Ugeseddel 12( )

Størrelse: px
Starte visningen fra side:

Download "Ugeseddel 12(10.12 14.12)"

Transkript

1 Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen med detaljerede eksempler på hvordan Gomory cuts og branch and bound indarbejdes i simplex tableauet. Der er kun opgaver på ugesedlen og de er alle regneopgaver. Det er vigtigt at du får metoderne indarbejdet ved at læse denne ugeseddel grundigt og regne opgaverne. Gomory cuts og branch and bound er beskrevet i ILO, men det er ikke beskrevet hvordan man konkret arbejder med simplex tableauet. På mandag vil den obligatoriske opgave blive gennemgået og vi vil regne på flere heltalsprogrammer. Vi har nu afsluttet gennemgangen af pensum. Heltalsprogrammer Et heltalsprogram er et lineært program, hvor vi forlanger heltalsløsninger: min cx givet Ax = b, ( ) x N n, hvor c er en reel n vektor, A en n m matrix med heltalsindgange og b er en m vektor med heltalsindgange. Læg mærke til at N betegner mængden {,,,... } af ikke-negative heltal. Vi kan stadigvæk benytte alle de gængse tricks med at tilføje slack variable dvs. heltalsprogrammer som f.eks. min cx givet Ax b, x N n, kan omformes til ( ), når blot A og b indeholder heltal. Det er tid til et helt konkret eksempel. E. Gomory

2 EKSEMPEL max x + y 7 ( ) x y 9, ( ) x N. y På tegningen nedenfor er det brugbare område (som nu er endeligt!!) skitseret med punkter. Du kan samtidig se at det tilsvarende lineære program ikke giver et heltalsoptimum. Metoderne vi skal beskrive til at løse heltalsprogrammet ( ) gør begge brug af den såkaldte LP-relaksation (med et godt dansk ord!): Man dropper betingelsen x N n og erstatter den med et almindeligt lineært program x. Hvis dette lineære program kommer ud med en heltalsløsning, så har vi fundet den optimale løsning til ( ). Overvej lige hvorfor! Gomory cuts Vi vil gerne indføre nogle flere betingelser for at skære uønskede ikke heltalsløsninger væk. Ideen er at vi til sidst får fat i et heltalshjørne som er

3 optimalt i det lineære program. Gomory cuts er en dejlig måde at indføre flere bibetingelser i et lineært program uden at ændre på løsningerne i det tilsvarende heltalsprogram. Ideen er egentlig ganske enkel. Vi løser LP-relaksationen til ( ). Hvis den optimale løsning er heltallig er det fint. Hvis ikke findes en koordinat som ikke er et heltal. Antag nu at x x x =. Nn x n er en brugbar løsning til ( ) og at vi har fundet et optimalt sæt B af basissøjler i A for LP-relaksationen til ( ) f.eks. ved brug af simplex algoritmen. Så gælder Ax = b = (B A)x = B b, hvor det bemærkes at B A er søjlerne,...,n i simplex tableauet T og B b er koordinaterne til den optimale løsning dvs. den -te søjle i simplex tableauet. Antag at den i-te koordinat (dvs. den med index i) i den -te søjle, T i, ikke er et heltal dvs. T i < T i, hvor a angiver det største heltal mindre end et tal a. Hvis N betegner indices på søjler uden for basen B, så medfører x i + j N T ij x j = T i. at x i + j N T ij x j T i, () idet alle x k, k =,..., n specielt er heltal. Nu er den fantastiske indsigt at den optimale løsning t R n til LP-relaksationen givet ved B ikke opfylder (). Bemærk nemlig at t j = for j N samt at t i = T i. Men hvis t skal opfylde () må t i t i. Det er kun heltal som opfylder sidstnævnte ulighed.

4 Gomory cuts i simplex tableauet Vi kan addere () som en ny ulighed i vores LP-relaksation. Det er beskrevet i ILO. ( A new inequality constraint is added ) hvordan det gøres i praksis. Lad os kort opfriske det inden vi gennemgår et eksempel. Antag vi har at gøre med det lineære program min cx, Ax = b, x. Her er A en m n matrix, c en n vektor, x en n vektor og b en m vektor. Antag at vi ønsker at tilføje uligheden ax b, hvor a er en n vektor og b et tal. Den ny ulighed bliver til ax + s = b med slack variabel s. Dette giver det ny lineære program min cx givet ( ) ( )( ) ( ) A x b = a s b, x, s. Med en brugbar basisløsning B til det oprindelige problem kan vi hurtigt få en basisløsning i det ny program ( ) ved at sætte ( ) B B = a, hvor a er et udsnit af a svarende til søjlerne i B. Med denne basisløsning bliver tableauet for ( ) hvor B A = ( ) B a A = ( ) ( B a B A = A = ( ) A. a B A a B A + a Læg mærke til at den reducerede cost række bliver ( ) (c, ) (c B, )B A B = c (c B, ) A a B = (c c A + a B B A, ). Slutteligt bliver -te søjle i det ny tableau ( ) ( ) ( B b a B b = B b a B b + b ). ),

5 I praksis udvider man ganske enkelt simplex tableauet B A (som man allerede har regnet ud) med den ekstra ligning ax + s = b. Hvis vi vedtager at den ny basis består af den gamle basis samt den ny slack variabel kan vi hurtigt lave rækkeoperationer for at omforme tableauet for det ny problem. Faktisk modsvarer udtrykket a B A + a ovenfor de elementære rækkeoperationer man skal omforme sidste række (a, ) med for at få under -tallerne i den gamle basis. Men læg mærke til at dette ny tableau som hovedregel giver en ikkebrugbar løsning for det primale problem. Her må man benytte den duale simplex metode (. i ILO). Hvorfor er brugbarhed for det duale problem bevaret? OPGAVE Gomory uligheden i () bliver til ligningen x i + j N T ij x j + s = T i og i dette tilfælde er det meget nemt at få fat på det ny tableau for ( ). Eftervis at den sidste række i det ny tableau bliver (skrevet op som en ligning) {T ij }x j + s = {T i }, j N hvor {a} = a a for et tal a. Når du har indføjet et Gomory cut og udregnet det ny tableau som ovenfor benyttes den duale simplex metode til at regne sig frem til et nyt optimum (. i ILO). Her er et eksempel. EKSEMPEL Betragt problemet max y x + y (!) x + y x, y N.

6 Dette kan tegnes som Det er klart at optimum ligger i (, ). Men vi vil benytte dette nemme eksempel til at illustrere Gomory cuts. Vi omdøber x til x og y til x og indfører slack variablene x og x. Dette giver os følgende tableau for det lineære program i (!) (vi har udskiftet x, y N med x som i almindelig lineær programmering med reelle løsninger). Lad os pivotere i fællesskab: Anden pivotering giver det optimale tableau

7 Anden koordinaten er ikke et heltal og vi kigger nærmere på anden række. I vores tableau svarer den til x + x + x =. Dette giver anledning til et Gomory cut: x. Læg mærke til at denne ekstra betingelse faktisk fjerner ovenstående optimale løsning til vores LP-relaksation i og med at ikke er. Som beskrevet indsættes cuttet i et udvidet tableau. Ved en elementær rækkeoperation fås Læg grundigt mærke til at vi har et dualt brugbart tableau (alle indgange i den reducerede cost vektor er ), men at x = ødelægger primal brugbarhed. Vi bruger den duale simplex algoritme og jeg har angivet hvor jeg vil pivotere ovenfor. I den duale simplex algoritme maksimerer man c j /T ij over de negative T ij i i-te række. I den primale algoritme minimerer man T i /T ij over de positive T ij i j-te søjle. Efter ovenstående pivotering fås det optimale tableau 7

8 Her får vi et Gomory cut ud fra første række på x x, som indsættes som Efter en elementær rækkeoperation: Vi pivoterer en gang i den duale simplex algoritme og ser at vi får den længe ventede optimale løsning (, ). Der er ikke behov for flere Gomory cuts, da vi har fundet en heltalsløsning. 8

9 OPGAVE Løs heltalsprogrammet max x + x x + x +x = x, x, x, x, x N. x + x +x = x +x +x = ved hjælp af Gomory cuts. Illustrer med en tegning. Branch and bound I har allerede stødt på denne teknik i jeres obligatoriske opgave. Kort fortalt har vi (som beskrevet i ILO) at gøre med et optimeringsproblem min cx, (+) x F hvor F bare er en delmængde af R n. Branch and bound er en begavet måde at løse dette optimeringsproblem på ved at undersøge problemerne for delmængder F i F med min cx, x F i F = F F m. Den optimale løsning til (+) skal findes i et af disse delproblemer. Antag samtidig at vi hurtigt kan udregne en nedre grænse b(f i ) min x F i cx, for hvert delproblem. Så kan vi i ro og mag gennemløbe listen af delproblemer for F,...,F m. Men vi kan gøre det smart ved at benytte funktionen b. Lad U være den optimale værdi, som vi har fundet ved at løse delproblemerne givet ved F,...,F k (i starten er U = ). Hvis b(f k+ ) U kan det ikke betale sig at løse problemet for F k+ og vi har sparet værdifuld regnetid. Dette er i al sin enkelthed princippet bag branch and bound. Men lad os se på et eksempel. 9

10 EKSEMPEL Betragt igen problemet max y x + y x + y (=) x, y N. LP-relaksationen har det optimale tableau (x = x, x = y med slack variable x, x tilføjet) Igen er x = ikke heltallig. Men vi har øvre grænse på for vores maksimum (eller en nedre grænse på for det tilsvarende minimumsproblem vi er i gang med at løse). Helt naivt gælder at den brugbare mængde i (=) kan opdeles i to disjunkte mængder, hvor x eller x dvs. vi har de to delproblemer samt max x x + x x + x x, x N. x max x x + x x + x x, x N. x Et af disse to delproblemer indeholder den optimale løsning til (=). Bemærk samtidig at vi har skåret den uønskede x = væk i ovenstående to problemer. Lad os prøve at sætte x ind i sidste række i vores optimale

11 tableau. Efter en elementær rækkeoperation fås Sidste række afslører et lineært program uden brugbare løsninger. Vi kan derfor undlade at gå videre med x og ser i stedet for på x : Ligesom i Gomory cut eksemplet sætter vi betingelsen x ind i simplex tableauet og når frem til det optimale tableau igen efter en iteration i den duale simplex algoritme. Her giver x = de to delproblemer x og x. Lad os studere delproblemet givet ved

12 x : max x x + x x + x x, x N. x x Dette giver tableauet som efter en elementærækkeoperation bliver til som efter pivotering giver det optimale tableau Dette tableau giver heltalsløsningen x = samt x =, som har har cost. Læg mærke til at vi først nu har fundet en brugbar heltalsløsning til et

13 delproblem. Dette delproblem er max x x + x x + x x x x, x N. og vi sætter U =. Men husk på at vi stadig har delproblemet max x x + x x + x x x x, x N. Men dette delproblem har klart optimal løsning (, ). Lad os se på endnu et eksempel (fra ILO), hvor alle udregninger er vist. EKSEMPEL min x x ( ) x x x N. x x x x x ( ) 9 =, ( )

14 Vi opstiller straks tableauet for LP-relaksationen og begynder at regne. 9 7 Altså har LP-relaksationen en ikke-heltallig optimal løsning med x = og x = med et minimum på 7, som også er en nedre grænse for minimum i ( ). Men vi er interesserede i heltalsløsninger! En heltalsløsning har selvfølgelig x eller x. Disse to uligheder kommer fra x = i LP-relaksationen. Vi ønsker ikke denne løsning i vores heltalsprogram og udelukker den med de to uligheder. Lad os begynde med at indsætte x i vores optimale simplex tableau ovenfor. Her fås 7 Ved en elementær rækkeoperation fås 7

15 og det ses at tilføjelsen x ikke har nogle løsninger. Så vi koncentrerer os om x og tilføjer den til tableauet: 7 Ved en elementær rækkeoperation fås 7 Efter den markerede duale pivotering fås det optimale tableau med x = og x =. Svarende til sidstnævnte kan vi opdele problemet i x samt x. Lad os se på x. Denne giver:

16 Efter en elementær rækkeoperation fås Efter den markerede duale pivotering fås det optimale tableau og her har vi en heltalsløsning med x =, x = med cost. Derfor sætter vi U = og fortsætter med tilfældet x : Efter en elementær rækkeoperation fås

17 Efter den markerede duale pivotering fås det optimale tableau Vi ser at den optimale løsning til LP-relaksationen har x = og x = med en cost på. Denne løsning er ikke heltallig. Men læg nu mærke til den helt centrale observation: Vi behøver ikke gå videre med delproblemerne x og x, idet vi allerede har en optimal løsning med cost U = i et delproblem. De delproblemer som fremkommer ud af x og x vil nemlig altid have cost. Overvej lige hvorfor! Så vi har fundet den optimale løsning (,,, ) til vores heltalsprogram i ( ). OPGAVE Løs heltalsprogrammet max x + x x +x +x = 9 x, x, x, x N. ved hjælp af branch and bound. x +x +x = 7

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer. LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 2 Juni 2008, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Chapter 7: Transport-, assignment- & transshipmentproblemer

Chapter 7: Transport-, assignment- & transshipmentproblemer Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

4. Simplexmetoden. Basisløsning. x Geometrisk hovedindhold

4. Simplexmetoden. Basisløsning. x Geometrisk hovedindhold 4.1. Geometrisk hovedindhold 4. Simplexmetoden 4.1. Geometrisk hovedindhold 4.2. Opstart 4.3. Algebraisk form 4.4. Tableauform 4.5. Løse ender 4.6. Kunstige variabler og tofasemetoden 4.7. Postoptimale

Læs mere

Samtlige 3 problemtyper tilhører klassen 8/>A9<5 069A :<9,6/7=.

Samtlige 3 problemtyper tilhører klassen 8/>A9<5 069A :<9,6/7=. Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

Operationsanalyse 1 Obligatorisk opgave 2

Operationsanalyse 1 Obligatorisk opgave 2 Operationsanalyse Obligatorisk opgave Anders Bongo Bjerg Pedersen. juni Opgave (i) Vi tilføjer først slack-variable til (P ): Minimize Z = x + x + x subject to x + x + x x 4 = x x + x x 5 = x + x x x =

Læs mere

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 11 Lineær optimering Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 46, 2010 Formålet med MASO Oversigt 1 Generelle lineære programmer 2 Definition Et generelt lineært

Læs mere

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative Chapter 5: Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen ì alle

Læs mere

Noter til kursusgang 8, IMAT og IMATØ

Noter til kursusgang 8, IMAT og IMATØ Noter til kursusgang 8, IMAT og IMATØ matematik og matematik-økonomi studierne 1. basissemester Esben Høg 25. oktober 2013 Institut for Matematiske Fag Aalborg Universitet Esben Høg Noter til kursusgang

Læs mere

Simplex metoden til løsning af LP

Simplex metoden til løsning af LP Chapter : Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen Ÿ alle

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Chapter 6: Følsomhedsanalyse og dualitet i LP

Chapter 6: Følsomhedsanalyse og dualitet i LP Chapter 6: Følsomhedsanalyse og dualitet i LP ) Følsomhedsanalyse -> kriteriekoeffricienter -> RHSs ) Dualitet -> økonomisk fortolkning af dualvariable -> anvendelse af dual løsning til identifikation

Læs mere

Note om interior point metoder

Note om interior point metoder MØK 2016, Operationsanalyse Interior point algoritmer, side 1 Note om interior point metoder Som det er nævnt i bogen, var simplex-metoden til løsning af LP-algoritmer nærmest enerådende i de første 50

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense June 10, 2017 Marco Chiarandini DM559/DM545 Linear and integer programming Sheet 12, Spring 2017 [pdf format] The following

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Optimering af New Zealands økonomi. Gruppe G3-115

Optimering af New Zealands økonomi. Gruppe G3-115 Optimering af New Zealands økonomi Gruppe G3-115 Det Teknisk-Naturvidenskabelige Fakultet Matematik og Matematik-Økonomi Frederik bajersvej 7G Telefon 99409940 http://math.aau.dk Titel: Tema: Optimering

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Aflevering 4: Mindste kvadraters metode

Aflevering 4: Mindste kvadraters metode Aflevering 4: Mindste kvadraters metode Daniel Østergaard Andreasen December 2, 2011 Abstract Da meget få havde løst afleveringsopgave 4, giver jeg har en mulig (men meget udførlig) løsning af opgaven.

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Kapitel 9. Optimering i Microsoft Excel 97/2000

Kapitel 9. Optimering i Microsoft Excel 97/2000 Kapitel 9 Optimering i Microsoft Excel 97/2000 9.1 Indledning... 164 9.2 Numerisk løsning af ligninger... 164 9.3 Optimering under bibetingelser... 164 9.4 Modelformulering... 165 9.5 Gode råd ommodellering...

Læs mere

Videregående Algoritmik. Version med vejledende løsninger indsat!

Videregående Algoritmik. Version med vejledende løsninger indsat! Videregående Algoritmik DIKU, timers skriftlig eksamen, 1. april 009 Nils Andersen og Pawel Winter Alle hjælpemidler må benyttes, dog ikke lommeregner, computer eller mobiltelefon. Opgavesættet består

Læs mere

Optimering i Moderne Portefølje Teori

Optimering i Moderne Portefølje Teori Aalborg universitet P3-3. semestersprojekt Optimering i Moderne Portefølje Teori 15. december 2011 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optimering - Lineær programmering - Moderne Portefølje Teori PROJEKT

Læs mere

Tirsdag 12. december David Pisinger

Tirsdag 12. december David Pisinger Videregående Algoritmik, DIKU 2006/07 Tirsdag 12. december David Pisinger Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P = {L : L genkendes af en algoritme

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

DM559/DM545 Linear and integer programming

DM559/DM545 Linear and integer programming Department of Mathematics and Computer Science University of Southern Denmark, Odense June 10, 2017 Marco Chiarandini DM559/DM545 Linear and integer programming Sheet 12, Spring 2017 [pdf format] The following

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Operationsanalyse. Hans Keiding

Operationsanalyse. Hans Keiding Operationsanalyse Hans Keiding Forord 7 Kapitel 1. Hvad er Operationsanalyse? 9 1. Indledning 9 2. Operationsanalysens historie 10 3. Operationsanalytiske problemer og metode 10 4. Litteratur 12 Kapitel

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. DATALOGI V - Introduktion til Scientific Computing. Ugeseddel 3

Københavns Universitet, Det naturvidenskabelige Fakultet. DATALOGI V - Introduktion til Scientific Computing. Ugeseddel 3 Københavns Universitet, Det naturvidenskabelige Fakultet DATALOGI V - Introduktion til Scientific Computing Ugeseddel 3 Meddelelser: Bemærk venligst, at jeg den 23/2 starter med at forelæse over ca. 25

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

G r u p p e G

G r u p p e G M a t e m a t i s k o p t i m e r i n g ( E k s t r e m a, t e o r i o g p r a k s i s ) P 3 p r o j e k t G r u p p e G 3-1 1 7 V e j l e d e r : N i k o l a j H e s s - N i e l s e n 1 4. d e c e m b

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Skriftlig Eksamen Diskret Matematik (DM528)

Skriftlig Eksamen Diskret Matematik (DM528) Skriftlig Eksamen Diskret Matematik (DM528) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den 20 Januar 2009, kl. 9 13 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug

Læs mere

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed

Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Approximations-algoritmer Sidste gang Motivation Definitioner Approximations-algoritme for knudeoverdækning Approximations-algoritme for TSP med trekantsulighed Negativt resultat om generel TSP Approximations-algoritme

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

De fire elementers kostbare spejl

De fire elementers kostbare spejl Projekt.6 Lineær algebra moderne og klassisk kinesisk De fire elementers kostbare spejl "Som bekendt anses matematikken for at være en meget vigtig videnskab. Denne bog om matematik vil derfor være af

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Matematisk induktion

Matematisk induktion Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

Noter til kursusgang 9, IMAT og IMATØ

Noter til kursusgang 9, IMAT og IMATØ Noter til kursusgang 9, IMAT og IMATØ matematik og matematik-økonomi studierne 1. basissemester Esben Høg 4. november 013 Institut for Matematiske Fag Aalborg Universitet Esben Høg Noter til kursusgang

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Her er der en kort introduktion til forskellige teknikker efterfulgt af opgaver hvor man kan

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK 2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Hvede Byg Rug Roer Kløver 3500 2000 2500 4000 1000

Hvede Byg Rug Roer Kløver 3500 2000 2500 4000 1000 Opgave En landmand dyrker et areal på 35 ha. Af disse er højst 80 ha. egnede til dyrkning af hvede; 00 ha. til byg; 75 ha. til rug; 90 ha. til roer og 45 ha. til kløver. På grund af begrænset maskinkapacitet

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

3D-grafik Karsten Juul

3D-grafik Karsten Juul 3D-grafik 2005 Karsten Juul Når der i disse noter står at du skal få tegnet en figur, så er det meningen at du skal få tegnet den ved at taste tildelinger i Mathcad-dokumentet RumFig2 Det er selvfølgelig

Læs mere

dpersp Uge 40 - Øvelser Internetalgoritmer

dpersp Uge 40 - Øvelser Internetalgoritmer Øvelse 1 dpersp Uge 40 - Øvelser Internetalgoritmer (Øvelserne 4 og 6 er afleveringsopgaver) a) Hver gruppe får en terning af instruktoren. Udfør 100 skridt af nedenstående RandomWalk på grafen, som også

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Lineær programmering. med Derive. Børge Jørgensen

Lineær programmering. med Derive. Børge Jørgensen Lineær programmering med Derive Børge Jørgensen 1 Indholdsfortegnelse. Forord ---------------------------------------------------------------------------------- 2 Introduktion til lineær programmering

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt.

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Merging og hashing Mål Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Dette emne er et uddrag af kurset DM507 Algoritmer og datastrukturer

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42

t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42 Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007 Funktionalligninger Anders Schack-Nielsen 5. februar 007 Disse noter er en introduktion til funktionalligninger. En funktionalligning er en ligning (eller et ligningssystem) hvor den ubekendte er en funktion.

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere