Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille"

Transkript

1 Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille

2 Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering

3 Søgning Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0] A[1] A[n-1] (ikkefaldende rækkefølge)

4 Linæer søgning Lineær søgning. Undersøg for alle indgange i om A[i] = x. Tid. Θ(n) Udfordring. Kan vi udnytte at tabellen er sorteret til at gøre det bedre?

5 Binær søgning Binær søgning (binary search). Kig på midterste indgang m i A. hvis A[m] = x returner sand og stop. hvis A[m] < x fortsæt rekursivt på højre halvdel. hvis A[m] > x fortsæt rekursivt på venstre halvdel. Stop hvis tabellen har størrelse 0 og returner falsk

6 Binær søgning BINÆRSØGNING(A,i,j,x) if j < i return false m = i+j/2 if A[m] = x return true elseif A[m] < x return BINÆRSØGNING(A,m+1,j,x) else return BINÆRSØGNING(A,i,m-1,x) // A[m] > x Tid. Hvor hurtigt kører den? Analyse 1. Analog til analyse af rekursiv toppunktsalgoritme. Et rekursivt kald tager konstant tid. Hvert rekursivt kald halverer tabellen vi kigger på. Vi stopper når tabellen har størrelse 0. Køretiden er Θ(log n)

7 Binær søgning Analyse 2. Lad T(n) være køretiden for binær søgning. Opskriv og udregn rekursionsligningen for T(n). T (n) = ( T (n/2) + c hvis n>1 d hvis n =1 T (n) =T = T = T n 2 n 4 n 8 + c + c + c + c + c + c. n = T 2 k + ck. n = T 2 log 2 n + c log 2 n = T (1) + c log 2 n = d + c log 2 n = (log n)

8 Søgning Vi kan søge i en sorteret tabel i Θ(n) tid med lineær søgning. Θ(log n) tid med binær søgning.

9 Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering

10 Sortering Sortering. Givet en tabel A[0..n-1] returner en tabel B[0..n-1] med samme værdier som A men i sorteret orden

11 Anvendelser Oplagte. Sortere en liste af navne, organisere et MP3 bibliotek, vise Google PageRank resultater, vise Facebook feed i kronologisk rækkefølge. Ikke oplagte. Datakompression, computergrafik, bioinformatik, anbefalingssystemer (film på Netflix, bøger på Amazon, reklamer på Google,..). Nemme problemer for sorteret data. Binær søgning, find median, identificer duplikater, find tætteste par, find statistiske perifere observationer (outliers).

12 Indsættelsessortering (insertion-sort) Indsættelsessortering. Start med en usorteret tabel A. Kig på indgangene fra venstre til højre i n runder. Ved runde i: Deltabel A[0..i-1] er sorteret. Indsæt A[i] i A[0..i-1] så A[0..i] er sorteret. For at finde rette sted til A[i] sammenligner vi med indgangene fra højre til venstre

13 Indsættelsessortering INDSÆTTELSESSORTERING(A, n) for i = 1 to n-1 j = i while j > 0 and A[j-1] > A[j] ombyt A[j] og A[j-1] j = j Tid. Hvad er køretiden T(n)? Hvad er tiden for at indsætte A[i] i sorteret rækkefølge blandt A[0..i-1]? c i tid for en konstant c. samlet tid: T (n) = nx ci = c i=1 Udfordring. Kan vi sortere hurtigere? nx i = i=1 (n + 1) 2 = (n 2 )

14 Flettesortering (mergesort) Flettesortering. Hurtig sorteringsalgoritme. Ide. Rekursiv sortering vha. fletning af sorterede deltabeller.

15 Fletning (merge) Mål. Kombiner to sorterede tabeller til én sorteret tabel. Ide. Gennemløb begge sorterede tabeller i stigende rækkefølge: I hvert skridt indsæt det mindste af de to nuværende elementer fra tabellerne i en ny tabel. Ryk frem i tabellen med det mindste element. Gentag indtil alle elementer er indsat i ny tabel

16 Fletning Tid. Hvor hurtigt kører fletning på to tabeller A1 og A2? Hvert skridt i algoritmen tager Θ(1) tid. I hvert skridt flytter vi en indgang frem i en af tabellerne. Θ( A1 + A2 ) tid

17 Flettesortering (mergesort) Flettesortering. Hvis A 1, returner A. Ellers: Del A i to halvdele. Sorter hver halvdel rekursivt. Flet de to halvdele sammen

18

19 Flettesortering (mergesort) FLETTESORTERING(A,i,j) if i < j m = i+j/ FLETTESORTERING(A,i,m) FLETTESORTERING(A,m+1,j) FLET(A, i, m, j) Tid. Lad T(n) være køretiden af flettesortering. Hvordan kan vi udregne T(n)? Ide. Opstil rekursionstræ og udregn samlet tid for alle rekursive kald.

20 Flettesortering log 2 n d d d d dn T (n) = log 2 n + dn = (n log 2 n)

21 Sortering Vi kan sortere en tabel i Θ(n 2 ) tid med indsættelsessortering. Θ(nlog n) tid med flettesortering.

22 Del og hersk (divide-and-conquer) Flettesortering er eksempel på en del-og-hersk algoritme. Del-og-hersk. algoritmisk designparadigme. Del. Opdel problemet i et eller flere delproblemer Hersk. Løs delproblemerne rekursivt Kombiner. Sæt løsningerne til delproblemerne sammen til en samlet løsning for problemet. Flettesortering. Del. Del A i to halvdele. Hersk. Sorter hver halvdel rekursivt. Kombiner. Flet de to halvdele sammen.

23 Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Introduktion. Philip Bille

Introduktion. Philip Bille Introduktion Philip Bille Plan Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer og datastrukturer Hvad er det? Algoritmisk problem: præcist defineret relation mellem

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk

Orienterede grafer. Orienterede grafer. Orienterede grafer. Vejnetværk Philip Bille Orienteret graf (directed graph). Mængde af knuder forbundet parvis med orienterede kanter. Vejnetværk Knude = vejkryds, kant = ensrettet vej. deg + (6) =, deg - (6) = sti fra til 6 8 7 9

Læs mere

Sortering ved fletning (merge-sort)

Sortering ved fletning (merge-sort) Sortering 1 Sortering ved fletning (merge-sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2 Del-og-hersk Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data S i to disjunkte

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer

Orienterede grafer. Orienterede grafer. Orienterede grafer. Orienterede grafer Philip Bille Orienteret graf. Mængde af knuder forbundet parvis med orienterede kanter. deg + (7) =, deg - (7) = Lemma. v V deg - (v) = v V deg + (v) = m. Bevis. Hver kant har netop en startknude og slutknude.

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008 1 Algorithms and Architectures II 1. Introduction to analysis and

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer.

Orienterede grafer. Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer. Orienterede grafer Introduktion Repræsentation Søgning Topologisk sortering og DAGs Stærke sammenhængskomponenter Implicitte grafer Philip Bille Orienterede grafer Introduktion Repræsentation Søgning Topologisk

Læs mere

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter

Geometrisk skæring. Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Planfejning 1 Skæring 2 Geometrisk skæring Afgørelse af om der findes skæringer blandt geometriske objekter Bestemmelse af alle skæringspunkter Løsningsmetoder: Rå kraft Planfejning (eng. plane sweep)

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms

Læs mere

Algoritmisk geometri

Algoritmisk geometri Algoritmisk geometri 1 Intervalsøgning 2 Motivation for intervaltræer Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Antag, at vi ønsker at

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

DM507 - Algoritmer og datastrukturer

DM507 - Algoritmer og datastrukturer - Algoritmer og datastrukturer Køretid g(n) Udtryk Beskrivelse lim n f(n) o(f) Vokser langsommere end f = 0 O(f) Vokser højst så hurtigt som f < Θ(f) Vokser som f = c(c > 0) Ω(f) Vokser mindst så hurtigt

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008 1 Algorithms and Architectures II 1. Introduction to analysis

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl

Skriftlig Eksamen Algoritmer og Datastrukturer 1. Datalogisk Institut Aarhus Universitet. Mandag den 22. marts 2004, kl Skriftlig Eksamen Algoritmer og Datastrukturer 1 Datalogisk Institut Aarhus Universitet Mandag den. marts 00, kl..00 11.00 Navn Gerth Stølting Brodal Årskort 1 Dette eksamenssæt består af en kombination

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Analyse af algoritmer

Analyse af algoritmer Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid

Læs mere

Skriftlig eksamen i Datalogi

Skriftlig eksamen i Datalogi Roskilde Universitetscenter side 1 af 9 sider Skriftlig eksamen i Datalogi Modul 1 Vinter 1999/2000 Opgavesættet består af 6 opgaver, der ved bedømmelsen tillægges følgende vægte: Opgave 1 5% Opgave 2

Læs mere

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm6: More sorting algorithms: Heap sort and quick sort - October 9, 008 Algorithms and Architectures II. Introduction

Læs mere

Algorithms & Architectures I 2. lektion

Algorithms & Architectures I 2. lektion Algorithms & Architectures I 2. lektion Design-teknikker: Divide-and-conquer Rekursive algoritmer (Recurrences) Dynamisk programmering Greedy algorithms Backtracking Dagens lektion Case eksempel: Triple

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 3, 009 Algorithms and Architectures II. Introduction to analysis and design of

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

MM4. Algoritmiske grundprincipper. Lister, stakke og køer. Hash-tabeller og Træer. Sortering. Søgning.

MM4. Algoritmiske grundprincipper. Lister, stakke og køer. Hash-tabeller og Træer. Sortering. Søgning. MM Algoritmiske grundprincipper. Lister, stakke og køer. Hash-tabeller og Træer. Sortering. Søgning. MM MM MM MM MM Sortering Sorteringsalgoritmer : Virkemåde og anvendelser Kompleksitet Algoritmen Sorteringsalgoritmer

Læs mere

Introduktion til datastrukturer

Introduktion til datastrukturer Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Philip Bille Introduktion til datastrukturer Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller

Læs mere

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt.

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Merging og hashing Mål Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Dette emne er et uddrag af kurset DM507 Algoritmer og datastrukturer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Introduktion til datastrukturer. Philip Bille

Introduktion til datastrukturer. Philip Bille Introduktion til datastrukturer Philip Bille Plan Datastrukturer Stakke og køer Hægtede lister Dynamiske tabeller Datastrukturer Datastrukturer Datastruktur: Metode til at organise data så det kan søges

Læs mere

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer 1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO

Læs mere

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

Introduktion Til Konkurrenceprogrammering

Introduktion Til Konkurrenceprogrammering Introduktion Til Konkurrenceprogrammering Søren Dahlgaard og Mathias Bæk Tejs Knudsen {soerend,knudsen}@di.ku.dk Version 0.1 Indhold Indhold i Introduktion 1 1 Palindromer 3 1.1 Introduktion til Python...............

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version

Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Note til Programmeringsteknologi Akademiuddannelsen i Informationsteknologi Algoritmeskabeloner: Sweep- og søgealgoritmer C#-version Finn Nordbjerg 1/9 Indledning I det følgende introduceres et par abstrakte

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and

Læs mere

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Ordbøger. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[x] fra et univers af nøgler U og satellitdata data[x]. Ordbogsoperationer. SEARCH(k): afgør om element

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

Hanne Niels Edith Harald Carsten Jørgen Henrik.

Hanne Niels Edith Harald Carsten Jørgen Henrik. Programmering 1999 Forelæsning 18, fredag 5 november 1999 Anvendelse af udvalgssortering Quicksort Rapportopgave Programmering 1999 KVL Side 18-1 Eksempel 2 på anvendelse af udvalgssortering Sortering

Læs mere

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )?

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )? Eksamen juni Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) I det følgende angiver log n -tals-logaritmen af n. n+n er O(n)? n 6 er O(n )? nlogn er O(n /logn)? n er O(n )? n er O(n )?

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Majoritetsproblemet Problem Præcisering af inddata Præcisering af uddata

Majoritetsproblemet Problem Præcisering af inddata Præcisering af uddata Majoritetsproblemet Problem: Til præsidentvalget i Frankrig har cirka 20 millioner vælgere afgivet deres stemme på et antal præsidentkandidater. Afgør om en af kandidaterne har opnået mere end halvdelen

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Rekursion og dynamisk programmering

Rekursion og dynamisk programmering Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.

Læs mere

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. 22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Ordbøger Ordbøger. Vedligehold en dynamisk mængde S af elementer.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Mm1: Introduction to analysis and design of algorithms - October 7, 2008

Mm1: Introduction to analysis and design of algorithms - October 7, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm1: Introduction to analysis and design of algorithms - October 7, 2008 Algorithms and Architectures II 1. Introduction

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z},

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

17 Søgning og Søgetræer.

17 Søgning og Søgetræer. 17 Søgning og Søgetræer. Lineær og inær søgning i lister. inære søgetræer. Søgning efter knude i træ. Indsættelse af knude i træ. Søgning i og sortering af inært søgetræ. Sletning af knude i inært søgetræ.

Læs mere

Bevisteknikker (relevant både ved design og verifikation)

Bevisteknikker (relevant både ved design og verifikation) Bevisteknikker 1 Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Sortering i CPH STL. Jakob Sloth, Morten Lemvigh & Mads Kristensen. CPH STL rapport 2003-2 maj 2003; revidered november 2003

Sortering i CPH STL. Jakob Sloth, Morten Lemvigh & Mads Kristensen. CPH STL rapport 2003-2 maj 2003; revidered november 2003 Sortering i CPH STL Jakob Sloth, Morten Lemvigh & Mads Kristensen CPH STL rapport 2003-2 maj 2003; revidered november 2003 1 INDHOLD S. 2 Indhold Indhold 2 1 Indledning 5 1.1 Problemstilling..........................

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Datalogi C + Datastrukturer og Algoritmer

Datalogi C + Datastrukturer og Algoritmer Datalogi C + Datastrukturer og Algoritmer Velkommen til DatC erne Dagens emne: Hvad er D&A, mål for effektivitet Kursuslærer: Henning Christiansen henning@ruc.dk, http://www.ruc.dk/~henning Hjælpelærer

Læs mere

Mm1: Introduction to analysis and design of algorithms - October 6, 2009

Mm1: Introduction to analysis and design of algorithms - October 6, 2009 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm1: Introduction to analysis and design of algorithms - October 6, 2009 Algorithms and Architectures I 1. Introduction

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første studieår ved Det Teknisk-Naturvidenskabelige Fakultet 23. august, 2016, 9.00-13.00 Dette eksamenssæt består af 11 nummerede sider med 16 opgaver. Alle opgaver er multiple

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Datalogi 0 GA Forelæsning september 2003 Nils Andersen. Tegn og tekster. Listefunktionalen map. Naïv sortering

Datalogi 0 GA Forelæsning september 2003 Nils Andersen. Tegn og tekster. Listefunktionalen map. Naïv sortering Datalogi 0 GA Forelæsning 11 12 18. september 2003 Nils Andersen Tegn og tekster. Listefunktionalen map. Naïv sortering Typen char af tegn Typen string af tekster Eksempler Højereordensfunktionen map Sortering

Læs mere