Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Størrelse: px
Starte visningen fra side:

Download "Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo"

Transkript

1 Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte Carlo-metoder February 20, / 1 2 / 1 Monte Carlo Estimat af P(X m): Lad I i = 1[X i m] Antag vi gerne vil beregne sandsynligheden for at et kast med 5 terninger giver mindst 15 i alt. Er vi ikke i stand til at beregne denne sandsynlighed teoretisk, kan vi i princippet kaste 5 terninger et stort antal gange og udregne andelen af kastene, hvor summen af terningernes øjne giver 15 eller derover. Denne andel vil være et estimat af den ønskede sandsynlighed. I praksis lader vi en computer foretage kastene vha. computer-genererede tilfældige tal. P(X m) 1 n n I i = Ī Eksempel: hvis vi bruger n = 1000 simulationer af kast med 5 terninger fås estimat Men kun estimat - hvis vi tager 1000 nye kast fås andet resultat - f.eks Dvs. der er en vis usikkerhed på Monte Carlo estimatet. Usikkerheden bliver mindre jo større n, der benyttes. 3 / 1 4 / 1

2 Basal statistik - empirisk middelværdi og varians Observationer X 1, X 2,..., X n (kan være syntetiske - genereret på computer) - alle fordelt som X. Empirisk middelværdi og empirisk varians X = 1 n X i n s 2 = 1 n 1 n (X i X ) 2 ( empirisk middelværdi af kvadrerede afvigelser ) Empirisk spredning: s = s 2 = 1 n (X i X ) n 1 2 Når n meget stor vil X blive nøjagtig tilnærmelse af µ = EX og s 2 vil tilnærme sig variansen af X : σ 2 = VarX = E(X µ) 2 Varians: forventede værdi af den kvadrerede afvigelse fra middelværdien. Spredning: (samme enhed som X ) σ = VarX 5 / 1 6 / 1 Udregning af varians Antag X kan antage værdierne m = 0, 1, 2, 3,..., M med sandsynligheder p(m) = P(X = m). Regneregel for varians: Hvis X og Y uafhængige: VaraX = a 2 VarX Var[X + Y ] = VarX + VarY M VarX = p(m)(m µ) 2 = m=1 p(0)(0 µ) 2 + p(1)(1 µ) p(m)(m µ) 2 Eksempel: varians af binomialfordeling S b(1, p) med µ = p. σ 2 = E(X µ) 2 = (1 p)(0 p) 2 + p(1 p) 2 = p(1 p) Spredning af ax : VaraX = a VarX Eksempel: varians af binomialfordeling X = n S i b(n, p) (S i b(1, p) og uafh.) VarX = n VarS i = np(1 p) 7 / 1 8 / 1

3 Binomial-fordelinger med forskellige varianser b(10, 0.2) b(10, 0.5) p() p() b(5, 0.5) Kontinuerte stokastiske variable Hidtil har vi set på diskrete stokastiske variable, som antog heltallige værdier. En kontinuert stokastisk variabel kan antage alle reelle værdier. For en kontinuert stokastisk variabel angives sandsynligheder vha. en funktion f defineret på de reelle tal. Stor/lille sandsynlighed for at X falder i intervaller hvor f er stor/lille. p() Eksempel: uniform (ensartet) fordeling på [0, 1]: { 1 [0, 1] f () = 0 ellers Varianser: 1.6, 2.5 og / 1 10 / 1 Normal fordeling Normalfordeling med middelværdi µ og varians σ 2 : f klokkeformet f () = 1 ep( 1 2πσ 2 2σ 2 ( µ)2 ) Normalfordeling - 2 slags intervaller For en normalfordeling N(µ, σ 2 ) har vi altid P(µ σ1.96 X µ + σ1.96) = 0.95 f() Dvs. med 95% sandsynlighed afviger en normalfordeling ikke mere end to standardafvigelser (1.96σ 2σ) fra middelværdien. Tilsvarende (interval for µ) P(X σ1.96 µ X + σ1.96) = σ: 95% 3σ: 99,7% 4σ: 99,99% Middelværdi 3 eller 2 og spredning 1 eller 1/3. 11 / 1 12 / 1

4 Centrale grænseværdi-sætning Tilnærmelsesvis normal fordeling af gennemsnit af uniformt fordelte variable Middelværdi for X er µ. Variansen er σ 2 /n Histogram af uniformt fordelte variable samt histogram af X (gennemsnit af 1000 uniformt fordelte) CLT: når n stor vil X tilnærmelsesvist have en normal-fordeling (med middelværdi µ og varians σ 2 /n). NB: ligegyldigt hvilken fordeling X i erne har fås samme grænse-fordeling af X når n (dog skal X i erne være ens fordelt og uafhængige). Frequency Histogram of unif Density Histogram of bar unif bar 13 / 1 14 / 1 Intervaller for Monte Carlo estimater - vurdering af usikkerhed Simulerede X (hver X gennemsnit af 100 normalfordelte variable med middelværdi 3 og varians 2) Estimat X tilnærmelsesvist N(µ, σ 2 /n). Dvs. interval for ukendt µ: P( X 1.96 σ n µ X σ n ) = 0.95 Intervallet [ X σ1.96/ n, X + σ1.96/ n] giver et bud på usikkerheden af estimationen af µ - kaldes konfidens-intervallet. I praksis erstattes ukendte σ af s = s 2 - den empiriske spredning. bar eksperiment Ca. 5% af de simulerede X ligger udenfor 95%-intervallet. 15 / 1 16 / 1

5 Simulerede konfidensintervaller (hver baseret på X gennemsnit af 100 normalfordelte variable med middelværdi 3 og varians 2) Praktisk brug af konfidensinterval konfidens interval Hvis vi for et givet eksperiment/datasæt/monte Carlo beregning hævder, at den ukendte middelværdi ligger i det beregnede interval, så tager vi kun fejl i 5% tilfældende, hvis der er tale om et 95% interval. Hvis vi vil have større sikkerhed kan vi i beregningen af konfidensintervallet erstatte 1.96σ med 3σ eller 4σ - giver 99.7% eller 99.99% intervaller. Da tager vi kun fejl i 0.3% eller 0.01% af tilfældene eksperiment nr. Konfidensintervallerne indeholder sande middelværdi µ = 3 i ca. 95% af tilfældende. 17 / 1 18 / 1 Tilbage til Monte Carlo Med tusind (computer) kast af 5 terninger får vi estimeret forventet total antal øjne og estimeret varians Estimaterne for µ og σ 2 /n er og 13.91/1000 = Den estimerede spredning for X er = NB: hvad er den sande forventede værdi? Bud på usikkerheden: trolige værdier af µ er [ , ]. Lager: V ventetid til lager tømmes. Empirisk middelværdi og varians Antal simulationer=1000. Dvs. sande forventede ventetid ± Estimation af sandsynlighed for mere end 15: her benytter vi variable I i = 1[total sum i > 14]. Empirisk middelværdi og varians og Dvs. estimeret spredning på Ī er 0.17/1000 = Dvs. vurdering af usikkerhed: sandsynlighed mellem og / 1 20 / 1

6 En simulation af lager Øvelser beholdning dag I dette tilfælde gik der 26 dage før lageret blev tømt. 1. Beregn varianserne af de stokastiske variable fra opgave 1, 2, 6 og 7 i første sæt af opgaver. 2. Udgangspunktet er følgende 10 observationer (uafhængige, samme middelværdi og varians): Beregn empirisk middelværdi og varians s Beregn et 95% konfidensinterval for den ukendte (teoretiske) middelværdi µ. 2.3 Hvor stor skulle stikprøven være, hvis intervallets bredde skulle være mindre end en halv? 3. Antag X er normalfordelt med middelværdi 3 og varians Hvad er sandsynligheden for, at X er mindre end 3? 3.2 Angiv et interval, som X tilhører med 95% sandsynlighed. 21 / 1 22 / 1 4. Antag X 1,..., X 50 er uafhængige og alle har middelværdi 3 og varians Angiv et interval, som X tilhører med sandsynlighed 95%. 4.2 Angiv et (tilfældigt) interval, som med sandsynlighed 95% vil indeholde den sande middelværdi Antag X = (X X 100 ) b(100, 0.25) og lad X = X / Hvordan kan vi udregne en tilnærmet værdi for P( X 0.1) vha. den centrale grænseværdi-sætning? 5.2 Antag, at p er ukendt men vi har observeret X = Angiv da et 95% konfidensinterval for p (vink: husk variansen for b(n, p) er np(1 p)). 6. Antag, at en fabriks produktion af bolte skal leve op til følgende specifikationer: middelværdien af boltenes længde skal være 10 mm og der skal være mindst 99.7% sandsynlighed for, at en bolts længde er i intervallet 9.85 til mm. En ingeniør måler nu 100 bolte og observerer, at den empiriske middelværdi X og varians s 2 for de målte bolte er henholdsvis 9.91 og Taler ingeniørens data imod, at den sande middelværdi er 10? (vink: beregn konfidensinterval) 6.2 Antag, at boltenes længder er normalfordelte. Giver data anledning til at tro, at de producerede bolte med 99.7% sandsynlighed overholder specifikationens tolerance-interval? 7. En produktion af elektriske komponenter skal overholde, at i snit er højst 0.5% af komponenterne defekte. I en stikprøve af 1000 komponenter er 7 komponenter defekte. Det antages, at komponenternes fejlstatus er uafhængige. Giver de observerede data anledning til at mene, at kravet til produktionen ikke er overholdt? (vink: udregn 95% konfidensinterval for den ukendte andel defekte) 23 / 1 24 / 1

7 Facit 8. (Monte Carlo beregning af sandsynlighed). Brug computer til at estimere sandsynligheden for, at det maksimale antal øjne i et kast med 5 terninger er mindre end eller lig 5. Beregningens nøjagtighed skal opfylde, at 99.7% konfidensintervallet for sandsynligheden har bredde højst Vink: modificer min kode for terningkast. Beregning af ma-værdi i en vektor : > ma=ma() Kan I udregne sandsynligheden eksakt? 1: 0.96, 3, , 3.6, 2.1: , 2.2: [1.52;2.74], 2.3: 60, 3.1: 0.5, 3.2: 3±2.77, 4.1: 3 ± 0.392, 4.2: X ±0.392, 5.1 : X er approksimativt N(0.25, ). 5.2: Varians σ 2 for X i estimeres til 0.65(1 0.65) = Konfidensinterval: 0.65 ± /100 = 0.65 ± : ja, 99.7% konfidensintervallet er [9.9049, ] 6.2: ja, på baggrund af X og s 2 er det estimerede 99.7% interval [9.859, 9.961]. 7: nej, 95% konfidensintervallet er [0.0017, ]. 8: med simulationer beregner jeg sandsynligheden til med et 99.7% konfidensinterval [0.3952, ], som har bredde (husk, disse beregninger er behæftet med Monte Carlo fejl, da de er beregnet på baggrund af simulationer). 25 / 1 26 / 1

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet March 1, 2013 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Hvorfor er normalfordelingen så normal?

Hvorfor er normalfordelingen så normal? Hvorfor er normalfordelingen så normal? Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet October 24, 2018 normalfordelingen så normal? October 24, 2018 1 / 13 Højde af kvinder Histogram

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Højde af kvinder 2 / 18

Højde af kvinder 2 / 18 Hvorfor er normalfordelingen så normal? og er den nu også det? Søren Højsgaard (updated: 2019-03-17) 1 / 18 Højde af kvinder 2 / 18 Inddeler man i mindre grupper kan man forestille sig at histogrammet

Læs mere

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18

Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Motivation Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Rasmus Waagepetersen October 26, 2018 Eksempel: En landmåler får til opgave at måle længden λ fra A til B. Entreprenøren

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3 Landmålingens fejlteori Repetition - Kontinuerte stokastiske variable Lektion 4 - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf10 Institut for Matematiske Fag Aalborg Universitet 29. april

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Et sandsynlighedsmål er en

Læs mere

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering

Landmålingens fejlteori - Lektion 3. Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering Landmålingens fejlteori Lektion 3 Estimation af σ Dobbeltmålinger Geometrisk nivellement Linearisering - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition: Middelværdi og

Læs mere

Estimation og usikkerhed

Estimation og usikkerhed Estimation og usikkerhed = estimat af en eller anden ukendt størrelse, τ. ypiske ukendte størrelser Sandsynligheder eoretisk middelværdi eoretisk varians Parametre i statistiske modeller 1 Krav til gode

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel:

Ex µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4. hvor. Vha. R: Vha. tabel: Normal fordeling Tæthedsfunktion for normalfordeling med middelværdi µ og varians σ 2 : Program (8.15-10): f() = 1 µ)2 ep( ( 2πσ 2 2σ 2 ) E µ = 3,σ 2 = 1 og µ = 1,σ 2 = 4 1. vigtige sandsynlighedsfordelinger:

Læs mere

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik ekstrom@sund.ku.dk Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Statistisk Model Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Statistisk Model Indhold Binomialfordeling Sandsynlighedsfunktion Middelværdi og spredning 1 Aalen: Innføring i statistik med medisinske eksempler

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala 3 5% 5% 5% 0 3 4 5 6 7 8 9 0 Statistik for biologer 005-6, modul 5: Normalfordelingen opstår når mange forskellige faktorer uafhængigt af hinanden bidrager med additiv variation til. F.eks. Højde af rekrutter

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 33B, Rum 9 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail: pbac@dtu.dk Efterår

Læs mere

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Sandsynlighedsregning 5. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 3.5 og 4.1 Poissonfordelingen

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

Nanostatistik: Opgaver

Nanostatistik: Opgaver Nanostatistik: Opgaver Jens Ledet Jensen, 19/01/05 Opgaver 1 Opgaver fra Indblik i Statistik 5 Eksamensopgaver fra tidligere år 11 i ii NANOSTATISTIK: OPGAVER Opgaver Opgave 1 God opgaveskik: Når I regner

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen Anvendt Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner: Afsnit 3.3 og 3.4 Varians/standardafvigelse

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Afsnit 4.1-4.2, 4.7: Bernoulli fordeling Binomial fordeling Store Tals Lov (Laws of Averages, Laws of Large Numbers) 1 Bernoulli fordeling Kvantitative Metoder

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 22 Generalisering fra stikprøve til population Idé: Opstil en model for populationen

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8

Landmålingens fejlteori - Repetition - Fordeling af slutfejl - Lektion 8 Landmålingens fejlteori Repetition - Fordeling af slutfejl Lektion 8 - tvede@math.aau.dk http://www.math.aau.dk/ tvede/teaching/l4 Institut for Matematiske Fag Aalborg Universitet 15. maj 2008 1/13 Fordeling

Læs mere

4 Oversigt over kapitel 4

4 Oversigt over kapitel 4 IMM, 2002-09-14 Poul Thyregod 4 Oversigt over kapitel 4 Introduktion Hidtil har vi beskæftiget os med data. Når data repræsenterer gentagne observationer (i bred forstand) af et fænomen, kan det være bekvemt

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t.

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t. t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program (8.15-10): 1. repetition: fordeling af observatorer X, S 2 og t. 2. konfidens-intervaller, hypotese test, type I og type II fejl, styrke,

Læs mere

Nanostatistik: Opgavebesvarelser

Nanostatistik: Opgavebesvarelser Nanostatistik: Opgavebesvarelser JLJ Nanostatistik: Opgavebesvarelser p. 1/16 Pakkemaskine En producent hævder at poserne indeholder i gennemsnit 16 ounces sukker. Data: 10 pakker sukker: 16.1, 15.8, 15.8,

Læs mere

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable

Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 2: Sandsynlighedsmodeller og diskrete stokastiske variable 2.1 Sandsynlighedsbegrebet............................... 1 2.1.1

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Lineære transformationer, middelværdi og varians Helle Sørensen Uge 8, onsdag SaSt2 (Uge 8, onsdag) Lineære transf. og middelværdi 1 / 15 Program I formiddag: Fordeling

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Forelæsning 2: Kapitel 4, Diskrete fordelinger

Forelæsning 2: Kapitel 4, Diskrete fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Løsning til eksaminen d. 29. maj 2009

Løsning til eksaminen d. 29. maj 2009 DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Normalfordelingen og transformation af kontinuerte fordelinger Helle Sørensen Uge 7, mandag SaSt2 (Uge 7, mandag) Normalford. og transformation 1 / 16 Program Paretofordelingen,

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed...

1 Sandsynlighed Sandsynlighedsbegrebet Definitioner Diskret fordeling Betinget sandsynlighed og uafhængighed... Indhold 1 Sandsynlighed 1 1.1 Sandsynlighedsbegrebet................................. 1 1.2 Definitioner........................................ 2 1.3 Diskret fordeling.....................................

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt)

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) I dag Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) Helle Sørensen Repetition vha eksempel om dagligvarepriser Analyse med R: ttest

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var.

Statistik Lektion 2. Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Statistik Lektion Uafhængighed Stokastiske Variable Sandsynlighedsfordeling Middelværdi og Varians for Stok. Var. Repetition Stikprøve Stikprøvestørrelse n Stikprøvemiddelværdi Stikprøvevarians s Population

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

Opgaver til kapitel 3

Opgaver til kapitel 3 Opgaver til kapitel 3 3.1 En løber er interesseret i at undersøge om hendes løbeur er kalibreret korrekt. Hun udmåler derfor en strækning på præcis 1000 m og løber den 16 gange. For hver løbetur noterer

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Eksponential fordelingen Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Institut for Matematiske Fag Aalborg Universitet 1/1 Vægtet

Læs mere

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Course 02402/02323 Introducerende Statistik Forelæsning 2: Stokastisk variabel og diskrete fordelinger Klaus K. Andersen og Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Danmarks Tekniske Universitet

Læs mere

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1

Mikro-kursus i statistik 1. del. 24-11-2002 Mikrokursus i biostatistik 1 Mikro-kursus i statistik 1. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er statistik? Det systematiske studium af tilfældighedernes spil!dyrkes af biostatistikere Anvendes som redskab til vurdering

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 4: Kapitel 5: Kontinuerte fordelinger Rune Haubo B Christensen (based on slides by Per Bruun Brockhoff) DTU Compute, Statistik og Dataanalyse Bygning

Læs mere

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n. Simple fejlforplantningslov Landmålingens fejlteori Lektion 6 Den generelle fejlforplantningslov Antag X, X,, X n er n uafhængige stokastiske variable, hvor Var(X )σ,, Var(X n )σ n Lad Y g(x, X,, X n ),

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere