Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset."

Transkript

1 STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for, at der ka være fel ete ved listere omkrig glasset eller i glasset. Sadsylighede for fel ved listere er 0.0, sadsylighede for fel i glasset er 0.03 og sadsylighede for fel ved listere samtidig med fel i glasset er 0.0. Spørgsmål (5 %) Bestem sadsylighede for at et tilfældigt valgt vidue har e fel. Spørgsmål (5 %) Bestem sadsylighede for at et tilfældigt valgt vidue ikke har e fel. Spørgsmål 3 (5 %) Bestem sadsylighede for at et tilfældigt valgt vidue har e fel ved listere, år ma ved at der er fel i glasset. OPGAVE Ved e udersøgelse af 50 forskellige bygiger fides bygiger, der ikke ka overholde krav til flugtvee, som agivet i bygigsreglemetet. Spørgsmål (0 %) Bestem sadsylighede for at fide 3 bygiger, der ikke opfylder krav til flugtve, hvis der blev udvalgt 0 tilfældige bygiger bladt de 50 bygiger. Spørgsmål (5 %) Bestem forvetigsværdi µ og varias σ for de stokastiske variabel, der avedes i spørgsmål. OPGAVE 3 De forvetede levetid µ for e elektrisk kompoet er år. Spørgsmål (5 %) Bestem sadsylighede for de elektriske kompoet holder mere ed 3 år, år levetide atages ekspoetial fordelt. Spørgsmål (5 %) E elektrisk kompoet har holdt i 4 år. Bestem sadsylighede for de elektriske kompoet holder edu 3 år udover de 4 år. Side af 9

2 OPGAVE 4 Der betragtes e Gumbel fordelt stokastisk variabel X med fordeligsfuktio: ( exp( a ) F( x) exp ( hvor a og b er e kostater og hvor middelværdi og spredig bestemmes af π σ. a µ b + og a Atag at der til rådighed er 5 observatioer af X : 5, 4, 8, 7 og. Spørgsmål (5 %) Bestem vha. mometmetode estimater af a og b. Spørgsmål (5 %) Bestem vha. Maximum Likelihood metode et estimat af b idet det atages at a 0.4. OPGAVE 5 Følgede styrker i MPa af et yt materiale er fudet ved forsøg: Spørgsmål (5 %) Bestem middelværdi og sample spredig af oveævte forsøgsværdier. Spørgsmål (5 %) Idet der beyttes e Kolmogorov-Smirov test, øskes bestemt på hvilket sigifikasiveau det ka accepteres, at styrkere er Normal fordelte. Spørgsmål 3 (5 %) Bestem et dobbeltsidet 90 % kofidesiterval for middelværdie. Side af 9

3 OPGAVE 6 E beregigsmodel til forudsigelse af træs styrke baseret på visuelle parametre (kaststørrelser mm.) udersøges ved at sammelige beregede styrker Y med styrker X målt ved forsøg. Resultater er vist i edeståede tabel. Observeret styrke X [MPa] Bereget styrke Y [MPa] 37,4 37,3 9, 34, 3 4,7 39,5 4 35,6 33,5 5 37,0 38,4 6 4, 3,7 7 39,5 37,0 8 5,9 3, 9 38,0 40,4 0 40,5 39,8 Spørgsmål (0 %) Bestem ved lieær regressio e sammehæg for beregede styrker som fuktio af observerede styrker. Kommeter hvad de estimerede værdier af regressiosparametree viser om beregigsmodelle. Spørgsmål (5 %) Bestem først et 95% kofidesiterval for de beregede styrke bestemt vha. de lieære regressio for middelværdie af regressiosliie ved X 30 MPa og bestem deræst et 95% kofidesiterval for de beregede styrke bestemt vha. de lieære regressio for e y værdi af X 30 MPa. Side 3 af 9

4 LØSNINGER OPGAVE Spørgsmål Bestemmer sadsylighede for at et tilfældigt valgt vidue har e fel. Hædelser: A fel ved listere, A) 0.0 B fel ved glas, B) 0.03 A B) 0.0 A U B) A) + B) A I B) Spørgsmål Bestemmer sadsylighede for at et tilfældigt valgt vidue ikke har e fel. A U B) A U B) Spørgsmål 3 Bestemmer sadsylighede for at et tilfældigt valgt vidue har e fel ved listere, år ma ved at der er fel i glasset. A I B) 0.0 A B) 0.33 B) 0.03 OPGAVE Spørgsmål Bestemmer sadsylighede for at fide x 3 bygiger, der ikke opfylder krav til flugtve, hvis der blev udvalgt 0 tilfældige bygiger bladt de N 50 bygiger med D, der ikke overholder krav. Der avedes e hypergeometrisk fordelt stokastisk variabel X. D N D ( 3) x x P X 0.70 N 50 0 Spørgsmål Forvetigsværdie µ for de hypergeometrisk fordelt stokastisk variabel X D µ 0.4 N 50 Variase σ for de hypergeometrisk fordelt stokastisk variabel X D N D 50 0 σ N N N OPGAVE 3 Side 4 af 9

5 Spørgsmål Bestemmer sadsylighede for de elektriske kompoet holder mere ed 3 år ved at avede e e ekspoetial fordelt stokastisk variabel T. Da de forvetede levetid µ/λ for e elektrisk kompoet er år, får ma at λ0.5. T > 3) T 3) ( exp( λ t)) ( exp( 0.5*3)) 0.3 Spørgsmål Bestemmer sadsylighede for at e elektrisk kompoet holder edu 3 år efter at have holdt i 4 år. T > 7 I T > 4) T > 7) exp( 0.5*7) T > 7 T > 4) 0.3 T > 4) T > 4) exp( 0.5* 4) OPGAVE 4 Spørgsmål Fordeligsfuktioe for de Gumbel fordelte stokastiske variable X er ( exp( a ) F( x) exp ( hvor a og b er e kostater og hvor middelværdi og spredig bestemmes af π σ. a µ b + og a De 5 observatioer X : 5, 4, 8, 7 og giver følgede middelværdi og spredig. x x. s x x 3.56 a og b bestemmes af de ligiger: π X b + og s a a 6 a 0.36 og b 9.60 Spørgsmål Frekvesfuktioe bliver: f ( x) a exp exp( a( a( x b Likelihood fuktioe bliver L( x) a exp ( ) ( exp( a( a( og dermed Log-Likelihood fuktioe: l L( a, b) l ( a ) exp( a( ) a( x b) Side 5 af 9

6 Idet a er kostat 0.4 fås maximum for d db l L( b) a exp b l a exp ( ) ax ( a( ) + a a exp( ax ) exp( ab) + a 0 Med at a 0.4 og 5 observatioer fås b 9.4. OPGAVE 5 Spørgsmål Middelværdi og sample spredig bliver med 8: x x s x x 5.3 Spørgsmål Kolmogorov-Smirov test: x F z x x P Φ ( z ) P F P F s 0 0,5 -,76 0,039 0,039 0, ,5 -,43 0,076 0,049 0, ,375 0,34 0,633 0,383 0, ,5 0,39 0,650 0,75 0, ,65 0,44 0,67 0,7 0, ,75 0,6 0,733 0,08 0, ,875 0,63 0,735 0,05 0, ,77 0,780 0,095 0,0 Test værdi max afvigelse Af tabel A-6 ses, at på et sigifikasiveau på ca. 5% ka det accepteres, at stestyrke er Normal fordelt. Spørgsmål 3 (5 %) Da spredige er ukedt bestemmes et dobbeltsidet 95 % kofidesiterval for middelværdie af: s s 5,3 5,3 x tα ; x + tα,3,895 ;470,3 +,895,, [ 368, ; 57,3] Side 6 af 9

7 Side 7 af 9

8 OPGAVE 6 Spørgsmål x y x y x y e y b + b x ) ( 0 e 37,4 37,6 396,8 388,4 39,6-0,64 0,07 9, 34,08 85, 6,6 994,4 0,579 0, ,7 39,47 85,9 558,0 686,6-0,57 0, ,6 33,54 64, 5,0 9,6-3,05 9, ,0 38,39 37,6 474,0 4,9,9,75 6 4, 3,67 587,0 003, 767,4 0,538 0, ,5 37,00 558,8 369,4 46,0 -,49, ,9 3,3 670, 975, 808,4-0,703 0, ,0 40,39 44,9 63,5 533,8,680 7, ,5 39,83 640,7 586, 63, 0,90 0,8 349,9 36, ,8 X xi 35.0 Y yi 36.3 Regressioskoefficieter: xi yi xi yi b xi ( xi ) b Y b X yi b xi ,00 40,00 y 0,4785x + 9,54 R 0,797 Y: bereget 35,00 30,00 5,00 0,00 0,0 5,0 30,0 35,0 40,0 45,0 X: observeret Side 8 af 9

9 Regressioskoefficiet xi yi xi yi i i i R 0.89 xi xi yi yi i i i i Det ses, at der er e god lieær sammehæg mellem observerede og beregede værdier, da regressioskoefficiete er relativ stor. Edvidere ses, at b 0 er meget større ed 0, hvilket idikerer, at beregigsmodelle ku gælder for itervallet 5 40, og at der for små værdier af x er et offset på ca 0 MPa. Spørgsmål a) 95% kofidesiterval for middelværdi af bereget styrke for X x 0 30MPa: ˆ 0 X y Y + b ( x ) % kofidesiterval: ( x0 X ) yˆ ± Setα / + ( x X ) hvor t α.306 /, i S e ( yˆ i yi ),65 og dermed (30 35,0) 33,9 ±,65, ( x i X ) 3,3; 35,5 MPa [ ] i i b) 95% kofidesiterval for y bereget styrke for X x 0 30MPa: ˆ etα / y ± S 9,8; 38,0 MPa [ ] ( x0 X ) + + ( x X ) i i Side 9 af 9

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved STATISTIK Skrtlg evaluerg, 3. emeter, madag de 3. jauar 5 kl. 9.-3.. Alle hjælpemdler er tlladt. Opgaveløge orye med av og CPR-r. OPGAVE De tokatke varabel agver levetde tmer or e elektrk kompoet. Tætheduktoe

Læs mere

Udskiftning af et tag antages at vare 2-6 dage. Denne tidsperiode antages at være fastlagt ved følgende symmetriske tæthedsfunktion

Udskiftning af et tag antages at vare 2-6 dage. Denne tidsperiode antages at være fastlagt ved følgende symmetriske tæthedsfunktion STATISTIK Sriftlig evluerig, 3. semester, torsdg de. ur l. 9.-3.. Alle hælpemidler er tilldt. Opgveløsige forses med v og CPR-r. OPGAVE Udsiftig f et tg tges t vre -6 dge. Dee tidsperiode tges t være fstlgt

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Epidemiologi og biostatistik. Forelæsig Uge, tirsdag. Niels Trolle Aderse, Afdelige for Biostatistik. Geerelt om kurset: - Formål - Forelæsiger - Øvelser - Forelæsigsoter - Bøger - EpiBasic: http://www.biostat.au.dk/teachig/software

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave 14. 20. december 2007 Mikroøkoomi, matematik og statistik Eksameshjemmeopgave 14. 20. december 2007 Helle Buzel, Tom Egsted og Michael H.J. Stæhr 14. december 2007 R E T N I N G S L I N I E R F O R E K S A M E N S H J E M M

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Teoretisk Statistik, 9. februar Beskrivende statistik

Teoretisk Statistik, 9. februar Beskrivende statistik Uge 7 I Teoretisk Statistik, 9 februar 004 Beskrivede statistik Kategoriserede variable 3 Kvatitative variable 4 Fraktiler for ugrupperede observatioer 5 Fraktiler for grupperede observatioer 6 Beliggeheds-

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy = f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

Uge 40 I Teoretisk Statistik, 30. september 2003

Uge 40 I Teoretisk Statistik, 30. september 2003 Uge 40 Teoretis tatisti, 30. september 003 Esidet variasaalyse Model, otatio, hypotese og hælpehypotese Test af hælpehypotese Opdaterig af variasestimat Test af hypotese om es middelværdier Variasaalysesema

Læs mere

Opsamling. Lidt om det hele..!

Opsamling. Lidt om det hele..! Opsamlig Lidt om det hele..! Kursus oversigt Hvad har vi været igeem: Deskriptiv statistik Sadsyligheder Stokastiske variable diskrete og kotiuerte Fordeliger Estimatio Test Iferes Sammeligig af middelværdier

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test:

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test: Statistik for biologer 005-6, modul 7: Tests for forskel i cetral tedes for data på ordial- og itervalskala M7, slide M7, slide Typer af statistiske test: Parametrisk statistik: - Tester for forskel i

Læs mere

Supplement til Kreyszig

Supplement til Kreyszig Supplemet til Kreyszig Forelæsigsoter til Matematik F Idholdsfortegelse side 1. Numerisk itegratio. Fejlvurderig af trapez og Simpso algoritmere 1. Dekompoerig af brøker (Laplace trasformatio) 3. Permutatioer

Læs mere

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable Idholdsfortegelse Geerelt:...3 Stokastisk variabel:...3 Tæthedsfuktio/sadsylighedsfuktio for stokastisk variabel:...3 Fordeligsfuktio/sumfuktio for stokastisk variabel:...3 Middelværdi:...4 Geemsit:...4

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff Kursus 02402/02323 Itroducerede Statistik Forelæsig 12: Iferes for adele Klaus K. Aderse og Per Bruu Brockhoff DTU Compute, Statistik og Dataaalyse Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail:

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme

Oversigt. 1 Fordelingen for gennemsnittet t-fordelingen. 3 Den statistiske sprogbrug og formelle ramme Itroduktio til Statistik Forelæsig 4: Kofidesiterval for middelværdi (og spredig) Peder Bacher DTU Compute, Dyamiske Systemer Bygig 303B, Rum 009 Damarks Tekiske Uiversitet 2800 Lygby Damark e-mail: pbac@dtu.dk

Læs mere

Matematisk Modellering 1 Hjælpeark

Matematisk Modellering 1 Hjælpeark Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Konfidens intervaller

Konfidens intervaller Kofides itervaller Kofides itervaller for: Kofides iterval for middelværdi, varias kedt Kofides iterval for middelværdi, varias ukedt Kofides iterval for adel Kofides iterval for varias Bestemmelse af

Læs mere

Eksamensspørgsmål NmaC144s sommer Spørgsmål 1: Ligninger

Eksamensspørgsmål NmaC144s sommer Spørgsmål 1: Ligninger Eksamesspørgsmål NmaC144s sommer 014. Gør rede for omformigsreglere for ligiger. Spørgsmål 1: Ligiger Giv eksempler på hvorda forskellige ligiger løses. Du bør her komme id på flere forskellige ligigstper,

Læs mere

Sandsynlighedsregning og statistisk

Sandsynlighedsregning og statistisk Sadsylighedsregig og statistisk J. C. F. Gauss 777 855) Peter Haremoës Niels Brock 2. april 23 Idledig Dette hæfte er lavet som supplemet til 2. udgave af boge Mat B. Der er lagt vægt på at give e bedre

Læs mere

Sandsynlighedsteori 1.2

Sandsynlighedsteori 1.2 Forelæsigsoter til Sadsylighedsteori.2 Sved Erik Graverse Jauar 2006 Istitut for Matematiske Fag Det Naturvideskabelige Fakultet Aarhus Uiversitet. Mometproblemet. I dette afsit beteger X e stokastisk

Læs mere

STATISTISK MODELLERING OG ANALYSE 19. DECEMBER 2008 ET MAT3-PROJEKT I BAYESIANSK INFERENS VEJLEDER: JAKOB G. RASMUSSEN GRUPPE: G4-115

STATISTISK MODELLERING OG ANALYSE 19. DECEMBER 2008 ET MAT3-PROJEKT I BAYESIANSK INFERENS VEJLEDER: JAKOB G. RASMUSSEN GRUPPE: G4-115 STATISTISK MODELLERING OG ANALYSE ET MAT3-PROJEKT I BAYESIANSK INFERENS 19. DECEMBER 2008 θ x VEJLEDER: JAKOB G. RASMUSSEN GRUPPE: G4-115 INSTITUT FOR MATEMATISKE FAG Istitut for Matematiske Fag Fredrik

Læs mere

Bestemmelse af vandføring i Østerå

Bestemmelse af vandføring i Østerå Bestemmelse af vadførig i Østerå Geerelt varierer vadstade og vadførige i daske vadløb over året. Normalt er vadførige lille om sommere for derpå at øge om efteråret. Om vitere ses ormalt de højeste vadføriger

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Morten Frydenberg version dato:

Morten Frydenberg version dato: Morte Frdeberg versio dato: 4--4 Itroduktio til kurset Statistik Forelæsig Morte Frdeberg, Sektio for Biostatistik af Biostatistik dele af. semester kurset. Statistiske modeller Biomialfordelige Normalfordelige

Læs mere

Estimation og test i normalfordelingen

Estimation og test i normalfordelingen af Birger Stjerholm Made Samfudlitteratur 07 Etimatio og tet i ormalfordelige Dee tekt ideholder et overblik over ogle grudlæggede pricipper for etimatio og tet i ormalfordelige i hyppigt forekommede ituatioer:

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011)

Formelsamling til statistik-del af metodekursus, 4. semester, lægevidenskab Version 3 (26/9-2011) Formelsamlig til statistik-el af metoekursus, 4. semester, lægevieskab Versio 3 (6/9-011) Kære læser Dee formelsamlig er lavet me ugagspukt i Meical Statistics, seco eitio af Betty R. Kirkwoo og A. C.

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Supplerende noter II til MM04

Supplerende noter II til MM04 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Asymptotisk estimationsteori

Asymptotisk estimationsteori Kapitel 5 Asymptotisk estimatiosteori De fleste eksperimeter har e idbygget størrelse, som regel kaldet eller N. Dette repræseterer typisk atallet af foretage måliger, atallet af udersøgte idivider, atallet

Læs mere

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode.

RESEARCH PAPER. Nr. 2, En model for lagerstørrelsen som determinant for købs- og brugsadfærden for et kortvarigt forbrugsgode. RESEARCH PAPER Nr., 005 E model for lagerstørrelse som determiat for købs- og brugsadfærde for et kortvarigt forbrugsgode af Jørge Kai Olse INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Modul 14: Goodness-of-fit test og krydstabelanalyse

Modul 14: Goodness-of-fit test og krydstabelanalyse Forskigsehede for Statistik ST01: Elemetær Statistik Bet Jørgese Modul 14: Goodess-of-fit test og krydstabelaalyse 14.1 Idledig....................................... 1 14.2 χ 2 -test i e r c krydstabel.............................

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. godschauffør. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor godschauffør området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet)

Bekendtgørelse om takstændringer i offentlig servicetrafik i trafikselskaber og hos jernbanevirksomheder m.v. (takststigningsloftet) Oversigt (idholdsfortegelse) Bilag 1 Bilag 2 Bilag 3 De fulde tekst Bekedtgørelse om takstædriger i offetlig servicetrafik i trafikselskaber og hos jerbaevirksomheder m.v. (takststigigsloftet) I medfør

Læs mere

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion

Bølgefunktioner Alle partikler, som har en hvilemasse, er kendetegnet ved en kompleks bølgefunktion Modere Fysik 4 Side af 7 Schrödigerligige Forrige to gage: Idførelse af kvatiserigsbegrebet (for lyseergi og for elektroers eergi) samt partikel-bølge-dualitete, hvilket førte til e helt y teori, kvatemekaikke

Læs mere

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R.

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R. Kapitel 0 Markovkæder Vi vil i det følgede studere processer Y 0, Y, Y 2,... med værdier irgivet på forme Y = f (Y +ǫ for =, 2,... (0. Her erǫ,ǫ 2,... e følge af iid støjvariable med middelværdi 0, alle

Læs mere

STATISTIKNOTER Simple normalfordelingsmodeller

STATISTIKNOTER Simple normalfordelingsmodeller STATISTIKNOTER Simple ormalfordeligsmodeller Jørge Larse IMFUFA Roskilde Uiversitetsceter Februar 1999 IMFUFA, Roskilde Uiversitetsceter, Postboks 260, DK-4000 Roskilde. Jørge Larse: STATISTIKNOTER: Simple

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere