets variable x = x j ) j J Denition 11 Et lineært maksimeringsprogram P) har formen P) Maksimer fx) under bibetingelser g i x) b i, g i x) = b i, x j 0, i I i I I hvor objektfunktionen, f, og bibetingelserne, g = g i ), er lineære funktioner Her er nogle bibetingelser givet ved uligheder mens de andre er givet ved ligheder, ligesom der er et fortegnskrav på nogle af de variable mens de andre er fri En tilladt løsning eller mulig løsning til P) er en vektor x R J som opfylder alle bibetingelser, dvs at det konvekse polyeder) MP ) = {x R J i I : g i x) b i, i I I : g i x) = b i } er mængden af alle mulige løsninger til P) Den optimale værdi for P) er supp ) = sup{fx) x MP )} og en optimal løsning for P) er en tilladt vektor x MP ) sådan at fx ) = supp ), dvs fx ) fx) for alle x MP ) Bemærkning 12 Da funktionerne f og g = g i ) er lineære har de formen fx) = c t x = j J c j x j gx) = Ax eller g i x) = [i]ax = j J a ij x j, i I for en vektor c = c j ) j J og en matrix A = a ij ),j J Date: 19 november

2 2 JESPER MICHAEL MØLLER Et lineært minimeringsprogram P') deneres tilsvarende En tilladt vektor er en optimal løsning til P') hvis den lineære objektfunktion antager den optimale værdi, infp ), i vektoren Vi skal se at ethvert lineært maksimeringsprogram P) har et dualt minimeringsprogram P') Teorien handler om samspillet mellem det primale program P) og det duale program P') Kanoniske programmer og standard programmer er specielle lineære programmer Vi vil først omtale kanoniske programmer Dernæst vil vi se på standard programmer Vi formulerer dualitet først for standard programmer og dernæst for generelle programmer Svag dualitet er en banalitet men stærk dualitet er en ikke-triviel sætning 2 Kanoniske programmer I et kanonisk maksimeringsprogram er alle bibetingelser givet ved ligheder og der er et fortegnskrav på alle variable Denition 21 Et kanonisk lineært program har formen P) Maksimer c t x under bibetingelser Ax = b, x 0 En løsning x til det lineære ligningsssystem Ax = b kaldes en basisløsning hvis de benyttede søjler {A[j] x j 0} er lineært uafhængige Der er kun endeligt mange basisløsninger Her er den geometriske tolkning som er vigtig for simplex algoritmen) Sætning 22 En mulig løsning x MP ) er en basisløsning hvis og kun hvis x er et hjørne i MP ) En mulig løsning x MP ) er et hjørne i det konvekse polyeder MP ) hvis x ikke ligger mellem to andre punkter fra MP ) Fordelen ved kanoniske systemer er Sætning 23 Hvis P) har en optimal løsning så har P) også en optimal basisløsning Da der kun er endeligt mange basisløsninger er løsningen af kanoniske programmer fuldstændig algoritmisk og sådan set afsluttet set fra et teoretisk matematisk synspunkt Ethvert lineært program er ækvivalent med et kanonisk program Men det kanoniske program har fået ere variable og ere bibetingelser, så det vil ofte i praksis være mere uhåndterligt end det oprindelige problem Det er ulempen ved kanoniske programmer 3 Standard programmer I et standard minimeringsprogram er alle bibetingelser givet ved uligheder og der er et fortegnskrav på alle variable Denition 31 Standardprogrammer har formen P) Maksimér c t x under bibetingelser Ax b, x 0 P') Minimér y t b under bibetingelser y t A c t, y t 0 Disse to standardprogrammer er hinandens duale programmer P) har n variable, x j ) j J, og m bibetingelser givet ved A-rækkerne, [i]a, i I, og højresiden b P') har m variable, y i ), og n bibetingelser givet ved A-søjlerne, A[j], j J, og højresiden c objektfunktionen for P) er højresiden for P') objektfunktionen for P') er højresiden for P) Ax beregner prikprodukterne, [i]ax, i I, mellem A-rækkerne og x y t A beregner prikprodukterne, y t A[j], j J, mellem y og A-søjlerne

3 LINEÆR OPTIMERING 3 Læg mærke til at 32) c t x = c 1 x c j x j + + c n x n = j J c j x j 33) 34) 35) 36) 37) y t b = y 1 b y i b i + + y m b m = Ax = j J a 1jx j j J a ijx j j J a mjx j y i b i, [i]ax = a ij x j, i I j J y t A = y i a i1,, y i a ij,, ) y i a in, y t A[j] = y i a ij, j J b 1 j J a 1jx j b Ax = b i j J a ijx j, y t b Ax ) = y i bi ) a ij x j j J b 1 j J a mjx j c t y t A = c 1 y i a i1,, c j y i a ij,, c n ) y i a in, c t y t A ) x = cj ) y i a ij xj j J Problemets tableau x 1 x j x n y 1 a 11 a 1j a 1n b 1 y i a i1 a ij a in b i y m a m1 a mj a mn b m c 1 c j c n hjælper med at bevare overblikket Ethvert lineært program er ækvivalent med et standardprogram 4 Svag dualitet for standard programmer Lad P) og P') være duale standardprogrammer som i Denition 31 Lemma 41 Dualitetslemma for standardprogrammer) Hvis x MP ) og y MP ) er mulige løsninger så gælder: 1) c t y t A ) x = cj ) y i a ij xj og y t Ax b ) = ) y i a ij x j b i j J j J 2) c t y t A ) x 0, y t Ax b ) 0 3) c t x y t Ax y t b 4) c t x supp ) infp ) y t b Bevis 1) Dette er blot 36) og 37) 2) Klart, da c t y t A 0, Ax b 0, og x 0, y 0 3) Dette er blot ulighederne i 1) skrevet på en anden måde 4) Brug at alle tallene c t x ligger under alle tallene y t b hvor x og y er tilladte løsninger Det følger af Dualitetslemmaet for standardprogrammer at Hvis P) er ubegrænset, supp ) =, så har P') ingen mulige løsninger Hvis P') er ubegrænset, infp ) =, så har P) ingen mulige løsninger

4 4 JESPER MICHAEL MØLLER Sætning 42 Den svage dualitetssætning for standardprogrammer) Hvis x og y er tilladte løsninger til P) og P') så er følgende betingelser ækvivalente: 1) x er en optimal løsning til P), y er en optimal løsning til P), og supp ) = infp ) 2) c t x = supp ) = infp ) = y t b 3) c t x = y t b 4) c t x = y t Ax = y t b 5) c t y t A ) x = 0, y t Ax b ) = 0 6) c j y ia ij ) xj = 0, j J, og y i j J a ijx j b i ) = 0, i I Bevis Dualitetsslemmaet viser at alle betingelser er ækvivalente Med ere detaljer 1) 2): Der står det samme i de to linjer 2) 3) 4) 5): Dualitetslemma for standardprogrammer 41 5) 6): Summen c t y t A ) x er udregnet i 37) eller i Lemma 411) Alle led i denne sum er 0 Derfor er c t y t A ) x = 0 hvis og kun hvis alle led i summen er = 0 Tilsvarende er y t Ax b ) = 0 hvis og kun hvis alle led i summen fra Lemma 411) er = 0 5 Svag dualitet for generelle lineære programmer Vi denerer nu det duale program helt generelt Denition 51 Disse to programmer er hinandens duale: P) Maksimér c t x under bibetingelser [i]ax [i]b eller j J a ij x j b i, i I [i]ax = [i]b eller j J a ij x j = b i, i I I [j]x 0 eller x j 0, P') Minimér y t b under bibetingelser y t A[j] c t [j] eller y i a ij c j, y t A[j] = c t [j] eller y i a ij = c j, y t [i] 0 eller y i 0, i I Bemærkning 52 I et standardprogram Denition 31) er I = I og J = J Det duale til et standardprogram er et standardprogram I et kanonisk program Denition 21) er I = og J = J Det duale til det kanoniske program fra Denition 21 er P) Minimer y t b under bibetingelser y t A c t hvor ingen variable er underlagt fortegnskrav og alle bibetingelser er uligheder Her er opskrifter til konstruktion af duale programmer Maksimér c t x Ax b, x 0 Ax b Ax = b, x 0 Ax = b Minimér y t b y t A c t, y t 0 y t A = c t, y t 0 y t A c t y t A = c t Bibetingelser i P) fra I er uligheder, de øvrige bibetingelser i P) er ligheder, variable i x fra J er underlagt fortegnskrav, de øvrige variable i x er fri Bibetingelser i P') fra J er uligheder, de øvrige bibetingelser i P') er ligheder, og variable i y fra I er underlagt fortegnskrav, de øvrige variable i y er fri Ligningerne 32)37) er stadig gyldige Indgang i i b Ax er 0 når i er udenfor I Indgang j i c t y t A er 0 når j er udenfor J I tableauet for et generelt lineært program hvor vi for nemheds skyld antager at I = {1,, i} og J = {1,, j}) markerer vi I -rækker og J -søjler med stjerner

5 LINEÆR OPTIMERING 5 x 1 x j x j+1 x n y 1 a 11 a 1j a 1j+1 a 1n b 1 y i a i1 a ij a ij+1 a in b i y i+1 a i+11 a i+1j a i+1j+1 a i+1n = b i+1 y m a m1 a mj a mj+1 a mn = b m c 1 c j = c j+1 = c n Lemma 53 Dualitetslemma) Hvis x og y er tilladte løsninger til P) og P') så gælder: 1) c t y t A ) x = j J cj y ) ia ij xj og y t Ax b ) = y i j J a ) ijx j b i 2) c t y t A ) x 0, y t Ax b ) 0 3) c t x y t Ax y t b 4) c t x supp ) infp ) y t b Bevis Klart! Den første sum i 1) løber kun over delmængden J J fordi indgang j i c t y t A er 0 når j er udenfor J, se 37) Den anden sum i 1) løber kun over delmængden I I fordi indgang i i b Ax er 0 når i er udenfor I, se 36) Sætning 54 Den svage dualitetssætning) Hvis x og y er tilladte løsninger til P) og P') så er følgende betingelser ækvivalente: 1) x er en optimal løsning til P), y er en optimal løsning til P), og supp ) = infp ) 2) c t x = supp ) = infp ) = y t b 3) c t x = y t b 4) c t x = y t Ax = y t b 5) c t y t A ) x = 0, y t Ax b ) = 0 6) c j ) ) y i a ij xj = 0,, og y i a ij x j b i = 0, i I j J Bevis Dualitetslemmaet 53 viser at alle betingelser er ækvivalente: 1) 2): Der står det samme i 1) og 2) 2) 3) 4) 5): Dualitetslemmaet 53 5) 6): Summen c t y t A ) x er udregnet i Lemma 531) Alle led i denne sum er 0 Derfor er c t y t A ) x = 0 hvis og kun hvis alle led i summen er = 0 Tilsvarende er y t Ax b ) = 0 hvis og kun hvis alle led i summen fra Lemma 531) er = 0 6 Farkas lemma Sætning 61 Farkas lemma) Netop et af følgende to tilfælde indtræer: I) Der ndes x R n så Ax = b, x 0 II) Der ndes y R m så y t A 0, y t b < 0 I) og II) kan ikke begge indtræe for det ville give y t Ax = y t b hvor y t Ax 0 da y t A 0 og x 0) og y t b < 0 Eksempel 62 Lad ) ) 1 1 CA) = {x 1 + x 0 2 x 1 1 0, x 2 0} ) 1 1 være den konvekse kegle udspændt af søjlerne i A = Hvis I) ikke gælder så betyder det at b CA) Vælg 0 1 en hyperplan Hy) = y sådan at CA) ligger på den positive side og b på den negative side Lav en tegning!) Det betyder at y t A 0 og y t b < 0 Farkas lemma ndes i mange varianter Her er en af dem Korollar 63 Netop et af følgende to tilfælde indtræer: I) Der ndes x R n så Ax b, x 0 II) Der ndes y R m så y t A 0, y t b < 0, y 0

6 6 JESPER MICHAEL MØLLER Bevis Det første tilfælde betyder at der ndes kan også skrives ) x R z n R m sådan at Ax+z = b, ) ) x A E = b z ) x 0 Ligningen Ax+z = b z Farkas lemma siger at hvis dette ikke sker, så ndes y R m så y t A E ) 0 og y t b < 0 Det betyder y t A 0, y t b < 0, y 0 7 Dualitetssætningen Sætning 71 Dualitetssætning) Lad P) og P') være duale lineære programmer som i Denition 51 Netop én af følgende re situationer vil gælde: I) MP ), MP ), og supp ) = infp ) II) MP ), MP ) =, og P) er ubegrænset, supp ) = III) MP ) =, MP ), og P') er ubegrænset, infp ) = IV) MP ) =, MP ) = Korollar 72 Den stærke dualitetssætning) Følgende fem betingelser er ækvivalente: 1) MP ) og MP ) 2) P) har en optimal løsning 3) P') har en optimal løsning 4) MP ) og supp ) < 5) MP ) og infp ) > Hvis en af betingelserne holder så er supp ) = infp ) Bevis Vi bender os i tilfælde I) i Dualitetssætningen 71 Bevis for Sætning 71 Da ethvert program kan omformuleres til et standardprogram kan vi godt antage at P) og P') er duale standardprogrammer som i Denition 31 I) siger at der ndes x R n og y R m så A 0 0 A t x y) b c x, 0 y) c t b t 0 Antag nu at I) ikke er tilfældet Vi skal så vise at et af tilfældene II)IV) indtræer Da I) ikke gælder så siger Farkas lemma Korollar 63) at der ndes u R n, v R m, α R så v t u t α ) A 0 0 A t 0, v t u t α ) b v c < 0, u 0 c t b t 0 α Her står at Au αb, v t A αc t, b t v < c t u, u 0, v 0, α 0 Vi kan ikke have α > 0 for det ville sige at α 1 u MP ), α 1 v MP ) og b t α 1 v) < c t α 1 u) i modstrid med Den svage Dualitetssætning 54 Vi har altså at α = 0, dvs Vi deler nu ind i en række tilfælde: Au 0, v t A 0, b t v < c t u, u 0, v 0 c t u > 0: Der kan ikke være nogen mulige løsninger til P') for det ville sige at der fandtes y 0 med y t A c t og det ville give c t u y t A)u = y t Au) 0 Altså er MP ) = MP ) = : Tilfælde IV) MP ) : Vælg x MP ), dvs Ax b, x 0 Så er x + λu MP ) for alle λ > 0 for Ax + λu) = Ax + λau Ax b og x + λu 0 Desuden har vi at objektfunktionen c t x + λu) = c t x + λc t u for t Altså er vi i tilfælde II) c t u 0: Nu ved vi at v t b < 0 Der kan ikke være nogen mulige løsninger til P) for det ville sige at der fandtes x 0 med Ax b og det ville give v t b v t Ax) = v t A)x 0 Altså er MP ) = MP ) = : Tilfælde IV)

7 LINEÆR OPTIMERING 7 MP ) : Vælg y MP ), dvs y t A c t, y 0 Så er y +λv MP ) for alle λ > 0 fordi y +λv) t A = y t A + λv t A y t A c t og y + λv 0 Desuden har vi at objektfunktionen Altså er vi i tilfælde III) y + λv) t b = y t b + λv t b for t Matematisk Institut, Universitetsparken 5, DK2100 København address: URL:

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 11 Lineær optimering Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 46, 2010 Formålet med MASO Oversigt 1 Generelle lineære programmer 2 Definition Et generelt lineært

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK 2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

G r u p p e G

G r u p p e G M a t e m a t i s k o p t i m e r i n g ( E k s t r e m a, t e o r i o g p r a k s i s ) P 3 p r o j e k t G r u p p e G 3-1 1 7 V e j l e d e r : N i k o l a j H e s s - N i e l s e n 1 4. d e c e m b

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Lineær programmering. Maksimer c T u.b.b. A b hvor > 0. Vores metode er også nytteløs her. Ekstrema- teori og praksis

Lineær programmering. Maksimer c T u.b.b. A b hvor > 0. Vores metode er også nytteløs her. Ekstrema- teori og praksis Lineær programmering Ekstrema- teori og praksis Maksimer c T u.b.b. A b hvor > 0 Vores metode er også nytteløs her MAT3, EFTERÅR 2011 GROUP G3-112 INSTITUT FOR MATEMATISKE FAG AALBORG UNIVERSITET 16. DECEMBER

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

Optimering i Moderne Portefølje Teori

Optimering i Moderne Portefølje Teori Aalborg universitet P3-3. semestersprojekt Optimering i Moderne Portefølje Teori 15. december 2011 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optimering - Lineær programmering - Moderne Portefølje Teori PROJEKT

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Operationsanalyse 1 Obligatorisk opgave 2

Operationsanalyse 1 Obligatorisk opgave 2 Operationsanalyse Obligatorisk opgave Anders Bongo Bjerg Pedersen. juni Opgave (i) Vi tilføjer først slack-variable til (P ): Minimize Z = x + x + x subject to x + x + x x 4 = x x + x x 5 = x + x x x =

Læs mere

Noter til kursusgang 9, IMAT og IMATØ

Noter til kursusgang 9, IMAT og IMATØ Noter til kursusgang 9, IMAT og IMATØ matematik og matematik-økonomi studierne 1. basissemester Esben Høg 4. november 013 Institut for Matematiske Fag Aalborg Universitet Esben Høg Noter til kursusgang

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Noter til kursusgang 8, IMAT og IMATØ

Noter til kursusgang 8, IMAT og IMATØ Noter til kursusgang 8, IMAT og IMATØ matematik og matematik-økonomi studierne 1. basissemester Esben Høg 25. oktober 2013 Institut for Matematiske Fag Aalborg Universitet Esben Høg Noter til kursusgang

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Løsning af cup-afviklings-problemet ved hjælp af lift-and-project. Jens Kristian Jensen

Løsning af cup-afviklings-problemet ved hjælp af lift-and-project. Jens Kristian Jensen Løsning af cup-afviklings-problemet ved hjælp af lift-and-project Jens Kristian Jensen Indhold Forord 4 Indledning 5. Lineær programmering.............................. 5.. Facetter..................................

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

Optimering af New Zealands økonomi. Gruppe G3-115

Optimering af New Zealands økonomi. Gruppe G3-115 Optimering af New Zealands økonomi Gruppe G3-115 Det Teknisk-Naturvidenskabelige Fakultet Matematik og Matematik-Økonomi Frederik bajersvej 7G Telefon 99409940 http://math.aau.dk Titel: Tema: Optimering

Læs mere

Jeg foretager her en kort indføring af polynomier over såvel de reelle som

Jeg foretager her en kort indføring af polynomier over såvel de reelle som Polynomier, rødder og division Sebastian Ørsted 20. november 2016 Jeg foretager her en kort indføring af polynomier over såvel de reelle som de komplekse tal, hvor fokus er på at opbygge værktøjer til

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over

Læs mere

F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e. M e d fo k u s på Pag e R a n k.

F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e. M e d fo k u s på Pag e R a n k. F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e M e d fo k u s på Pag e R a n k. J a ko b L i n d b l a d B l a ava n d I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e

Læs mere

Kirchberger s sætning om separation af to mængder Maria Larissa Ziino

Kirchberger s sætning om separation af to mængder Maria Larissa Ziino 12 Formidlingsaktivitet Kirchberger s sætning om separation af to mængder Maria Larissa Ziino I denne artikel fremføres to sætninger af henholdsvis den østrigske matematiker Eduard Helly og den tyske matematiker

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 2 Juni 2008, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Note om interior point metoder

Note om interior point metoder MØK 2016, Operationsanalyse Interior point algoritmer, side 1 Note om interior point metoder Som det er nævnt i bogen, var simplex-metoden til løsning af LP-algoritmer nærmest enerådende i de første 50

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Chapter 7: Transport-, assignment- & transshipmentproblemer

Chapter 7: Transport-, assignment- & transshipmentproblemer Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

13.1 Matrixpotenser og den spektrale radius

13.1 Matrixpotenser og den spektrale radius SEKTION 3 MATRIXPOTENSER OG DEN SPEKTRALE RADIUS 3 Matrixpotenser og den spektrale radius Cayley-Hamilton-sætningen kan anvendes til at beregne matrixpotenser: Proposition 3 (Lasalles algoritme) Lad A

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Chapter 6: Følsomhedsanalyse og dualitet i LP

Chapter 6: Følsomhedsanalyse og dualitet i LP Chapter 6: Følsomhedsanalyse og dualitet i LP ) Følsomhedsanalyse -> kriteriekoeffricienter -> RHSs ) Dualitet -> økonomisk fortolkning af dualvariable -> anvendelse af dual løsning til identifikation

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 8 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,...,

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Optimeringsmatematik og matematik-økonomi studiet

Optimeringsmatematik og matematik-økonomi studiet Optimeringsmatematik og matematik-økonomi studiet og specielt anvendelser af matematisk programmering Esben Høg Institut for Matematiske Fag Aalborg Universitet Oktober 2012 EH (Institut for Matematiske

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r))

GEOMETRI-TØ, UGE 12. A σ (R) = A f σ (f(r)) GEOMETRI-TØ, UGE 12 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1, [P] 632 Vis at Ennepers flade σ(u, v) = ( u u 3 /3

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Kursusgang 10: Introduktion til elementmetodeprogrammet Abaqus anden del

Kursusgang 10: Introduktion til elementmetodeprogrammet Abaqus anden del 1 elementmetodeprogrammet Abaqus anden del Kursus: Statik IV Uddannelse: 5. semester, bachelor/diplomingeniøruddannelsen i konstruktion Forelæser: Johan Clausen Institut for Byggeri og Anlæg Efterår, 2010

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Operationsanalyse. Hans Keiding

Operationsanalyse. Hans Keiding Operationsanalyse Hans Keiding Forord 7 Kapitel 1. Hvad er Operationsanalyse? 9 1. Indledning 9 2. Operationsanalysens historie 10 3. Operationsanalytiske problemer og metode 10 4. Litteratur 12 Kapitel

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Samtlige 3 problemtyper tilhører klassen 8/>A9<5 069A :<9,6/7=.

Samtlige 3 problemtyper tilhører klassen 8/>A9<5 069A :<9,6/7=. Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere