Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ

Størrelse: px
Starte visningen fra side:

Download "Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ"

Transkript

1 Lineær regression: lidt mere tekniske betragtninger om R 2 og et godt alternativ Per Bruun Brockhoff, DTU Compute, Claus Thorn Ekstrøm, KU Biostatistik, Ernst Hansen, KU Matematik January 17, 2017 Abstract Dette ekstra lille notat om den såkaldte R 2 -værdi, som kan beregnes i forbindelse med lineær regression, skal ses i sammenhæng med vores ikke-tekniske notat om samme emne (Brockhoff et al., 2017). Ud over at få defineret tingene matematisk præcist, vil vi foreslå spredningen σ som et godt alternativ. De to hænger nært sammen, måler for så vidt det samme, R 2 på en relativ måde og σ på en absolut måde. Spredningen σ kan ses i ret direkte sammenhæng med usikkerhedsbetragtninger mere generelt, som vi i det store billede mener er ret vigtige. Definition af R 2 i den simple lineære regressionssituation Lad os lige minde om hvad vi overhovedet taler om. Den simpleste forekomst af R 2 optræder i den lineære regressionsmodel, y i = α + βx i + ε i, i = 1,..., n. Til hver måling y i er der knyttet en kovariat x i, og man kan ønske at undsøger om kovariaten har en lineær påvirkning af målingen og i givet fald at kvantificere og fortolke sammenhængen og måske at benytte den til at forudsige y-værdien for nye x-værdier. Parametrene α og β er ukendte, og analysen af regressionsmodellen fokuserer normalt på at estimere dem. De tilbageværende størrelser ε 1,..., ε n er såkaldte støjvariable, der skal redde modellen fra at kollapse i mødet med virkeligheden, hvor parrene (x i, y i ) jo aldrig ligger præcis på en matematisk ret linje. Den sædvanlige antagelse om støjvariablene er, at de er uafhængige, og at de er normalfordelte med middelværdi 0 og samme varians σ 2 (endnu en parameter i modellen). I denne ramme defineres R 2 ved formlen R 2 = SS 2 xy SS xx SS yy, (1) 1

2 hvor SS xy, SS xx og SS yy er nogle af de standard beregningsstørrelser, man alligevel ofte regner ud i forbindelse med estimation af de tre parametre α, β og σ 2 : ˆβ = SS xy SS xx (2) ˆα = ȳ ˆβ x (3) hvor SS xx = SS yy = SS xy = (x i x) 2 (4) (y i ȳ) 2 (5) (x i x)(y i ȳ) (6) Disse resultater er også velkendte fra mindste kvadraters metode, og giver modellens estimerede hældning og skæring (på baggrund af de tilgængelige data). Med de estimerede parametre kan vi bruge modellen til at udregne de forventede værdier, ŷ i, der beskriver, hvad vi i gennemsnit forventer at observere for en given x i -værdi: ŷ i = ˆα + ˆβx i. Med disse størrelser kan vi estimere variansen, der er baseret på forskellen mellem de reelle observationer, y i, og de forventede observationer (på baggrund af modellen og de tilhørende x i er) ˆσ 2 = 1 n 2 R 2 for mere komplicerede modeller (y i ŷ i ) 2 (7) Ovenfor er R 2 defineret i det simple lineære regressionssetup, men R 2 kan også benyttes for mere komplicerede modeller med flere forklarende variable, for eksempel P forklarende variable, dvs. x i = (x i1,..., x ip ), så længe man stadig er indenfor klassen af lineære modeller. En lineær model refererer til, at sammenhængen mellem y og x kan skrives i et lineært ligningssystem y i = α + P β p x ip + ε i, i = 1,..., n, p=1 2

3 og vil derfor også dække specialtilfælde som eksempelvis polynomial regression y i = α + β 1 x i + β 2 x 2 i + ε i, i = 1,..., n. Bemærk, at man således godt kan modellere en ikke-lineær relation mellem x og y med en lineær model. Der findes naturligvis også egentlig ikke-linære modeller, men selvom R 2 kan defineres for sådanne ikke-lineære regressionsmodeller, så har den ikke længere sin sædvanlige fortolkning som forklaringsgrad, formel () nedenfor gælder ikke længere, og summen af residualerne er ikke længere nul. Detaljerne i disse yderligere (ikke-linære) udfordringer ved forståelsen og brugen af R 2 er ikke berørt nærmere hverken her eller i vores ikke-tekniske notat. Lidt flere detaljer om R 2 for linære modeller R 2 er også den kvadrerede korrelation mellem y-værdier og de forventede y-værdier i modellen for de x-er man har med, ŷ i -værdierne. Denne definition gælder også for de mere generelle lineære modeller med flere x-variable. R 2 er givet ved y-variationer, og dem findes der to/tre af to af dem summerer til den tredje: hvor SST = SS yy = SST = SSM + SSE, (y i ȳ) 2, SSM = (ŷ i ȳ) 2, SSE = (y i ŷ i ) 2. Bemærk at SS(Total) = SST udtrykker y-variationen uden nogen x-indblanding, og bemærk, at hvis man dividerer SST med n 1 så har man den klassiske beregning af en stikprøvevarians anvendt på y-data. SSM er variationen givet ud fra x erne, og SSE er den såkaldte restvariation, der udtrykker forskellen mellem linje-værdierne ŷ i og data y i. Det er denne SSE-værdi man har minimeret, når man har fundet den bedste rette linje ved hjælp af mindste kvadraters metode den er så lille som det er muligt med de data man har. Nu kan man så skrive præcist hvad R 2 faktisk er på en lidt anden vis end ovenfor: R 2 = (SST SSE) SST = 1 SSE SST Så R 2 er givet ved forholdet mellem disse to y-variationer: y-variationen, som den nu engang kommer, og restvariationen i y, når man har fjernet det, som x kan forklare gennem linjen. (eller en mere generelle model, hvis en sådan er i spil det gør ingen forskel for udtrykkene her). Og heraf fortolkningen: Forklaringsgrad Heraf kan man også linke til teori omkring variation og varianser/spredninger: En matematiker vil vide, at en varians (som teoretisk begrebsmæssigt er et integrale) ikke er transformationsinvariant: Anvender man en ikke-lineær transformation af skala/data, vil disse tal naturligvis ændre sig på en ikke-simpel måde. 3

4 Selvom det ikke fremgår så direkte af ovenstående, så afhænger R 2 naturligvis også af x- værdierne - det er gennem ŷ i -værdierne denne afhængighed kan ses. Hvis enten alle y- værdierne er ens, så SST = 0, og punkterne ligger eksakt på en horisontal linje, eller alle x-værdierne er ens, så er R 2 ikke defineret. Lineær regression kan have forskellige formål stikord Der kan være forskellige årsager til at man laver lineær regression, og derfor kan fokus også ændre sig lidt. Formålet kan eksempelvis være at afdække om der er en sammenhæng mellem to variable (hermed underforstået at vi leder efter en lineær sammenhæng). Nogle ville kalde dette for korrelationsanalyse, og fokusere på korrelationen og ikke på selve linjen (og måske lave et hypotese-test for om korrelation=0). I denne situation der oftest bliver brugt i socio og samfundsfagssammenhænge er man udelukkende interesseret i at vurdere, om der er en sammenhæng, og derfor opfattes x erne og y erne i modellen i princippet symmetrisk: hvis man laver en tilsvarende lineær regressionsanalyse, hvor man modellerer x som lineær funktion af y, så opnår man samme resultat. kvantificere den underliggende lineære relation mellem middelværdierne af y og x for fortolkningens skyld eller evt at kunne interpolere, altså skønne/estimere eksempelvis middelvægten for personer af en højde man ikke lige fik med i stikprøven (men stadig inden for range af data man skal være varsom med at ekstrapolere). Her kan man beregne linjen, og kombinere med konfidensintervaller (Bemærk: hypotese-testet for hælding=0 er det samme som for korrelation=0). bruge modellen til at prædiktere nye cases, der kommer til altså beregne ŷ ny for en konkret x ny -værdi. (beregne linjen, og kombinere med prædiktionsintervaller, der også direkte involverer spredningen). Formålet kan/bør måske også ses i en lidt større sammenhæng som at besvare: Hvad er den rette model? Her vil målet være at finde den rette model, dernæst kvantificere elementerne i denne model, og så kan vi evt til sidst enten estimere eller prædiktere, hvis vi ønsker. Et alternativ til R 2 R 2 er som vist et relativ mål for hvor tæt modellen ligger på data. Dette anvendes ofte i situationer, hvor skalaen på variablerne ikke i sig selv betyder så meget, f.eks. i samfundsfag, sociologi, psykologi, etc, hvor det kan være forskellige spørgeskema-skalaer, der er i brug. Taler vi om anvendelser inden for teknik og naturvidenskab, vil der ofte være ret konkrete skalaer for såvel x som y. I sådanne tilfælde kan følgende alternativ være en god ide. 4

5 Vi giver herunder et forslag til at benytte et absolut mål for afvigelsen mellem model og data fremfor det relative mål som R 2 faktisk er. Men før dette bør man gøre sig klart, at det i langt de fleste tilfælde er selve linjen, der vil være det mest interessante i en konkret sammenhæng. Derfor er estimation/beregning af linjen helt centralt. Dernæst vil det mest relevante være at kvantificere usikkerheden i bestemmelsen af linjen, noget vi typisk ville gøre ved at beregne stikprøveusikkerhederne for afskæring og hældning, for derefter evt at udtrykke disse i konfidensintervaller for disse to størrelser (i praksis er det oftest hældningen, der udtrykker noget spændende). Den centrale størrelse der indgår i formlerne for disse usikkerheder er netop det absolutte mål, der præsenteres nu (se figur 1). y x Figur 1: De absolutte vertikale afstande (de blå stiplede linjer) måler, hvor langt den lineære regressionsmodel (den røde linje) ligger fra de observerede data, og de har samme skala som y. Spredningen ˆσ udtrykker den gennemsnitlige værdi af disse. Hvis man bruger SSE absolut set i stedet for relativt, SSE/SST, og beregner: SSE ˆσ = (n 2) så har man faktisk estimeret den underliggende spredning for y-værdierne (for en fastholdt x-værdi), som desuden er en parameter i den klassiske formelle statistiske model, der kan ligge 5

6 bagved: y i = α + βx i + ε i, ε i N(0, σ 2 ). Man har således på denne vis kvantificeret den gennemsnitlige afstand mellem y-værdier og linjen direkte, og det vil være er klart for de fleste med teknisk/naturvidenskabelig baggrund at det er et tal, der kommer med den samme fysiske enhed som y-værdien kommer med fra starten. På den vis bliver f.eks. skalaafhængigheden meget direkte tydelig for enhver, og tallet har en rigtig god fortolkning. Tallet σ er således hverken mere eller mindre rigtigt at beregne end R 2, og hvis man forsøger at bruge σ til den at besvare de spørgsmål vi har anført ovenfor, løber man ind i samme problemer som med R 2. Det er klart, at da tallet her for en given total y-variation er ækvivalent med R 2 -værdien, så er det hverken mere eller mindre rigtigt at beregne end R 2, og hvis man forsøger at bruge σ til den at besvare de spørgsmål vi har anført ovenfor, løber man ind i samme problemer som med R 2. Men måske det for mange vil være et tal man lettere kan forholde sig til, og måske man i lidt mindre grad vil være fristet til at drage forhastede konklusioner ud fra dette tal end man kan være med R 2. En lille krølle er følgende: Skulle man nu alligevel få tanken, at man gerne i tillæg vil fortolke (residual)spredningen relativt til den spredning, som y-værdierne har uden indlanding af x erne: SSyy ˆσ y = n 1 Altså tilbage til den relative fortolkning som R 2 egentlig har, og f.eks. beregne ˆσ2, så har ˆσ y 2 man faktisk beregnet den såkaldte Adjusted R 2, som mange software-pakker helt standard i tillæg vil beregne for sådanne modeller, ellere rettere 1 Radj 2 : ˆσ 2 ˆσ 2 y = SSE/(n P 1) SST/(n 1) = (n 1) SSE (n P 1) SST (n 1) ( = ) 1 R 2 = 1 Radj 2 (n P 1) hvor p er antallet af x-variabler i modellen. Og på flere måder er den adjustede R 2 faktisk at foretrække frem for den almindelige. For simple lineære regressioner (P = 1) med stort n, er der ikke nogen væsentlig forskel på de to, idet (n 1)/(n 2) således vil være tæt på 1. Usikkerhedsbetragtninger Et af de helt centrale budskaber i statistik som fagområde er, at alt vi beregner på og uddrager af data er behæftet med en eller anden form for usikkerhed/variation. Faktisk er dette mere centralt end det klassiske hypotesetest, som ofte som metode lidt uhensigtsmæssigt kan blive synonym med statistik, se også Ekstrøm et al. (2017). Dette gælder således ligeledes beregningsstørrelser i regressionssammenhænge. Den beregnede spredning ˆσ indgår centralt i de relevante usikkerhedsberegninger for såvel afskæring ˆα, hældning ˆβ og linjeberegninger: 6

7 1 ˆσˆα = ˆσ n + x2 (8) SS xx 1 ˆσ ˆβ = ˆσ (9) SS xx 1 ˆσˆα+x0 ˆβ = ˆσ n + (x 0 x) 2 (10) SS xx = ˆσ ˆσˆα+x0 ˆβ+ɛ0 n + (x 0 x) 2 (11) SS xx Det er naturligvis hverken hensigten her at forklare og bevise alle disse formler eller at man som gymnasieelev i Danmark skal lære detaljerne af dette. I mange såkaldte non-calculus baserede statistikkurser på indledende universitetsniveau for mange studieretninger verden over angives disse og lignende formler ligeledes uden bevis. Det kræver dog ikke andet end nogle lineære varians-regneregler eller, om man vil, lineære fejlophobningsbetragtninger. Alle disse spredninger kaldes også nogen gange for standard errors eller stikprøvespredninger - de udtrykker hvor meget en beregnet størrelse forventes at variere fra stikprøve-til-stikprøve, altså hvor usikkert bestemt den egentlig er. Vi viser formlerne her for at understrege den fundamentale betydning af spredningen, som indgår på samme måde i alle formlerne. Og alle usikkerhedsformlerne er udvidede versioner af den samme og helt fundamentale usikkerhedsformel for et simpelt stikprøvegennemsnit, f.eks. udtrykt ved y: (uden indblanding af x) ˆσȳ = ˆσ y 1 = ˆσ y n n De fleste indledende statistikkurser vil introducere de grundlæggende statistiske begreber som hypotesetests og konfidensintervaller i dette simpleste af alle setups. Konfidensintervaller er det konkrete statistiske redskab man kan tage i anvendelse for at formalisere usikkerhedsbetragtninger ved hjælp af sandsynlighedsteori. Igen er det ikke hensigten at give en udtømmende gennemgang her, men f.eks. bliver (1 α) konfidensintervallerne for α og β (12) ˆα ± t 1 α/2ˆσ α (13) ˆβ ± t 1 α/2ˆσ β (14) hvor t 1 α/2 er (1 α/2)-fraktilen for en t-fordeling med n 2 frihedsgrader. t-fordelingen kan løst siges at være en version af standard normalfordelingen, der tager højde for at variansen, der indgår er estimeret fra data, og altså i sig selv er behæftet med usikkerhed. Hvis den ikke var det, ville normalfordelingen kunne anvendes for alle usikkerhedsberegningerne, idet 7

8 lineære transformationer af normalfordelinger igen er normalfordelinger. I praksis vil disse konfidensintervalformler ofte tilnærmelsesvis have formen: ȳ ± 2ˆσȳ, altså hvor man har et estimat for en parameter (her gennemsnittet) plus/minus 2 gange usikkerheden på estimatet. Ved at bruge normalfordelingen kan man se, at disse grænser omtrentlig vil svare til 95% konfidens, og denne fundamentale relation kan være god at kommunikere ud. Og som en sidste lille perspektiverende gymnasiekrølle: Det er standard metodik i indledende statistikkurser, at man under visse normalfordelingsforudsætninger kan kvantificere usikkerheden i sprednings- og variansberegninger i sig selv ved brug af χ 2 -fordelingen. Alstå den samme fordeling som anvendes til det klassiske χ 2 -test. Det er en matematisk/sandsynlighedsteoretisk konsekvens af at kvadrere normalfordelinger. Og pudsigt nok, er der ingen global tradition for tilsvarende at kvantificere usikkerheden i en R 2 -beregning, selvom den, som sammenhængene ovenfor viser, på helt samme måde er behæftet med usikkerhed. Og dermed er der uden tvivl en større risiko for at denne usikkerhed bliver glemt i skyndingen, end tilsvarende for ˆσ. Referencer Brockhoff Per Bruun, Hansen Ernst, Ekstrøm Claus Thorn. Brugen af R 2 i gymnasiet // LMFK-bladet Ekstrøm Claus Thorn, Hansen Ernst, Brockhoff Per Bruun. Statistik i gymnasiet // LMFKbladet

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Brugen af R 2 i gymnasiet

Brugen af R 2 i gymnasiet Brugen af R 2 i gymnasiet Per Bruun Brockhoff, DTU Compute Ernst Hansen, KU Matematik Claus Thorn Ekstrøm, KU Biostatistik 17 januar 2017 Der lader til at være en vis forvirring blandt og uenighed mellem

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Nanostatistik: Lineær regression

Nanostatistik: Lineær regression Nanostatistik: Lineær regression JLJ Nanostatistik: Lineær regression p. 1/41 Sammenhænge Funktionssammenhæng: y er en funktion af x. Ex: Hvis jeg kender afstanden mellem to galakser så kender jeg også

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff

Kursus Introduktion til Statistik. Forelæsning 12: Variansanalyse. Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 12: Variansanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Modul 13: Exercises 13.1 Substrat.......................... 1 13.2 Polynomiel regression.................. 3 13.3 Biomasse.......................... 4 13.4 Kreatinin.......................... 7 13.5 Læsefærdighed......................

Læs mere

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde...

13.1 Substrat Polynomiel regression Biomasse Kreatinin Læsefærdighed Protein og højde... Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 13: Exercises 13.1 Substrat........................................ 1 13.2 Polynomiel regression................................

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig.

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. ELISA ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. Teknikken er ganske snedig, og muliggør at man inddirekte

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen 1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 26. maj 2011 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere