Simpel Lineær Regression - repetition

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Simpel Lineær Regression - repetition"

Transkript

1 Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet

2 Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor b b ˆ 0 Resdual: SS SS b b 0 + b ˆ e b0 b ˆ b + b 0 estmat af estmat af estmat af β β E( Y 0 X ) β 0 + β

3 Sums of Squares - bereggsformler ( ) ( ) ( ) ( )( ) ( ) ( ) SSE SSR SST b SS SSR b SS SS e SSE SS SST SS SS XY XY Y XY Y X + ˆ ˆ

4 Kovaras og Korrelato Defto af kovaras: Cov(X,Y)E((EX-μX )(EY-μY)) Defto af korrelatoskoeffcet: ρ ρ( X, Y ) σ Xσ Y ρ beskrver hvor høj grad der er e leær sammehæg mellem og. Estmat af ρ: r SS SS X Cov( X, Y ) XY SS Y

5 Determatoskoeffcete r Husk: SST Totale varato Defto: r SSR SST r [0,] SSR + SSE Forklarede varato + Resdual (dvs. uforklaret) varato SSE SST Forklaret varato Totale varato pr defto! Jo tættere r er på, jo mere af varatoe data er forklaret af modelle. r >0.8 er godt! Et meget højt r er dog mstækelgt.

6 Eksempler på r Y Y Y SST X SST X SST X r 0 SSE r 0.50 SSE SSR r 0.90 S S E SSR

7 Model Regresso Resdual Total a. Predctors: (Costat), h jde b. Depedet Varable: vægt ANOVA b Sum of Squares df Mea Square F Sg , , ,347,000 a 3069, 584 0, ,8 585 r SSR SST 88408, ,8 0,378 Model Model Summar Adjusted Std. Error of R R Square R Square the Estmate,64 a,378,377 0,9640 a. Predctors: (Costat), h jde

8 Modelkotrol For at kue stole på test og estmater skal v skre os, at modelles atagelser er overholdt! Er der e leær sammehæg mellem X og Y? ε ere er d (uafhæge og esfordelte) N(0,σ ).

9 Resdualaalse Bemærk at resdualet e ˆ er et estmat for ε. Dvs. e ere groft sagt skal opføre sg som..d. N(0,σ ) varable! Grafsk kotrol: Plot e ere mod eller ^.

10 Resdualplot Resdualer Resdualer 0 0 or $ or $ Homoskedastsk: Resdualere ser ud tl at varere ufahæggt af hade og. Heteroskedastsk: Varase for resdualere ædrer sg år ædrer sg. Resdualer Resdualer 0 0 Td Resdualere udvser leær tred med tde (eller ade varabel v kke har brugt). Dette dkerer at td skulle kluderes modelle. or $ Det buede møster dkerer e uderlæggede kke-leær sammehæg.

11 Resdualer SPSS I Lear Regresso vduet vælges Save I Save vduet vælges Ustadardzed både uder Reresduals (e ere) og Predcted Values (^ ere).

12 Efter edt regresso skaber SPSS to e søjler Data Edtor, der deholder resdualer ( RES_ ) og prædktoer ( PRE_ ). Derefter ka ma f lave scatter plots og hstogrammer.

13 Scatter plot af resdualer (e ere) mod hhv. højde ( ere) (øverst) og prædktoere (^ ere) (ederst). Ser jo gaske usstematsk ud!

14 Grafske check for Normalfordelg For at tjekke holdbarhede af atagelse om ormalfordelte fejlled: ( ε ~N(0,σ ) ) Lav et hstogram over resdualere og se efter om det ormalfordelt ud. Lave et ormalfordelgsplot (Q-Q plot). Lav et formelt χ -test for goodess of ft tl e ormalfordelg for resdualere (Kommer først Kap 4)

15 Hstogram af resdualer Det ser jo kke helt ormalfordelt ud

16 Normalfordelgsplot (Q-Q plot) For hvert resdual e udreger v q l + + m + hvor l er atallet af resdualer der er mdre ed e, og m er atallet af resdualer med samme værd som e. For hvert q fder v z, så P(Z z ) q, hvor Z~N(0,). Hvs e ere er ormalfordelte vl et plot af (e, z ) lgge på e ret le.

17 I SPSS hedder det et Q-Q plot Vælg Graphs Q-Q Ser kke helt ft ud Hvlket var forvetet... Flere eks. I boge

18 Prædkto de leære regress.model Puktprædkto: Hvlke værd vl forvetelgt atage, hvs atager e bestemt værd, f 0? ˆ b b Gaske smpelt ved at dsætte de estmerede le! Dvs. v prædkterer ^ b 0 +b som bedste bud på puktets værd. Bedst kke at prædktere for værder for lagt fra, hvor v har data!

19 Prædktosterval for observatoe X s t SS ) ( ) ( ˆ + + ± α Et (-α)00% kofdes terval for Y X er Hvor s MSE. Et (-α)00% kofdes terval for E(Y X) er X s t SS ) ( ) ( ˆ + ± α

20 Prædktosbåd Y Prædktosbåd for E[Y X] Regressosle Y Prædktosbåd for Y X Prædktosbådee fremkommer ved at betragte kofdestervallets edepukter som fukto af. X

21 Multpel leær regresso,,, k uafhægge varable (forklarede varable). Model: Eksempel: Y Vægt Y Vægt for te perso X Højde X Højde for te perso X Alder X Alder for te perso N Y k k,, ), (0,..d K L σ ε ε β β β β β ε β β β

22 Multpel regresso - llustrato β β ε β 0 0 β + β + β + ε

23 Parameter fortolkger Y 0 β + β + β + ε β 0 Værd af E(Y k 0) β j Kostat der sger, hvor meget E(Y X) ædrer sg hvs j vokser med og alle adre j er forblver uforadrede. Eks: β margal ædrg vægt som fukto af margal ædrg alder!

24 Forudsætger Leær sammehæg mellem Y og X j. X j ere er faste tal ε ~N(0,σ ) (uafhæggt af og adre ε) X ere skal være leært uafhægge

25 Model: 0 + β + β β + ε e Estmeret model: ˆ + b0 + b b Resdual: $ b + b + b 0 e ˆ

26 Estmato: Mdste kvadraters metode Mmer e k k SSE ( b b b b L b ) Matematsk set samme procedure som smpel leær regresso: Dffereter med hes tl b j, j,...,k og sæt de k lgger lg ul. Resultat: (k+) lgger med (k+) ubekedte.

27 Multpelregresso SPSS E måde at lave mutpel regresso på er vha. Lear Regresso fuktoe, hvor I blot dsætter flere varable som Idepedet.

28 Eksempel Model: Y β0 + β + β + ε, ε..d. N(0, σ ),, K, Y Vægt, X Højde og X Alder for te perso. Regressosle: ˆ b + b + 0 Coeffcets a b Model (Costat) h jde alder a. Depedet Varable: vægt Ustadardzed Coeffcets Stadardzed Coeffcets B Std. Error Beta t Sg. -0,949 4,037-5,499,000,968,0,67 43,59,000,6,0,5 3,835,000

29 Test: Er modelle umage værd? H : β β 0 L βk H : Ikke alle β j 0 Som sædvalgt har v: 0 (V ka lge så godt sge, at ere alle har e og samme mddelværd) (Der er e leær sammehæg mellem og mdst ét af j ere) SST SSE + SSR ( ) ( ) ˆ + ( ˆ )

30 ANOVA Tabelle Source of varato Sums of squares df Mea Squares F-rato P- værd Regresso SSR k MSRSSR/k MSR/MSE? Error Total SSE SST -k- - MSE SSE/(-k-) Jo mdre FMSR/MSE er, jo mere tror v på H o. P-værde fortæller, hvorår MSR/MSE er for stor. SSE Desude ˆ σ MSE dvs -(k+) frhedsgr. - (k + )

31 Eksempel (fortsat ) ANOVA b Model Regresso Resdual Total Sum of Squares df Mea Square F Sg. 0930,0 0465, ,6,000 a 8846,5 576, ,5 578 FMSR/MSE 0465,0/,98934,3 P-værde er mdre ed 0,05, så afvser v H 0 hpotese, dvs. v tror på at Vægt har e leær sammehæg med ete Højde eller vægt eller begge.

32 Determatoskoeffcete Som smpel leær regresso er R SSR SST Som før 0 R. SSE SST Forklaret varato Totale varato Hvs øger atallet af uafhægge varable ( ere) for e multpel regressosaalse, så vl R som regel vokse! Hvs v har observatoer og bruger e model med k-, så ka v opå R! Er det kke fatastsk?! Næh

33 Justeret R Adjusted R R adj R MSE MST SSE ( - (k + )) SST ( -) ( R ) - - (k + ) Adjusted R tager oge grad højde for, problemere med R år k er stor forhold tl. Hvs adj R vokser år t medtager, så er det ok værd at medtage det.

34 Test for regressosparametre Som smpel leær regresso har v b ~ N( β, σ ( b hvor σ(b ) estmeres ved s(b ). Udregge af s(b ) overlader v tl SPSS. ) )

35 Test for regressosparametre Test for hpotese H H 0 : : β 0 β 0 (Ige leær sammehæg mellem og ) Teststørrelse: b s( b ) t( k ) Problem: Som ved varas aalse har v problemer med det samlede sgfkas-veau år v laver mage test. ~

36 Eksempel Model (Costat) h jde alder a. Depedet Varable: vægt Ustadardzed Coeffcets Coeffcets a Stadardzed Coeffcets B Std. Error Beta t Sg. -0,949 4,037-5,499,000,968,0,67 43,59,000,6,0,5 3,835,000 Betragt H 0 : β 0 (Ige leær samh. med højde) H : β 0 b 0,968 t-teststørrelse: t 44 s( b ) 0,0 Da P-værde er mdre ed 0.05, forkaster v H 0.

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression Statstk Lekton 15 Mere Lneær Regresson Modelkontrol Prædkton Multpel Lneære Regresson Smpel Lneær Regresson - repetton Spørgsmål: Afhænger y lneært af x?. Model: y = β + β x + ε ε d N(0, σ 0 1 2 ) Systematsk

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model)

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model) Statstk 9. gag REGRESSIONSANALYSE Korrelato kotrol af model Regresso tlpasg af model Statstk 9. gag KORRELATIONS ANALYSE. Grad af fælles varato mellem X og Y. Område og fordelg af sample data 3. Optræde

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epdemolog og bostatstk. Uge, trsdag. Erk Parer, Isttut for Bostatstk. Geerelt om statstk Dataaalyse - Deskrptv statstk - Statstsk feres Sammelgg af to grupper med kotuerte data - Geemst og spredg - Parametre

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α...

Læs mere

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA)

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA) Statstk II Lekton 4 Generelle Lneære Modeller Smpel Lneær Regresson Multpel Lneær Regresson Flersdet Varansanalyse (ANOVA) Logstsk regresson Y afhængg bnær varabel X 1,,X k forklarende varable, skala eller

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Korrelation (kontrol af model) Regression (tilpasning af model) 1. Grad af fælles variation mellem X og Y. 2. Område og fordeling af sample data

Korrelation (kontrol af model) Regression (tilpasning af model) 1. Grad af fælles variation mellem X og Y. 2. Område og fordeling af sample data tatstk 9. gag GIONANAL Korrelato (kotrol af model egresso (tlpasg af model tatstk 9. gag KOLATION ANAL. Grad af fælles varato mellem X og. Område og fordelg af sample data 3. Optræde af ekstrem-værder

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvattatve metoder Iferes de leære regressosmodel 9. marts 007 Opsamlg vedr. feres e leær regressosmodel uder Gauss-Markov atagelser (W.4-5) Eksempel med flere restrktoer (F-test) Lagrage

Læs mere

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ.

Men tilbage til regression og Chi-i-anden. test. Begge begreber refererer til normalfordelingen med middelværdi μ og spredning σ. χ test matematkudervsge χ - test gymasets matematkudervsg I jauar ummeret 8 af LMFK bladet havde jeg e artkel, hvor jeg harcelerede ldt over, at regresso og sær χ fordelg havde fudet dpas matematkudervsge

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS

Økonometri 1. Instrumentvariabelestimation 26. november Plan for IV gennemgang. Exogenitetsantagelsen. Exogenitetsantagelsen for OLS y = cy ( c 0 ) Pla for IV geemgag Økoometr Istrumetvarabelestmato 6. ovember 004 F9: Hvad er IV estmato: Bvarat model, et strumet: Kap.5. + afst -4 ote. F0: IV estmato det multple tlfælde (eksakt detfceret):

Læs mere

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj)

Betænkning om kommunernes udgiftsbehov. Bilag (med metodediskussion af professor Anders Milhøj) Betækg om kommueres udgftsbehov Blag (med metodedskusso af professor Aders Mlhøj) Betækg r. 36 Oktober 998 Kommueres Udgftsbehov Betækg om kommueres udgftsbehov - Redegørelse fra arbejdsgruppe uder Idergsmsterets

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians:

Analyse af bivariate data: korrelation og regression. korrelation. Korrelation og regression: Co-varians: ,,,,,,,,,, Stattk for bologer -, modul og : Korrelato og regreo: Aale af bvarate data: korrelato og regreo Korrelato: llutrerer v.h.a. e koeffcet hvlke grad to varable er dbrde afhægge: - (perfekt egatv

Læs mere

Fordelingen af gentagne observationer (målinger) kan beskrives ved hjælp af et histogram, der viser antallet af målinger i et givet interval.

Fordelingen af gentagne observationer (målinger) kan beskrives ved hjælp af et histogram, der viser antallet af målinger i et givet interval. H:\excerc\geodstat.doc, sdste ædrg: ov. 5, 3.. 3. Geodætsk statstk og mdste kvadraters metode. 3.. Statstske grudbegreber. 3.. Fordelger. Fordelge af getage observatoer (målger ka beskrves ved hælp af

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Pearsons formel for χ 2 test. Den teoretiske forklaring

Pearsons formel for χ 2 test. Den teoretiske forklaring Pearsos formel for χ test De teoretse forlarg Ole Wtt-Hase 04 Idhold. Normalfordelge og χ.... Pearsos formel for χ test... 3. Forlarg på Pearsos formel....4 Pearsos formel for χ test. Normalfordelge og

Læs mere

Lineære Normale Modeller

Lineære Normale Modeller Note tl Leære Normale Modeller Bo Rosbjerg. marts 009 Tegger udført af Herk Ve Chrstese Idhold E smpel leær ormal model 5. Modelbestemmelse........................... 5. Mdste kvadraters estmat......................

Læs mere

Regressions modeller Hvad regresserer vi på og hvorfor? Anders Stockmarr Axelborg statistikgruppe 6/

Regressions modeller Hvad regresserer vi på og hvorfor? Anders Stockmarr Axelborg statistikgruppe 6/ Regressos modeller Hvad regresserer v på og hvorfor? Aders Sockmarr Aelborg saskgruppe 6/ 0 Geerel Regresso Y f( ) ε f er e UKENDT fuko der beskrver relaoe mellem de uafhægge varabel og de afhægge varabel

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Induktionsbevis og sum af række side 1/7

Induktionsbevis og sum af række side 1/7 Iduktosbevs og sum af række sde /7 Skrver ma,,,...,,..., =, 2, 3,... 2 3 taler ma om e talfølge, eller blot e følge. Adre eksempler på følger er, -,, -,, -,..., (-) +,..., =, 2, 3,..., 2, 3, 4,...,,...,

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter:

Statistisk analyse. Vurdering af usikkerhed i forbindelse med statistiske opgørelser forudsætter: Statstsk aalyse Vurderg af uskkerhed forbdelse med statstske opgørelser forudsætter: Kvattatve mål for varato og spredg forbdelse med statstske opgørelser varas og stadardafvgelse Kvattatve mål for tlfældgheder

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

Kogebog: 5. Beregn F d

Kogebog: 5. Beregn F d tattk 8. gag KONFIDENINERVALLER Kofdetervaller: kaptel Valg og tet af fordelgfukto tattk 8. gag. KONFIDEN INERVALLER Et kofde terval udtrykker tervallet hvor de rgtge værd af parametere K, med γ % adylghed

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasum Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 Sadsylghedsfelt... 3 Edelge sadsylghedsfelter (sadsylghedsfordelger):... 3 Uedelge

Læs mere

FACITLISTE TIL KOMPLEKSE TAL

FACITLISTE TIL KOMPLEKSE TAL FACITLISTE TIL KOMPLEKSE TAL Kaptel Opgave Opgave Opgave Det emmeste check af lgge er at opløfte begge sder tl. potes. Bombells metode gver følgede lgger: a a b = 5 ( ) b a b = 09 = 7. Løs dem med et CAS

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ ) 3. februar 003 Epidemiologi og biostatistik. Uge, torag d. 3. februar 003 Morte Frydeberg, Istitut for Biostatistik. Type og type fejl Nogle specielle metoder: Test i RxC tabeller Test i x tabeller Fishers

Læs mere

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005

Videregående Algoritmik. David Pisinger, DIKU. Reeksamen, April 2005 Vderegåede Algortmk Davd Psger, DIKU Reeksame, Aprl 5 Bsecto problemet Gvet e uvægtet graf G = (V, E) samt et heltal k. E bsecto af grafe G er e opdelg af kudere V to lge store mægder S og T. MAX-BISECTION

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

Kvalitet af indsendte måledata

Kvalitet af indsendte måledata Notat ELT2004-112 Aktørafregg Dato: 23. aprl 2004 Sagsr.: 5584 Dok.r.: 185972 v1 Referece: NIF/AFJ Kvaltet af dsedte måledata I Damark er det etvrksomhederes opgave at måle slutforbrug, produkto og udvekslg

Læs mere

1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer

1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer Løsg og mdste kadraters løsger af leære lggssystemer Def. Lære lggssystemer Et leært lggssystem er et system af m lgger ubekedte, hor dsse ka skres som: a a... a b 2 2... a a... a b m m2 2 m m Dsse systemer

Læs mere

Indeks over udviklingen i biltrafikken i Danmark

Indeks over udviklingen i biltrafikken i Danmark Ideks over udvklge bltrafkke Damark Afdelgsgeør Alla Crstese, Vejdrektoratet, og cvlgeør, p.d. Crsta Overgård ase, TetraPla A/S. Baggrud og formål. Baggrud Vejdrektoratet ar sde 978 regelmæssgt udgvet

Læs mere

Ikke-parametriske tests af forskel i central tendens. Tests for forskel i central tendens for data på ordinal- og intervalskala

Ikke-parametriske tests af forskel i central tendens. Tests for forskel i central tendens for data på ordinal- og intervalskala Statstk for bologer 5-6, moul 7: Tests for forskel cetral tees for ata på oral- og tervalskala Ikke-parametrske tests af forskel cetral tees Vægter forskel mea ve hjælp af ragtal Data skal være på mst

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON

IKKE-KONTINUERTE (DISKRETE) STOKASTISKE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRISK, BINOMIAL, POISSON IE-ONTINUERTE (DISRETE) STOASTISE VARIABLE MIDDELVÆRDI, VARIANS, SPREDNING FORDELINGER: HYPERGEOMETRIS, BINOMIAL, POISSON Edelgt sadsylghedsfelt V reeterer: Et sadsylghedsfelt ( P ) U, kaldes edelgt, hvs

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Brugen af R 2 i gymnasiet

Brugen af R 2 i gymnasiet Bruge af R gymaset Per Bruu Brockhoff, DTU Compute, Erst Hase, KU Matematk og Claus Thor Ekstrøm, KU Bostatstk Der lader tl at være e vs forvrrg bladt og ueghed mellem forskellge faggrupper omkrg R værde,

Læs mere

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. O p t i k. Jacob Christiansen Afleveringsdato: 3. april 2003 Morten Olesen Andreas Lyder FY0 Oblgatorsk laboratoreøvelse O p t k Hold E: Hold: D Jacob Chrstase Alevergsdato: 3. aprl 003 Morte Olese Adreas Lyder Idholdsortegelse Idholdsortegelse Forål...3 Måleresultater...4. Salelser...4. Spredelse...5.3

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved

Den stokastiske variabel X angiver levetiden i timer for en elektrisk komponent. Tæthedsfunktionen for den stokastiske variabel er givet ved STATISTIK Skrtlg evaluerg, 3. emeter, madag de 3. jauar 5 kl. 9.-3.. Alle hjælpemdler er tlladt. Opgaveløge orye med av og CPR-r. OPGAVE De tokatke varabel agver levetde tmer or e elektrk kompoet. Tætheduktoe

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistik ved Bachelor-uddaelse i folkesudhedsvideskab Græseværdisætiger Det hadler om geemsit Statistikere elsker geemsit Det er oplagt e god ide at tage geemsit. Hvis jeg f.eks skal gætte på vægte af

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Elementær Matematik. Sandsynlighedsregning

Elementær Matematik. Sandsynlighedsregning lemetær Matematk Sadsylghedsregg Ole Wtt-Hase Køge Gymasum 008 INDHOLD KAP. KOMBINATORIK.... MULTIPLIKATIONS- OG ADDTIONSPRINCIPPT.... PRMUTATIONR... 3. KOMBINATIONR...3 KAP. NDLIGT SANDSYNLIGHDSFLT...7.

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik. 30. august 005 Epidemiologi og biostatistik. Forelæsig 3 Uge, torag d. 8. september 005 Michael Væth, Afdelig for Biostatistik. Mere om kategoriske data Test for uafhægighed I RxC tabeller Test for uafhægighed

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer

Hypotesetest. Hypotesetest og kritiske værdier Type 1 og Type 2 fejl Styrken af en test Sammenligning af to populationer Hypoteetet Hypoteetet og kritike værdier Type og Type fejl Styrke af e tet Sammeligig af to populatioer Kofideiterval for σ tore tikprøver. Hvi X følger e χ -fordelig med frihedgrader, dv. X~χ (), gælder

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12

Program. 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Program 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. 1/12 Ensidet variansanalyse: analyse af grupperede data Nedbrydningsrate for tre typer af opløsningsmidler (opgave 13.8 side 523) Sorption

Læs mere

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test:

Tests for forskel i central tendens for data på ordinal- og intervalskala. Typer af statistiske test: Statistik for biologer 005-6, modul 7: Tests for forskel i cetral tedes for data på ordial- og itervalskala M7, slide M7, slide Typer af statistiske test: Parametrisk statistik: - Tester for forskel i

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Estimation af CES - forbrugssystemet med og uden dynamik: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts Danmarks Statstk MODELGRUPPEN Arbejdspapr [udkast] Andreas Østergaard Iversen 140609 Estmaton af CES - forbrugssystemet med og uden dynamk: -fcf/fcfv sammenhold med fcv/fcfv -fct/fcts sammenhold med fcs/fcts

Læs mere

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion Statistik 8. gag 1 KONIDENSINTERVALLER Kofidesitervaller: kapitel 11 Valg og test af fordeligsfuktio Statistik 8. gag 11. KONIDENS INTERVALLER Et kofides iterval udtrykker itervallet hvori de rigtige værdi

Læs mere

Vejledende besvarelser til opgaver i kapitel 15

Vejledende besvarelser til opgaver i kapitel 15 Vejledede besvarelser til opgaver i apitel 5 Opgave a) De teststatistier, ma aveder til at teste om to middelværdier er es, består af et estimat på forselle mellem middelværdiere,, divideret med et udtry

Læs mere

Afsnit , Hypotesetest for en varians... 19

Afsnit , Hypotesetest for en varians... 19 Aft.-.7... 5 vad er tattk?... 5 Nøgletal... 5 Meda... 5 Vara... 5 Fraktler... 6 Fgurer... 6 Pareto dagram... 6 Dot dagram... 6 Frequecy dtrbuto... 6 togram... 6 Boplot... 6 Aft 4.-4.4 og 4.6 og 4.7...

Læs mere

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier.

Variansanalyse (ANOVA) Repetition, sammenligning af to grupper Variansanalyse: Sammenligning af flere end to middelværdier. Vaaaalye (ANOVA) Reetto, ammelgg af to gue Vaaaalye Sammelgg af flee ed to mddelvæde. Sammelgg af to mddelvæde kedte vaae og toe tkøve elle oulatoe omalfodelte Hyotee H H µ µ ( µ µ ) µ µ ( µ µ ) Tettøele

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere