Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A.

Størrelse: px
Starte visningen fra side:

Download "Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A."

Transkript

1 OPLÆG TIL STUDIERETNINGSPROJEKT I MATEMATIK-KEMI OM OSCILLERENDE REAKTIONER OG MATEMATISKE MODELLER Indledning De fleste kemiske reaktioner forløber uproblematisk inil der opnås kemisk ligevægt, eksempelvis A + B = C. Kemisk ligevægt er en dynamisk situation, hvor to modgående reaktioner, i dette tilfælde A + B C og C A + B, forløber lige hurtigt. Koncentrationerne af de indgående species er således konstante ved kemisk ligevægt. Der forekommer imidlertid reaktioner i naturen som ikke følger denne adfærd; koncentrationerne af de indgående species i disse reaktioner, herunder reaktanter, mellemprodukter og produkter, varierer med tiden eller i rummet. Man taler om oscillerende kemiske reaktioner. Oscillerende kemiske reaktioner spiller en stor rolle i naturen; ildfluer der blinker og hjertet der slår, er to eksempler på fænomener som er styret af oscillerende kemiske systemer. Glycolysen er et tredje eksempel på en vigtig biologisk proces, den første del af glucosenedbrydningen, som er styret af oscillerende kemiske reaktioner. Belousov-Zhabotinskiis (herefter BZ) reaktion, der er en redoxreaktion mellem bromat og malonsyre katalyseret af cerium i en svovlsyreopløsning, er måske den mest studerede oscillerende reaktion nogensinde. Den anskueliggøres ofte ved følgende totrinsreaktion, der afspejler HBrO s rolle som autokatalysator BrO - + HBrO +H O + BrO + H O BrO + Ce(III) + H O + HBrO + Ce(IV) + H O Oregonatoren er en simplificeret model, hvori man ser bort fra tilbagegående og hurtige elementarreaktioner, der ofte benyttes til at beskrive BZ reaktionen. Der indgår 5 elementarreaktioner i Oregonatoren, der dog kan simplificeres for en analytisk matematisk behandling. Eksperimentelt kan BZ reaktionen udvikling følges ved at måle forholdet mellem [Ce + ] og [Ce 4+ ] med en platinelektrode, der er tilsluttet en skriver eller en dataopsamlingsstation. Faglige forudsætninger Oplægget henvender sig primært til specielt interesserede g elever med matematik A og kemi A. Matematik: - eleven skal have en solid forståelse af anvendelse af funktionsuryk og afledet funktion til opstilling af matematiske modeller på baggrund af viden fra for eksempel kemi - eleven skal have kendskab til opstilling af differentialligninger samt kunne løse lineære differentialligninger af 1. orden - eleven skal kunne anvende CAS til numerisk løsning af differentialligninger 1

2 Kemi: - eleven skal have en solid forståelse af kemisk ligevægt, herunder kunne hånere massevirkningsloven - eleven skal være fortrolig med kemiske reaktioners hastighed, herunder reaktionsmekanismer (uni- og bimolekylære elementarreaktioner) og katalyse - eleven skal have kendskab til elementær reaktionskinetik, og kunne opskrive hastighedsuryk - eleven kan med fordel være fortrolig med elektrokemi, specielt Nernsts lov for elektrodepotentialer Faglige mål Matematik: - eleven skal kunne bearbejde komplicerede matematiske modeller analytisk, herunder anvende fornuftige simplificeringer - eleven skal kunne anvende CAS til løsning af komplicerede matematiske problemer, herunder til brug for numerisk løsning af koblede ikke-lineære differentialligninger, samt lineær algebra (matrixregning) Kemi: - eleven skal kunne tilrettelægge og gennemføre eksperimentelt kemisk arbejde, herunder omgås kemikalier og laboratorieudstyr på forsvarlig vis samt tage højde for risikomomenter - eleven skal kunne optegne og efterbehandle eksperimentelle data, herunder analysere, vurdere og formidle - eleven skal kunne indhente information om matematiske og kemiske fagspecifikke emner fra forskellige kilder, herunder vurdere og anvende denne information Emnebeskrivelse Dette oplæg har til formål at virke som inspirationskilde til studieretningsprojekter i matematikkemi om oscillerende kemiske systemer; oplægget sigter på såvel tilrettelæggelse og udførsel af eksperimentelt kemisk arbejde som opstilling og bearbejdning af matematiske modeller og simuleringer. En problemformulering til et studieretningsprojekt af denne type kan for eksempel indeholde en eller flere af nedenstående opgavetyper - Gør rede for begrebet oscillerende reaktion. Der kan for eksempel tages udgangspunkt i iodklokken eller Belousov-Zhabotinskiis reaktion - Gør rede for begreberne autokatalyse, feedbackmekanisme og stady-state

3 - Beskriv én eller flere autokatalytiske mekanismer ved brug af matematiske modeller. Der kan tages udgangspunkt i en generel model til beskrivelse af et oscillerende kemisk system, for eksempel Lotka-Volterra mekanismen, eller der kan opstilles en matematisk model under brug af hastighedsuryk. - Analysér den matematiske model under brug af matematiske metoder, såsom lineær algebra. Alternativt kan modellen undersøges og beskrives ved brug af numeriske metoder og CAS - Tilrettelæg og gennemfør eksperimentelt arbejde med oscillerende reaktioner, for eksempel iodklokken eller Belousov-Zhabotinskiis reaktion. Hvor mange oscillationer forløber før end den stopper, og hvorfor stopper den? Til at besvare disse spørgsmål kan du gøre brug af den opstillet matematiske model - Undersøg reaktionens periodetid, og sammenhold denne med for eksempel simulatoren på Hvad afhænger periodetiden af? - Undersøge om der er en sammenhæng mellem reaktionshastigheden og reaktionsblandings temperatur ved at fremstille et passende plot (log(1/t) mod 1/T). Bestem aktiveringsenergien ved brug af regression - Kan Lotka-Volterra modellen bruges til at beskrive iodklokken? Hvorfor/hvorfor ikke? Her kan du sammenholde data fra eksperimentet med data fra simuleringer der gør brug af Lotka-Volterra ligningerne - Diskuter vigtigheden af oscillerende reaktioner i naturen. Der kan for eksempel tages udgangspunkt i glycolysen Eksempel 1: Opstilling af en simpel model En af de simpleste matematiske modeller til at beskrive et oscillerende kemisk system er den såkale Lotka-Volterra mekanisme. Der er imidlertid kun tale om en model, og i praksis findes der ingen oscillerende kemiske reaktioner, som kan beskrives med en så simpel model. Lad os betragte reaktionen A B. Forbindelsen A, reaktanten, bliver til forbindelse B, produktet. Den interessante kinetik kan udledes fra den følgende tretrinsmekanisme A + X X k 1 X + Y Y k Y B k X og Y er mellemprodukter. De tre ovenstående reaktioner kaldes elementarreaktioner; summen af de tre processer giver netop reaktionen A B. Det bemærkes at notationen A + X X ikke er ækvivalent med notationen A X ; dette hænger sammen med den underliggende reaktionskinetik: Forbindelsen A vekselvirker med forbindelsen X og danner X. Denne bimolekylære elementar-

4 reaktion er et eksempel på en autokatalytisk proces, hvilket vil sige at der må være noget af produktet X tilstede for at der kan dannes mere af dette produkt. Ved den unimolekylære elementarreaktionen Y B omdannes mellemproduktet Y til det stabile produkt B. Konstanterne k 1, k og k kaldes hastighedskonstanter. Vi er nu i stand til at opskrive hastighedsuryk for mellemprodukterne X og Y d [X] = k [A][X] [X][Y] 1 k d [Y] = k [X][Y] [Y] k Hvis vi antager [A] er konstant, dvs. [A] = [A] 0, har netop Lotka-Volterra mekanismen. Hvis vi yderligere antager d[x]/ = d[y]/ = 0, dvs. vi benytter stady-state approksimation, får vi k [A] [X] k [X][Y] = 0 og 1 0 k [X][Y] k [Y] = 0 Ligningssystems løsninger er [X] = k / k og [Y] = k1[a] 0 / k. Stady-state approksimationen udelukker altså dermed reaktionsmekanismens facilitet, nemlig mellemprodukternes oscillerende koncentrationer i tiden. Eksempel : Analytisk behandling af modellen En løsning til differentialligningssystemet d [X] = ( k [A] [Y] 1 0 k ) [X] d [Y] = ( k [X] k ) [Y] er et sæt funktioner, [X]( t ) og [ Y]( ) t, der beskriver koncentrationerne [X] og [Y] som funktion af tiden; det er imidlertid ikke muligt at bestemme eksplicitte løsninger for [X] og [Y] som funktion af tiden. Ved anvendelse af en grafisk metode er dog muligt at bestemme systemets ligevægtspunkter, dvs. hvor d[x]/ = 0 og d[y]/ = 0. Øjensynligt er der to ligevægtspunkter, nemlig ([X],[Y]) = ( 0,0) og ([X],[Y]) ( k / k, k [A] / k ) =. Vi opskriver nu Jacobi-matricen for systemet 1 0 ( ) D [X],[Y] k [A] k [Y] k [X] 1 0 = k[y] k[x] k 4

5 Ligevægtspunktet ([X], [Y])=(0, 0) Jacobi-matricen er da ( ) D 0,0 k [A] = 0 k Det karakteristiske polynomium opskrives og egenværdiernes bestemmes ( ) λ k [A] k λ k k [A] = λ = k [A], λ = k Det sluttes, idet k 1 [A] 0 > 0 og k > 0, at (0,0) er et saddelpunkt og derfor ustabilt. Ligevægtspunktet ([X], [Y])=(k /k, k 1 [A] 0 /k ) Jacobi-matricen er da k k1[a] 0 k 0 D, = k k k1[a] 0 0 Det karakteristiske polynomium opskrives og egenværdierne bestemmes + k k [A] = 0 = i k k [A], = i k k [A] λ 1 0 λ1 1 0 λ 1 0 De imaginære egenværdier hørende til ( /, [A] / ) k k k k kan ikke give os nogen information om 1 0 stabilitet. Derfor undersøges systemets fasediagram: De to linjer [Y] = k / k og [X] = k1[a] 0 / k tegnes i første kvadrant. Linjerne skære naturligvis hinanden i ( /, [A] / ) k k k k, og opdeler 1 0 således første kvadrant i fire områder. I hvert område er fortegnet for d[x]/ henholdsvis d[y]/ uændret. Hvert område undersøges separat, og man finder at løsningskurverne ([X]( t),[y]( t )) løber mod uret omkring punktet ( /, 1[A] 0 / ) ( /, [A] / ) 1 0 k k k k. Man kan vise, at k k k k er et stabilt ligevægtspunkt og enhver løsningskurve til ligningssystemet er en lukket bane. Betragt løsningskurven som graf for funktionen [Y] [Y]([X]) ( t) ( X ( t) ) [Y] = [Y] [ ] og =. Da har man specielt, at 5

6 d[y] d d d d[y] ( k[x] k )[Y] k[x] k [Y] [Y] = [Y] [X] = = = d[x] d[x] d[x] ( k1[a] 0 k[y] )[X] [X] k1[a] 0 k[y] Den separable differentialligning har den generelle løsning [X] [Y] = Ke e, k k 1[A] 0 k [X] k [Y] hvor K er en konstant. Materialer Alle referencer herunder var tilgængelige på Internettet den 1. februar 007. Iodklokken (Forsøgsvejledning til iodklokken på dansk) Oscillating Reactions Web Module (Indeholder en hel del materiale om oscillerende reaktioner på forskellige niveauer, vejledning til numerisk løsning af koblede differentialligninger med programmet Polymath). The Oscillating Clock Reaction or The Briggs-Rauscher Oscillating Reaction (Forsøgsvejledning til iodklokken på engelsk, indeholder desuden li baggrundsmateriale) Oscillating Reactions (Om oscillerende reaktioner og Lotka-Volterra ligningerne) Transient kaos i en lukket Belousov-Zhabotinsky reaktion kaspershjemmeside.dk/ruc/projekter/kaos.pdf (Baggrundsmateriale på dansk, forsøgsvejledning til Belousov-Zhabotinskiis reaktion) Heraklit i kemien (Perspektiverende læsning) Lotka-Volterra equation (Baggrundslæsning om Lotka-Volterra ligningerne) Kinetics Mechanism Simulation/Lotka-Volterra Mechanism Example Oscillating Chemical Reactions 6

7 Noter om lineære differentialligningssystemer Film/Demonstrationsforsøg H. Mygind: Kemi 000 A-niveau, p. 185 (Baggrundsmateriale om glycolysen) Edb-program til løsnings af systemer af differentialligninger Polymath: (Man kan downloade en 15-dages prøveversion) 7

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER Indledning Ved en kvantitativ kemisk analyse forstår man en tilbundsgående undersøgelse af et kemisk

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2005 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET

DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 2003 AARHUS UNIVERSITET H.A. NIELSEN INDHOLD. Lineær ligning 2 2. Lineært system 8 3. Generel ligning 6 4. Stabilitet 8 Litteratur 2 Noterne er til 4 timers forelæsninger

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2012 ZBC Ringsted

Læs mere

Reaktionskinetik

Reaktionskinetik [PJ] Kemi.dfw Reaktionskinetik Kemi A-niveau Vi starter med at repetere siderne 38-4 i Kemi Nulte ordens kemisk reaktion Det kunne fx være den enzymkatalyseret proces: A + E -> B + E Vi følger hvordan

Læs mere

Baggrundsmateriale til Minigame 7 side 1 A + B C + D

Baggrundsmateriale til Minigame 7 side 1 A + B C + D Baggrundsmateriale til Minigame 7 side 1 Indhold Kernestof... 1 Supplerende stof... 1 1. Differentialligninger (Baggrundsmateriale til Minigame 3)... 1 2. Reaktionsorden (Nulte-, første- og andenordensreaktioner)...

Læs mere

Undervisningsbeskrivelse for STX 2m Kemi B

Undervisningsbeskrivelse for STX 2m Kemi B Undervisningsbeskrivelse for STX 2m Kemi B Termin Afslutning i juni skoleår 13/14 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Kemi A valgfag Hasse Bonde Rasmussen 3gKE Denne

Læs mere

er en n n-matrix af funktioner

er en n n-matrix af funktioner Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet

Læs mere

Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr

Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr 8. april 2007 Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr Skrevet af Flóvin Tór Nygaard Næs og Lise Danelund Introduktion

Læs mere

2. del. Reaktionskinetik

2. del. Reaktionskinetik 2. del. Reaktionskinetik Kapitel 10. Matematisk beskrivelse af reaktionshastighed 10.1. Reaktionshastighed En kemisk reaktions hastighed kan afhænge af flere forskellige faktorer, hvoraf de vigtigste er!

Læs mere

Klavs Thormod og Tina Haahr Andersen

Klavs Thormod og Tina Haahr Andersen Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin december 2013 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg gsk

Læs mere

Rikke Lund, 3.f Studieretningsprojekt 21/ Reaktionskinetik

Rikke Lund, 3.f Studieretningsprojekt 21/ Reaktionskinetik Rikke Lund,.f Studieretningsprojekt / Abstract Reaktionskinetik This paper examines the subject reaction kinetics and the factors that can affect the speed of the reaction. We investigate how the reaction

Læs mere

SRP Mat A Kemi B Reaktionskinetik Gülcicek Sacma, 3.x 20. december 2012

SRP Mat A Kemi B Reaktionskinetik Gülcicek Sacma, 3.x 20. december 2012 Gülcicek Sacma, 3.x 20. december 202 Indhold Abstract... 2 Indledning:... 3 Hvad er en differentialligning?... 4 Bevis for løsningsmetoden separation af variable.... 5 Reaktionshastighed... 7 Faktorer,

Læs mere

Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Stamoplysninger til brug ved prøver til gymnasiale uddannelser Studieretningsplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj 2013 Teknisk Gymnasium

Læs mere

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Axel Hunding Spontan dannelse af komplekse strukturer i biologien kan synes at stride mod sund fornuft (og

Læs mere

Klavs Thormod og Tina Haahr Andersen

Klavs Thormod og Tina Haahr Andersen Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin dec 2012 Institution Uddannelse Fag og niveau Lærer(e) Hold VUF - Voksenuddannelsescenter Frederiksberg gsk

Læs mere

Klavs Thormod og Tina Haahr Andersen

Klavs Thormod og Tina Haahr Andersen Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2013 Institution Uddannelse Fag og niveau Lærer(e) Hold VUF - Voksenuddannelsescenter Frederiksberg gsk

Læs mere

Reaktionsmekanisme: 3Br 2 + 3H 2 O. 5Br - + BrO 3 - + 6H + Usandsynligt at alle 12 reaktantpartikler støder sammen samtidig. ca.

Reaktionsmekanisme: 3Br 2 + 3H 2 O. 5Br - + BrO 3 - + 6H + Usandsynligt at alle 12 reaktantpartikler støder sammen samtidig. ca. Reaktionsmekanisme: 5Br - + BrO 3 - + 6H + 3Br 2 + 3H 2 O Usandsynligt at alle 12 reaktantpartikler støder sammen samtidig ca. 10 23 partikler Reaktionen foregår i flere trin Eksperimentel erfaring: Max.

Læs mere

Koblede differentialligninger.

Koblede differentialligninger. 2. 3. 4. Koblede differentialligninger. En udvidelse af Newtons afkølingslov løst numerisk ved hjælp af integralkurver. Sidste gang så vi på, hvordan vi kunne opstille og løse en model for afkølingen af

Læs mere

2) foretage beregninger i sammenhæng med det naturfaglige arbejde, 4) arbejde sikkerhedsmæssigt korrekt med udstyr og kemikalier,

2) foretage beregninger i sammenhæng med det naturfaglige arbejde, 4) arbejde sikkerhedsmæssigt korrekt med udstyr og kemikalier, Formål Faget skal give eleverne indsigt i det naturfaglige grundlag for teknik, teknologi og sundhed, som relaterer sig til et erhvervsuddannelsesområde. For niveau E gælder endvidere, at faget skal bidrage

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-Juni 2017 Hansenberg

Læs mere

Temaøvelse i differentialligninger Biokemiske Svingninger

Temaøvelse i differentialligninger Biokemiske Svingninger Temaøvelse i differentialligninger Biokemiske Svingninger Rev. 12. november 2009 I denne temaøvelse studerer vi en simpel model for gærglykolyse. Vi starter i Del 1 med at beskrive modellen. Denne model

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2011 KTG -

Læs mere

Undervisningsbeskrivelse for STX 1m Kemi B

Undervisningsbeskrivelse for STX 1m Kemi B Undervisningsbeskrivelse for STX 1m Kemi B Termin Afslutning i juni skoleår 12/13 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Kemi B Hasse Bonde Rasmussen 2mKe Denne undervisningsbeskrivelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes: Juni 2014 Institution Københavns Tekniske Gymnasium, Sukkertoppen Uddannelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 11/12 Eksamen juni 2012 Institution HTX Skjern Uddannelse Fag og niveau Lærer(e) Hold Htx Kemi A

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin SOM 2014 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold HF/HFe Kemi B Niels Johansson NkeB114

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin VIN 2014 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold HF/HFe Kemi B Niels Johansson NkeB114V

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hfe Kemi B Dorte Ramlov KeBu Oversigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes: maj-juni 2013. Her efterår 2011 og forår 2012 Institution Københavns

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Termin hvori undervisningen afsluttes: Juni 2013 Institution Københavns Tekniske Gymnasium, Sukkertoppen Uddannelse

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Stabilitet af kølet tankreaktor

Stabilitet af kølet tankreaktor Stabilitet af kølet tankreaktor Vi betragter en velomrørt tankreaktor, i hvilken den exoterme reaktion B skal gennemføres. Tankreaktorens volumen er V m 3 ), og reaktanten tilføres i en opløsning med den

Læs mere

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014 Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

BASE. Besvarelse til individuel skriftlig test

BASE. Besvarelse til individuel skriftlig test BASE Besvarelse til individuel skriftlig test Tirsdag d. 21. marts 2006 Tinne Hoff Kjeldsen Bitten Plesner 1 Opgave 1 Vandet i en pool med et volumen på 10.000 gallon indeholder 0,01% klor. Til tiden t

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 06/17 Institution Hansenberg Gymnasium Uddannelse Fag og niveau Lærer(e) Hold Htx Kemi B Vincenzo Enzo lillo

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5

Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Eulers metode Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus

Læs mere

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3 Det Teknisk-Naturvidenskabelige Basisår 2003-2004 Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik 1 Introduktion E-OPG 3 Dette er den tredje store opgave, som skal danne grundlag

Læs mere

Diffusionsbegrænset reaktionskinetik

Diffusionsbegrænset reaktionskinetik Diffusionsbegrænset reaktionskinetik Bimolekylære reaktioner Ved en bimolekylær elementarreaktion afhænger hastigheden såvel af den hyppighed (frekvens), hvormed reaktantmolekylerne kolliderer, som af

Læs mere

Matematisk modellering og numeriske metoder. Lektion 6

Matematisk modellering og numeriske metoder. Lektion 6 Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Vestegnens HF & VUC HF/HFe Kemi C B Peter Ingvardsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Marts.-Maj., 2015 Institution KVUC Uddannelse GSK Fag og niveau Kemi B Lærer(e) Jørgen Holm og Lars Jørgen Buch Laursen Hold g1keb215 Oversigt over gennemførte undervisningsforløb

Læs mere

Bedømmelseskriterier Naturfag

Bedømmelseskriterier Naturfag Bedømmelseskriterier Naturfag Grundforløb 2 rettet mod social- og sundhedsuddannelsen Social- og sundhedsassistentuddannelsen NATURFAG NIVEAU E... 2 NATURFAG NIVEAU C... 5 Gældende for prøver afholdt på

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Termin hvori undervisningen afsluttes: Maj-juni 11 Københavns tekniske

Læs mere

Opholdstidsfordeling i Kemiske Reaktorer

Opholdstidsfordeling i Kemiske Reaktorer Opholdstidsfordeling i Kemiske Reaktorer Køreplan 01005 Matematik 1 - FORÅR 2005 Introduktion Strømningsmønsteret i kemiske reaktorer modelleres ofte gennem to ydertilfælde, Ideal stempelstrømning, hvor

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Undervisningsbeskrivelse for STX 2m Kemi B

Undervisningsbeskrivelse for STX 2m Kemi B Undervisningsbeskrivelse for STX 2m Kemi B Termin Afslutning i juni skoleår 16/17 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Kemi B Hasse Bonde Rasmussen 2mKe Denne undervisningsbeskrivelse

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 13 - juni 15 Institution Københavns tekniske Skole - Vibenhus Uddannelse Fag og niveau Lærer(e) Htx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Uddannelse Fag og niveau Lærer(e) Vestegnens HF & VUC HFe Kemi C B Eva Egeberg Hold

Læs mere

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7. Oversigt [S] 7., 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus - 2006 Uge

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2013 KTS Sukkertoppen

Læs mere

Fra spild til penge brug enzymer

Fra spild til penge brug enzymer Fra spild til penge brug enzymer Køreplan 01005 Matematik 1 - FORÅR 2010 Denne projektplan er udarbejdet af Per Karlsson og Kim Knudsen, DTU Matematik, i samarbejde med Jørgen Risum, DTU Food. 1 Introduktion

Læs mere

Side 1 af 7. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin. Maj 2014. Skive Tekniske Gymnasium

Side 1 af 7. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin. Maj 2014. Skive Tekniske Gymnasium Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj 2014 Skive Tekniske Gymnasium HTX Kemi B Trine Rønfeldt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Kemi B (stx bekendtgørelse)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 09 Institution Københavns Tekniske Skole, Sukkertoppen Uddannelse Fag og niveau Lærer(e) Hold Htx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Termin hvori undervisningen afsluttes: maj-juni 2009 Marie Kruses Skole stx Fag og

Læs mere

KemiF2 laboratorieøvelser 2008 Øvelse 3 v.1.4 HOMOGEN KATALYSE. Indledning

KemiF2 laboratorieøvelser 2008 Øvelse 3 v.1.4 HOMOGEN KATALYSE. Indledning KemiF2 laboratorieøvelser 2008 Øvelse 3 v.1.4 HOMOGEN KATALYSE Indledning Overalt i kemi, biokemi og miljøkemi støder man på kinetiske problemer. Selvom en reaktion sagtens kan forløbe ud fra en termodynamisk

Læs mere

Naturfag. Bekendtgørelse gældende fra 1.august 2002 1

Naturfag. Bekendtgørelse gældende fra 1.august 2002 1 Gymnasiebekendtgørelsen Bilag 25 NATURFAG April 2002 1. Identitet og formål 1.1 Naturfags centrale opgave er at behandle omverdensfænomener, der kan beskrives ved hjælp af fysik, kemi og matematik. Da

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Matematisk modellering og numeriske metoder. Lektion 4

Matematisk modellering og numeriske metoder. Lektion 4 Matematisk modellering og numeriske metoder Lektion 4 Morten Grud Rasmussen 17. september, 013 1 Homogene andenordens lineære ODE er [Bogens afsnit.1] 1.1 Linearitetsprincippet Vi så sidste gang, at førsteordens

Læs mere

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider.

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider. Side 1 af 7 Indhold Rapportering rapportskrivning... 1 Løsning af fysikfaglige problemer opgaveregning.... 2 Formidling af fysikfaglig indsigt i form at tekster, præsentationer og lignende... 4 Projektrapporter...

Læs mere

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB

STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU. Onsdag den 13. august 2008. Kl. 09.00 13.00 STX082-MAB STUDENTEREKSAMEN AUGUST 2008 MATEMATIK B-NIVEAU Onsdag den 13 august 2008 Kl 0900 1300 STX082-MAB Opgavesættet er delt i to dele Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Termin hvori undervisningen afsluttes: maj-juni 2011 Københavns Tekniske

Læs mere

Skriftlig eksamen i Kemi F2 (Fysisk kemi)

Skriftlig eksamen i Kemi F2 (Fysisk kemi) Skriftlig eksamen i Kemi F2 (Fysisk kemi) Tirsdag d. 7 April 2009 Læs først denne vejledning! Du får udleveret to eksemplarer af dette opgavesæt. Kontroller først, at begge hæfter virkelig indeholder 9

Læs mere

Projekt: Logistisk vækst med/uden høst

Projekt: Logistisk vækst med/uden høst Projekt: Logistisk vækst med/uden høst I dette projekt skal vi arbejde med differentialligninger, specielt med logistisk vækst og med en udvidelse, hvor der indgår høst. Den eksponentielle vækst (type:

Læs mere

Spørgsmål 1 Kemisk ligevægt

Spørgsmål 1 Kemisk ligevægt Spørgsmål 1 Kemisk ligevægt Du skal redegøre for den teori der ligger op til forståelsen af eksperimentet Indgreb i et ligevægtssystem. Du skal som minimum inddrage begreberne: Reversibel og irreversibel

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2010 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 12 Institution Københavns Tekniske Skole, Sukkertoppen Uddannelse Fag og niveau Lærer(e) Hold Htx

Læs mere

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Noter til kemi A-niveau

Noter til kemi A-niveau Noter til kemi A-niveau Grundlæggende kemi til opgaveregning 2.0 Af Martin Sparre INDHOLD 2 Indhold 1 Kemiske ligevægte 3 1.1 En simpel kemisk ligevægt.................... 3 1.2 Forskydning af ligevægte.....................

Læs mere

Belousov-Zhabotinsky-reaktionen og FKN-mekanismen

Belousov-Zhabotinsky-reaktionen og FKN-mekanismen Belousov-Zhabotinsky-reaktionen og FKN-mekanismen af Astrid Helmer Svendsen, Frederiks Storm Mahler, Houssein Ali Elsalhi, Kasper Alexander Brauner Hansen, Phillip Alexander Thorsted, Preben Ladefoged

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 Juni 2016 Institution Hansenberg Gymnasium Uddannelse Fag og niveau Lærer(e) Hold Htx Bioteknologi

Læs mere

Undervisningsbeskrivelse for STX 1m Kemi B

Undervisningsbeskrivelse for STX 1m Kemi B Undervisningsbeskrivelse for STX 1m Kemi B Termin Afslutning i juni skoleår 15/16 Institution Uddannelse Fag og niveau Lærer(e) Hold Marie Kruses Skole STX Kemi B Hasse Bonde Rasmussen 2mKe Denne undervisningsbeskrivelse

Læs mere

Eksaminationsgrundlag for selvstuderende udgives ikke på institutionens hjemmeside.

Eksaminationsgrundlag for selvstuderende udgives ikke på institutionens hjemmeside. Undervisningsbeskrivelser Hvert lærerteam og lærer skal ved afslutningen af grundforløb/skoleår/kursistår/kursusår udarbejde en undervisningsbeskrivelse. For hvert større undervisningsforløb skal følgende

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN MAJ AUGUST 2007 2011 MATEMATIK A-NIVEAU-Net torsdag 11. august 2011 Kl. 09.00 14.00 frs112-matn/a-11082011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret formelsamling

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 10/11 Institution Herningsholm Gymnasium, Lillelund vej 21, 7400 Herning Uddannelse Fag og niveau

Læs mere

Eksaminationsgrundlag for selvstuderende udgives ikke på institutionens hjemmeside.

Eksaminationsgrundlag for selvstuderende udgives ikke på institutionens hjemmeside. Undervisningsbeskrivelser Hvert lærerteam og lærer skal ved afslutningen af grundforløb/skoleår/kursistår/kursusår udarbejde en undervisningsbeskrivelse. For hvert større undervisningsforløb skal følgende

Læs mere

Differential- ligninger

Differential- ligninger Differential- ligninger Et oplæg 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der kan gennemgås før man går i gang med en lærebogs fremstilling af emnet differentialligninger Læreren skal

Læs mere

Workshop i differentialligninger

Workshop i differentialligninger Workshop i differentialligninger Indholdsfortegnelse Eksempler på eksamensopgaver side 1 Opgave 1 7: side 1 Projekter: side 3 8. Isokliner side 3 9. Logistisk vækst med jagt/fiskeri side 4 10. Romeo og

Læs mere