Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Størrelse: px
Starte visningen fra side:

Download "Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted"

Transkript

1 Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014

2 Forord Under udarbejdelsen af denne rapport har følgende medvirket. Jacob Pihlkjær Hjortshøj Jonatan Geysner Hvidberg Kevin Høst Husted Rapporten er udstedt i fagene Matematik A og Informationsteknologi B på HTX fjerde semester. Projektet strækker sig over perioden fra 3. marts til 31. marts 2014 og omhandler afkøling og problematikken bag dette. Under projektforløbet skal der fremstilles et IT produkt der afgiver nogle data omkring afkølingsprocessen Vi vil gerne takke følgende for vejledning gennem projektet og fremstilling af IT produkt. Jørn Christian Bendtsen Karl G Bjarnason Side 2 af 26

3 Indholdsfortegnelse Forord Afkølingsproblematikken Modelbegrebet Modelleringsprocessen Systemafgrænsning Den matematiske model opstilles Modellens matematiske resultater bestemmes modellens konklusioner Den matematiske model Forsøg Kravspecifikation Dataopsamlingsproblematikken Måleinstrument forsøgsopstilling Resultater Analyse af data Matematisk model til forklaring af data Delkonklusion Konklusion Kilder Hjemmesider Noter...16 Bilag Bilag Bilag Bilag Side 3 af 26

4 Introduktion 1.1. Afkølingsproblematikken Afkøling og opvarmning er to sider af samme sag. Det er kun fortegnet på temperaturændringen T der er anderledes. Overordnet set er der tre mekanismer der kan give en temperaturændring: Varmeledning mellem to legemer, de to legemer (eller materialer) er i fysik konstant Konvektion, hvor det ikke er varmeenergi der flyttes, men det varme materiale. Et eksempel er den varme luft der stiger op fra en varm vej på en solrig dag. Varmestråling - elektromagnetisk stråling der udsendes af alle legemer. Hver gang der sker en afkøling af et legeme er det en kombination af alle tre mekanismer. Da der er forskellige forhold af mekanismerne ved afkøling hver gang, så det er meget svært at beregne hvor hurtig temperaturændringen foregår. Hvis temperaturen holder en moderatet temperaturændring så ville man kunne bruge Newtons afkølingslov som en tilnærmelse af temperaturændringen 1 : Ændringen i et legemes temperatur er proportional med temperaturforskellen mellem legemet og omgivelserne 1.2. Modelbegrebet modellering er metoden vi bruger til forklaring af diverse problemstillinger fra virkeligheden, matematisk modellering kan f.eks. være grafer, ligninger eller uligheder som beskriver eller repræsenterer aspekter fra de belyste situationer. Modellernes formål er at fremstille en række informationer som kan benyttes til en eventuel løsning af den betragtede problemstilling. når man arbejder med modeller er der kun to metoder hvorved dette kan gøres, enten opstiller man modellen til løsning af en problemstilling, ellers er det at analyserer en allerede opstillet model. når matematiske modeller opstilles er der nogle krav man er nødt til at opstille til sig selv forstå problemstillingen foretage passende antagelser og forenklinger definerer passende variable undersøger sammenhæng mellem de forskellige variabler løser de opstillede ligninger og uligheder sammenligner løsninger med virkeligheden forklarer modellen og dens resultater om nødvendigt kan forbedre modellen 1 M. Stoklund - Afkøling RTG (Upubliceret) Side 4 af 26

5 1.3 Modelleringsprocessen Man laver matematiske modeller ud fra virkeligheden. Man laver modellerne ved hjælp af modelleringsprocessen. Modelleringsprocessen kan illustreres ved den nedenstående figur. Figuren illustrerer modelleringsprocessen går i en cyklus da det kan blive nødvendigt at bruge modelleringsprocessen op til flere gange afhængigt af om den opstillede model passer med virkeligheden. Den første model vil for det meste være yderst simpel men den kan give en bedre forståelse for de næste modelleringsprocesser man laver. Derfor er det bedre at have en simpel model end slet ingen model 2. modelleringsprocessen vil normalt bestå af følgende 4 trin Systemafgrænsning I det første trin præciseres, afgrænses og forenkles problemstillingen efter teoretiske overvejelser og observationer af situationer der kan knyttes til problemstillingen. Problemstillingen afgrænses og tilpasses til det de væsentligste aspekter og de indbyrdes relationer der har betydning for problemstillingen bestemmes. Nu foretages en præciseret og afgrænset formulering af problemstillingen på baggrund af de valg der er foretaget Den matematiske model opstilles Her klargøres det hvilke matematiske aspekter der har betydning for udregningerne til modellen, ligninger og uligheder af betydning for modellen opstilles ud fra konstanter eller variabler udvalgt ud fra problemstillingen. I denne fase kan viderebyggelse eller inddragelse af allerede eksisterende modeller også formuleres Modellens matematiske resultater bestemmes I trin 3 af modelleringsprocessen vil man forsøge at finde en løsning til modellen på baggrund af en passende matematisk analyse. I nogle tilfælde kan beregningerne være så tidskrævende eller umulige at udføre så det kan være en god ide at bruge numeriske beregninger til at udarbejde den matematiske model 2. 2 J. Desgaard og C. michelsen- modelleringsprocessen Side 5 af 26

6 modellens konklusioner I dette trin af modelleringsprocessen sammenligner man den matematiske models resultater med virkeligheden. Inden modellens resultater kan anvendes i praksis, så må man fortolke og vurdere sine resultater i forhold til den problemstilling man satte i trin 1. Hvis man har lavet et empirisk eksperiment bør man sammenligne sine data med den matematiske model. Hvis vi konkludere at modellen ikke stemmer overens med virkeligheden så skal man gå forfra med trin 1 og modificere problemstillingen og modellen for at få en bedre model der stemmer mere overens med virkeligheden. Hvis modellen stemmer overens med virkeligheden så afsluttes modelleringsprocessen ved at man skriver sine kommentarer ned og konkludere på sin model 3. 3 J. Desgaard og C. michelsen- modelleringsprocessen Side 6 af 26

7 2. Den matematiske model I dette afsnit vil vi opstille en matematisk model ud fra Newtons afkølings lov som lyder 4 : Ændringen i et legemes temperatur er proportional med temperaturforskellen mellem legemets og omgivelserne Ved at se på den effekt som strømmer ud af et legeme kan vi opstille følgende udtryk. I dette udtryk er et kort tidsinterval og er varmemængden. Ud fra Newtons afkølingslov kan vi opstille følgende formel. Dette udtryk er opstillet som sammenhængen mellem varmeforskellen i det indre legeme og omgivelserne, i starten af testperioden, og systemet. er udtrykket der beskriver varmeforskellen, og k er en konstant der afhænger af systemet, med systemet menes der legemets evne til at lede varme og dets varmekapacitet. Varmeforskellen beregnes ved at se på forskellen mellem de individuelle elementers varme. En afhængig variabel for temperaturændringen er varmemængden som beregnes således. I denne sammenhæng er C legemets varmekapacitet som bestemmes ved formlen nedenfor. Her ser vi masserne af de forskellige dele som m 1,m 2 og den specifikke varmekapacitet for materialerne som delene består af er så c 1,c 2 ud fra disse resornation er kan vi indsætte ovenstående i formlen vi opstillede for effekt som strømmer ud af et legeme. 4 M. Stoklund - Afkøling RTG (Upubliceret) Side 7 af 26

8 Dette udtryk kan vi så sætte lig med udtrykket opstillet for Newtons afkølingslov som også er beskrevet tidligere. Når vi ser på tidsintervallet som svarende til vil svare til differentialkvotienten således. Indsætter vi dette i den før opstillede formel vil vi få. for I dette tilfælde har vi indført i stedet for, det har samme betydning bare en nemmere opsætning. Den opstillede ligning er en differentielligning hvor løsningen er givet ved. Side 8 af 26

9 3 Forsøg Vi vil i dette afsnit beskrive og redegøre for opstilling af eksperimenter der afstedkommer information angående afkølingsproblematikken. 3.1 Kravspecifikation Vores system skal kunne måle spændingsforskellene på LM 335 ved hjælp af Arduinoen, som vil omdanne disse til talværdier. Herefter vil vi via Processing få plottet disse data ud som en graf, der ville vise faldet i temperatur. Vi valgte at lave hver sjette streg ud af x-aksen rød, da hver streg er 10 sekunder, så den røde signalerer et minut. På samme måde valgte vi at farve hver femte ud af y-aksen rød, da der mellem to streger er to grader, så der mellem to røde streger er 10 grader. Se Bilag Dataopsamlingsproblematikken Fra et tidligere projekt har vi arbejdet med et program som skaber en graf. Dette program har vi så ændret på, således at den ikke registrerer data lige så hurtigt, da dette ville gøre vores måleresultater lettere at aflæse. På den måde er en pixel 1 sekund. Derefter har vi kalibreret grafen ved hjælp af et termometer, så måleresultaterne præcist kunne aflæses af programmets koordinatsystem. Dette blev gjort for at få så præcise måleresultater som muligt. Side 9 af 26

10 3.3 Måleinstrument Vi har bygget et måleapparat til målingen af temperatur ved hjælp af en Arduino Leonardo lm 335, en 10k modstand og en 10k variable modstand. Vi har lavet koden i Arduino, da det er det sprog, der passer til Arduinoen, og vi har lavet koden i Processing, da det er godt til at vise grafiske images, og har nemt ved at kommunikere med Arduinoen. Se Bilag 3 og Bilag 4 Side 10 af 26

11 3.4 forsøgsopstilling 1. Fyld et krus med g varmt vand 2. Put varmemåleren (LM 335) ned i kruset 3. Opstart Processing programmet som tegner en graf 4. Lad kruset stå mens varmemåleren er i en times tid 5. Aflæs temperaturen og tiden på grafen og indfør værdierne i en tabel 3.5 Resultater Se bilag 1 og Analyse af data Vores måleresultater danner en fin graf. Vi har valgt at se bort fra det første minut, da vores måleinstrument ikke var sat ordentligt til at starte med. Derfor tænkte vi, at det var en for stor usikkerhed til at tage det med. Til sidst da vi sluttede forsøget, fordi der ikke var mere tid tilbage, trak vi måleinstrumentet op og temperaturen begyndte at stige. Dette har vi også valgt at se bort fra, da vores forsøg var slut. 3.7 Matematisk model til forklaring af data Vi har i 2 Udledning af differentialregning opstillet differentialligning og dens afledefunktion Vi kan nu finde ved at sætte tiden til 0, da Hvis vi skal laver en model, skal vi have to målepunkter. Vi kan lave flere modeller, hvis vi har målepunkter fra flere steder. Punkterne er vedlagt som bilag. Vores temperatur udenfor var 23 Vores start temperatur var 70 Funktionsforskriften til temperaturen må være funktionsforskriften for som er temperaturen: +, da vi dermed har isoleret => Side 11 af 26

12 Og så har vi Newtons afkølingslov Så kan vi isolere : => => => Så tager vi den naturlige logaritme, fordi den er reciprok til e x : => => Så skal vi have et punkt fra grafen, fx efter ét minut som er punkt (1,68)(se Bilag 1) ind i formlen: = Så kan vi lave den matematiske model: -0, Side 12 af 26

13 Ved hjælp af Graph har vi tegnet nedenstående graf med denne model: Så kan vi sammenligne den med den programmelle model: Side 13 af 26

14 3.8 Delkonklusion Sammenligner vi modellen, er det tydeligt at se, at Newtons afkølingslov kan modelleres til at passe til virkelighedens resultater meget præcis. Havde vi opstillet flere modeller, ville vi kunne få en mere akkurat graf. Hvis vi sammenligner med den programmele, som knap nok viser en sammenhæng mellem punkterne, kan vi også se, at en matematisk model er meget mere præcis. Modellen har også eftervist, at jo større forskellen mellem legemet og omgivelserne er, jo hurtigere afgiver legemet sin energi til omgivelserne. Det betyder, at grafen flader hurtigere ud i starten end i slutningen. Side 14 af 26

15 4. Konklusion Vi har i denne rapport redegjort for hvad afkøling problematikken er. Ud fra newtons afkølingslov har vi fået opstillet en differentialligning og en afledet funktion: Vi har lavet et forsøg hvor vi måler afkølingen af en kop kogende vand over tid ved hjælp af vores arduino som overførte dataene over til processing, som der lavede en graf af dataene. Vi brugte dataene for forsøget og differentialligning og den afledet funktion til at udarbejde en matematisk model: Vi kan ud for den matematiske model konkludere at jo større forskellen mellem legemet og omgivelserne er, jo hurtigere afgiver legemet sin energi til omgivelserne. Det betyder, at grafen flader hurtigere ud i starten end i slutningen. Side 15 af 26

16 5. Kilder 5.1 Hjemmesider Ophav URL Dato Processing Arduino - Graph Noter Note: M. Stoklund - Afkøling RTG (Upubliceret) Note: J. Desgaard og C. michelsen- modelleringsprocessen - Trafikmodeller matematiske aspekter matematisk formidling 2001 Side 16 af 26

17 Bilag 1 Forsøgs resultater aflæst fra graf minutter x-akse temperatur y-akse , , , , , , , , , , , , , , , ,5 Side 17 af 26

18 Bilag 2 Bilder af vores måleresultater; Processing graf 0-10 minutter Side 18 af 26

19 10-20 minutter Side 19 af 26

20 20-30 minutter Side 20 af 26

21 30-40 minutter Side 21 af 26

22 40-50 minutter Side 22 af 26

23 50-60 minutter Side 23 af 26

24 60-64 minutter Bilag 3 Koden til Arduino Side 24 af 26

25 Bilag 4 Koden til Processing Side 25 af 26

26 Side 26 af 26

Dataopsamling og modellering

Dataopsamling og modellering Dataopsamling og modellering Studieområdet i studieretningsforløbet (matematik og IT) Mini-SRP Fag/vejleder: HTX 2.4 Informationsteknologi/ Karl G Bjarnason Matematik / Jørn Christian Bendtsen Mads Poulsen,

Læs mere

ROSKILDE TEKNISKE GYMNASIUM 2. ÅR MAT. A & IT B MARTS 2014. Mini SRP - Projekt. Afkøling. Af Lars-Emil Jakobsen & Jacob Ruager.

ROSKILDE TEKNISKE GYMNASIUM 2. ÅR MAT. A & IT B MARTS 2014. Mini SRP - Projekt. Afkøling. Af Lars-Emil Jakobsen & Jacob Ruager. ROSKILDE TEKNISKE GYMNASIUM 2. ÅR MAT. A & IT B MARTS 2014 Mini SRP - Projekt Afkøling Af Lars-Emil Jakobsen & Jacob Ruager. Logo af Java, redigeret i Paint af Lars-Emil Snefnug, redigeret i Paint af Lars-Emil

Læs mere

MINI SRP MAT-IT. Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium. Lavet på Rokilde Tekniske Gymnasium

MINI SRP MAT-IT. Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium. Lavet på Rokilde Tekniske Gymnasium MINI SRP MAT-IT Lavet af Adam Kjærum og Frederik Franklin klasse 2.4 på Rokilde Tekniske Gymnasium Lavet på Rokilde Tekniske Gymnasium Indhold Forord... 2 Indledning... 2 Model og differentielligning...

Læs mere

Matematik A og Informationsteknologi B

Matematik A og Informationsteknologi B Matematik A og Informationsteknologi B Projektopgave 2 Eksponentielle modeller Benjamin Andreas Olander Christiansen Jens Werner Nielsen Klasse 2.4 6. december 2010 Vejledere: Jørn Christian Bendtsen og

Læs mere

FYSISKE EKSPERIMENTER OG

FYSISKE EKSPERIMENTER OG FYSISKE EKSPERIMENTER G MDELLERING pgaven er bearbejdet af: Safa Sarac Rami Kassim Kaddoura Andreas Christian Mikkelsen Klasse: 2.4 Fag: Fysik B, Informationsteknologi B, Matematik A Vejleder(e): Karl

Læs mere

SO-projekt Marts 2014

SO-projekt Marts 2014 SO-projekt Marts 2014 Matematik A - IT B Kaffeafkøling Lavet af: Mads Hougaard, Philip Elbek og Frederik Bagger Under vejledning af: Jørn Christian Bendtsen og Karl Bjarnason Indholdsfortegnelse Forord...

Læs mere

SRO. Newtons afkølingslov og differentialligninger. Josephine Dalum Clausen 2.Y Marts 2011 SRO

SRO. Newtons afkølingslov og differentialligninger. Josephine Dalum Clausen 2.Y Marts 2011 SRO SRO Newtons afkølingslov og differentialligninger Josephine Dalum Clausen 2.Y Marts 2011 SRO 0 Abstract In this assignment I want to illuminate mathematic models and its use in the daily movement. By math

Læs mere

SO: Mini-SRP Matematik/IT

SO: Mini-SRP Matematik/IT SO: Mini-SRP Matematik/IT Dataopsamling og modellering Dato: 31/03/2014 Vejledere: Jørn Christian Bendtsen og Karl G. Bjarnason Lavet af: Jacob D. Sørensen, og Rune Kofoed-Nissen Klasse: 2.4 Indholdsfortegnelse

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler,

Læs mere

Eksponentielle modeller

Eksponentielle modeller 2013 Eksponentielle modeller Jacob Elmkjær og Dan Sørensen Matematik/IT Roskilde Tekniske Gymnasium 09-12-2013 Lærere: Jørn Christian Bendtsen og Karl Bjarnason Indhold Indledning... 2 Opgave analyse...

Læs mere

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab defineres som menneskelige aktiviteter, hvor

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Portfolio - prøvemappe. Navn: Rami Kaddoura Fødselsdagsdato: 26/08/1993 Klasse: 3.4 Skole: Roskilde tekniske gymnasium, HTX Dato: 31/03/2012

Portfolio - prøvemappe. Navn: Rami Kaddoura Fødselsdagsdato: 26/08/1993 Klasse: 3.4 Skole: Roskilde tekniske gymnasium, HTX Dato: 31/03/2012 Portfolio - prøvemappe Navn: Rami Kaddoura Fødselsdagsdato: 26/08/1993 Klasse: 3.4 Skole: Roskilde tekniske gymnasium, HTX Dato: 31/03/2012 Indholdsfortegnelse Indledning... 3 1. arbejder Fysiske eksperimenter

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Eksponentielle modeller

Eksponentielle modeller Eksponentielle modeller Fag: Matematik A og Informationsteknologi B Vejledere: Jørn Christian Bendtsen og Karl G Bjarnason Side 1 af 20 Indholdsfortegnelse Introduktion 1.Indledning... 3 2. Formål... 3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2017 HANSENBERG

Læs mere

Indre modstand og energiindhold i et batteri

Indre modstand og energiindhold i et batteri Indre modstand og energiindhold i et batteri Side 1 af 10 Indre modstand og energiindhold i et batteri... 1 Formål... 3 Teori... 3 Ohms lov... 3 Forsøgsopstilling... 5 Batteriets indre modstand... 5 Afladning

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

FYSIK RAPPORT. Forsøg med kalorimeter. Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein

FYSIK RAPPORT. Forsøg med kalorimeter. Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein FYSIK RAPPORT Forsøg med kalorimeter Tim Ohlsen, Kim Kähler, Emil Lind, Jeppe Lauritsen og Lasse Klein Indhold Formål:... 2 Beskrivelse:... 2 Formel for beregning af specifikke varmekapacitet:... 2 Udførsel

Læs mere

Vi har valgt at analysere vores gruppe ud fra belbins 9 grupperoller, vi har følgende roller

Vi har valgt at analysere vores gruppe ud fra belbins 9 grupperoller, vi har følgende roller Forside Indledning Vi har fået tildelt et skema over nogle observationer af gærceller, ideen ligger i at gærceller på bestemt tidspunkt vokser eksponentielt. Der skal nu laves en model over som bevise

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer e-mailadresse Hold Termin hvori undervisningen afsluttes: Maj/Juni,

Læs mere

Teknologi Projekt. Trafik - Optimal Vej

Teknologi Projekt. Trafik - Optimal Vej Roskilde Tekniske Gymnasium Teknologi Projekt Trafik - Optimal Vej Af Nikolaj Seistrup, Henrik Breddam, Rasmus Vad og Dennis Glindhart Roskilde Tekniske Gynasium Klasse 1.3 7. december 2006 Indhold 1 Forord

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Modellering af balance på en vippe

Modellering af balance på en vippe Modellering af balance på en vippe Dette er en beskrivelse af et undervisningsforløb i Fysik/Kemi og matematik i 8. klasse på Tingkærskolen i Odense. Deltagerne i forløbet var lærer Thor Hansen og de to

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2012 (denne beskrivelse dækker efterår 2011 og forår 2012) Institution Roskilde Handelsskole Uddannelse

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik B Henrik Laursen

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Figur 1 Energetisk vekselvirkning mellem to systemer.

Figur 1 Energetisk vekselvirkning mellem to systemer. Energibånd Fysiske fænomener er i reglen forbundet med udveksling af energi mellem forskellige systemer. Udvekslingen af energi mellem to systemer A og B kan vi illustrere grafisk som på figur 1 med en

Læs mere

Modellering af elektroniske komponenter

Modellering af elektroniske komponenter Modellering af elektroniske komponenter Formålet er at give studerende indblik i hvordan matematik som fag kan bruges i forbindelse med at modellere fysiske fænomener. Herunder anvendelse af Grafregner(TI-89)

Læs mere

Eksponentielle modeller

Eksponentielle modeller Eksponentielle modeller Matematik og Informationsteknologi 06-12-2010 HTX; klasse 2.4 Mathias Sørensen, Martin Schmidt, Andreas Mikkelsen Vejleder: Matematik: Jørn Bendtsen Informationsteknologi: Karl

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider.

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider. Side 1 af 7 Indhold Rapportering rapportskrivning... 1 Løsning af fysikfaglige problemer opgaveregning.... 2 Formidling af fysikfaglig indsigt i form at tekster, præsentationer og lignende... 4 Projektrapporter...

Læs mere

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1.

Læringsprogram. Talkonvertering. Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen. Klasse 2.4. 1. Læringsprogram Talkonvertering Benjamin Andreas Olander Christiansen Niclas Larsen Jens Werner Nielsen Klasse 2.4 1. marts 2011 Fag: Vejleder: Skole: Informationsteknologi B Karl G. Bjarnason Roskilde

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010. Denne beskrivelse dækker efteråret 2011 og foråret 2012. Institution Roskilde Handelsskole

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning

Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning Om temperatur, energi, varmefylde, varmekapacitet og nyttevirkning Temperaturskala Gennem næsten 400 år har man fastlagt temperaturskalaen ud fra isens smeltepunkt (=vands frysepunkt) og vands kogepunkt.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Studenterkurset

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj 2013 HTX Vibenhus

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe102-mat/b-31082010 Tirsdag den 31. august 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Modeldannelse og simulering

Modeldannelse og simulering Modeldannelse og simulering Tom S. Pedersen, Palle Andersen tom@es.aau.dk pa@es.aau.dk Aalborg Universitet, Institut for Elektroniske Systemer Automation and Control Modeldannelse og simulering p. 1/21

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Roskilde Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Trine Rasmussen

Læs mere

Jakob Skovborg Sørensen Christian Dohrmann Mette Lunding Nielsen Lucas Paulsen

Jakob Skovborg Sørensen Christian Dohrmann Mette Lunding Nielsen Lucas Paulsen . Side 1 af 11 06/09 2013 Indhold Indledning/formål... 3 Hvordan måler vi?:... 3 Hvordan virker kassen?... 3 Forventninger... 4 Eksempel af måleserie... 4 Forsøget:... 4 Beregning af energiomsætning...

Læs mere

Indholdsfortegnelse Indledning... 2 Projektbeskrivelse... 2 Dette bruger vi i projektet... 2 Komponenter... 2 Software... 2 Kalibrering...

Indholdsfortegnelse Indledning... 2 Projektbeskrivelse... 2 Dette bruger vi i projektet... 2 Komponenter... 2 Software... 2 Kalibrering... Indholdsfortegnelse Indledning... 2 Projektbeskrivelse... 2 Dette bruger vi i projektet... 2 Komponenter... 2 Software... 2 Kalibrering... 3 Kildekoden... 4 Variabler... 4 Setup... 4 Loop... 4 Indledning

Læs mere

4. Snittets kædebrøksfremstilling og dets konvergenter

4. Snittets kædebrøksfremstilling og dets konvergenter Dette er den fjerde af fem artikler under den fælles overskrift Studier på grundlag af programmet SKALAGENERATOREN (forfatter: Jørgen Erichsen) 4. Snittets kædebrøksfremstilling og dets konvergenter Vi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 FRANSK BEGYNDERSPROG

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution Vid Gymnasier, Rønde Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Ann Risvang

Læs mere

Tværfagligt Projekt. Matematik og IT

Tværfagligt Projekt. Matematik og IT Tværfagligt Projekt Matematik og IT Navn: Ugur Kitir Skole: Roskilde - HTX Klasse: 2.4 Vejledere: Karl og Jørn Afleveringsdato: 01/12 2008 Indholdsfortegnelse Opgaveanalyse... 3 Indledning:... 3 Analyse

Læs mere

Matematik i AT (til elever)

Matematik i AT (til elever) 1 Matematik i AT (til elever) Matematik i AT (til elever) INDHOLD 1. MATEMATIK I AT 2 2. METODER I MATEMATIK OG MATEMATIKKENS VIDENSKABSTEORI 2 3. AFSLUTTENDE AT-EKSAMEN 3 4. SYNOPSIS MED MATEMATIK 4 5.

Læs mere

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet Projekt om medicindosering Fra http://www.ruc.dk/imfufa/matematik/deltidsudd_mat/sidefagssupplering_mat/rap_medicinering.pdf/ Lav mindst side 1-4 t.o.m. Med 7 Ar b ejd ssed d el 0 Salt 1 Forestil Jer at

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4 El-Teknik A Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen Klasse 3.4 12-08-2011 Strømstyrke i kredsløbet. Til at måle strømstyrken vil jeg bruge Ohms lov. I kredsløbet kender vi resistansen og spændingen.

Læs mere

Daniells element Louise Regitze Skotte Andersen

Daniells element Louise Regitze Skotte Andersen Louise Regitze Skotte Andersen Fysikrapport. Morten Stoklund Larsen - Lærer K l a s s e 1. 4 G r u p p e m e d l e m m e r : N i k i F r i b e r t A n d r e a s D a h l 2 2-0 5-2 0 0 8 2 Indhold Indledning...

Læs mere

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd.

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Ohms lov Nummer 136050 Emne Ellære Version 2017-02-14 / HS Type Elevøvelse Foreslås til 7-8, (gymc) p. 1/5 Formål Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Princip Et stykke

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Sanne Schyum

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Eksamensopgave IT B. Integration af vilkårlig funktion

Eksamensopgave IT B. Integration af vilkårlig funktion 2015 Eksamensopgave IT B Integration af vilkårlig funktion Dan Henrik Sørensen og Jacob Elmkjær Klasse: 3.4 Roskilde Tekniske Gymnasium IT B og Programmering C Vejledere: Karl G Bjarnason og Christoffer

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

DIFFERENTIALREGNING Hvorfor er himlen blå?

DIFFERENTIALREGNING Hvorfor er himlen blå? DIFFERENTIALREGNING Hvorfor er himlen blå? Differentialregning - Rayleigh spredning - oki.wpd INDLEDNING Hvem har ikke betragtet den flotte blå himmel på en klar dag og beundret den? Men hvorfor er himlen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2017 Marie

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3

Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3 Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................

Læs mere

Kort gennemgang af Samfundsfaglig-, Naturvidenskabeligog

Kort gennemgang af Samfundsfaglig-, Naturvidenskabeligog Kort gennemgang af Samfundsfaglig-, Naturvidenskabeligog Humanistisk metode Vejledning på Kalundborg Gymnasium & HF Samfundsfaglig metode Indenfor det samfundsvidenskabelige område arbejdes der med mange

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution HF uddannelsen i Nørre Nissum, VIA University College Uddannelse Fag og niveau Lærer(e)

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe32-mat/b-2908203 Torsdag den 29. august 203 kl. 9.00-3.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave -6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består

Læs mere

Naturvidenskabeligt grundforløb 2014-15

Naturvidenskabeligt grundforløb 2014-15 Naturvidenskabeligt grundforløb 2014-15 Naturvidenskabeligt grundforløb strækker sig over hele grundforløbet for alle 1.g-klasser. NV-forløbet er et samarbejde mellem de naturvidenskabelige fag sat sammen

Læs mere

Matematik og Fysik for Daves elever

Matematik og Fysik for Daves elever TEC FREDERIKSBERG www.studymentor.dk Matematik og Fysik for Daves elever MATEMATIK... 2 1. Simple isoleringer (+ og -)... 3 2. Simple isoleringer ( og )... 4 3. Isolering af ubekendt (alle former)... 6

Læs mere

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10.

Matematik - undervisningsplan Årsplan 2015 & 2016 Klassetrin: 9-10. Form Undervisningen vil veksle mellem individuelt arbejde, gruppearbejde og tavleundervisning. Materialer Undervisningen tager udgangspunkt i følgende grundbøger og digitale lærings- og undervisningsplatforme.

Læs mere

Årsplan 8. Klasse Matematik Skoleåret 2016/17

Årsplan 8. Klasse Matematik Skoleåret 2016/17 Hovedformål Der arbejdes med følgende 3 matematiske emner: 1. tal og algebra, 2. geometri samt 3. statistik og sandsynlighed. Derudover skal der arbejdes med matematik i anvendelse samt de matematiske

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes i maj/juni 2012. Denne beskrivelse dækker derfor efteråret 2011 og foråret

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik

Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Fagårsplan 10/11 Fag: Matematik Klasse: 8.A Lærer: Henrik Stillits Fagområde/ emne Færdighedsregning - Typer af opgaver - Systematik Periode Mål Eleverne skal: 32/33 Få kendskab til opgavetypen og få rutine.

Læs mere

Vejledning til WordMat på Mac

Vejledning til WordMat på Mac Installation: WordMat på MAC Vejledning til WordMat på Mac Hent WordMat for MAC på www.eduap.com Installationen er først slut når du har gjort følgende 1. Åben Word 2. I menuen vælges: Word > Indstillinger

Læs mere

Lommeregnerkursus 2008

Lommeregnerkursus 2008 Mikkel Stouby Petersen Lommeregnerkursus 008 Med gennemregnede eksempler og øvelser Materialet er udarbejdet til et kursus i brug af TI-89 Titanium afholdt på Odder Gymnasium. april 008 1. Ligningsløsning

Læs mere

Matematik på Humlebæk lille Skole

Matematik på Humlebæk lille Skole Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2016 Institution Den jydske Haandværkerskole Uddannelse Fag og niveau Lærer(e) Hold HTX Fysik B Peter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Modellering med Lego education kran (9686)

Modellering med Lego education kran (9686) Modellering med Lego education kran (9686) - Et undervisningsforløb i Lego education med udgangspunkt i matematiske emner og kompetencer Af: Ralf Jøker Dohn Henrik Dagsberg Kranen - et modelleringsprojekt

Læs mere