Oversigt [LA] 11, 12, 13

Størrelse: px
Starte visningen fra side:

Download "Oversigt [LA] 11, 12, 13"

Transkript

1 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar 2006, opgave 4 Gram-Schmidt Calculus Uge

2 Komplement Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement X = {v R n v u = 0, u X} Fra regnereglerne for skalarproduktet følger straks, at dette er et underrum. Calculus Uge

3 Komplement Bemærkning 13.2 Nogle nyttige observationer: 1. Der gælder 0 = R n og (R n ) = X (X ). 3. X X Hvis U er et underrum, så er U U = 0. Calculus Uge

4 Planen Eksempel 13.4 For to egentlige vektorer u, v i R 2 som er ortogonale u v er det ortogonale komplement u = {w w u = 0} underrummet Span(v). Span(v) ORTOGONAL KOMPLEMENT u Calculus Uge

5 Bestem komplement Eksempel 13.5 For u = (3, 1) R 2 er det ortogonale komplement {v v u = 0} bestemt ved ligningen, v = (v 1, v 2 ), 3v 1 + v 2 = 0 Løsning ( ) ( ) = v 2 ( ) v 1 v 2 = 1 3 v 2 v Skrives Span(u) = Span(( 1 3, 1)) Calculus Uge

6 Bestem komplement Eksempel figur Span(u) y ( 1 3, 1) u = (3, 1) 1 x Calculus Uge

7 Tømrerprincippet Sætning 13.6 For en delmængde af vektorer X R n som udspænder et underrum U R n er det ortogonale komplement X = U Altså gælder w U w x, x X Calculus Uge

8 Beregn komplement Eksempel 13.7 For U = Span((1, 1, 1), (2, 3, 4)) R 3 er det ortogonale komplement U = {v v u = 0, u U} bestemt ved ligningssystemet, v = (v 1, v 2, v 3 ), v 1 + v 2 + v 3 = 0 2v 1 + 3v 2 + 4v 3 = 0 Calculus Uge

9 Beregn komplement Eksempel fortsat Det rækkereducerede system er v 1 + v 3 = 0 v 2 + 2v 3 = 0 Løsningerne kan skrives v 1 v 2 v 3 = v 3 2v 3 = v 3 v Dermed er U = Span((1, 2, 1)) Calculus Uge

10 Beregn komplement Eksempel figur Dermed er U = Span((1, 2, 1)) (1, 2, 1) z U = Span((1, 1, 1), (2, 3, 4)) x y Calculus Uge

11 Komplement som nulrum Sætning 13.8 For en m n-matrix er nulrummet det ortogonale komplement til rækkerummet N A = Span(a 1,..., a m ) Bevis Produktet Ax = 0 betyder netop at x a i for i = 1,..., m. Calculus Uge

12 Underrum og komplement Sætning 13.9 Lad U være et underrum i R n. Så har enhver vektor x R n en entydig fremstilling x = v + w, v U, w U Calculus Uge

13 Underrum og komplement Sætning fortsat Bevis Lad u 1,..., u m være en basis for U. Det følger, at U er nulrummet for m n-matricen med basen for U som rækker. Rangformlen giver, at dim U = n m. Vælg en basis for U u m+1,..., u n. En fremstilling j a ju j = 0 giver m a j u j = n a j u j U U j=1 j=m+1 Det følger, at sættet u 1,..., u n er lineært uafhængigt og dermed en basis for R n. En opskrivning x = j a ju j giver resultatet. Calculus Uge

14 Vektor og komplement Eksempel For U = Span((1, 1, 1)) er det ortogonale komplement U bestemt ved ligningen v 1 v 2 v 3 = 0 Løsningerne kan skrives v 1 v 2 v 3 = v 2 + v 3 = v 2 v 2 v v Calculus Uge

15 Vektor og komplement Eksempel fortsat Dermed er U = Span((1, 1, 0), (1, 0, 1)) Vektoren (3, 0, 0) kan skrives (3, 0, 0) = (1, 1, 1) + (1, 1, 0) + (1, 0, 1) og dermed (3, 0, 0) = (1, 1, 1) + (2, 1, 1) hvor (1, 1, 1) U, (2, 1, 1) U. Calculus Uge

16 Ortogonal projektion Definition Situationen relateres til følgende figur x w = x v U v ORTOGONAL PROJEKTION PÅ UNDERRUM U Calculus Uge

17 Ortogonal projektion Definition fortsat For et underrum U R n er den ortogonale projektion af en vektor x på U den vektor v U, som opfylder Der gælder x = v + w, x v = w U Den ortogonale projektion betegnes Vektoren kaldes restvektoren. v U, w U proj U (x) = v w = x v = x proj U (x) Calculus Uge

18 Projektion på 1 vektor Sætning For et underrum U = Span(u) R n udspændt af netop én vektor u 0 er den ortogonale projektion af en vektor x på U givet ved v = x u u u u Det skrives proj u (x) = x u u u u Bevis Eftervis altså (x x u u u u) u (x x u u u u) u = x u x u u u u u = 0 Calculus Uge

19 Projektion på 1 vektor Sætning figur x w = x v U v = au U = Span(u) ORTOGONAL PROJEKTION v = proj u (x), a = x u u u Calculus Uge

20 Beregn projektion Eksempel For et underrum U = Span(u) R 3 udspændt af vektoren u = (1, 1, 1) er den ortogonale projektion af en vektor x = (x 1, x 2, x 3 ) på U givet ved proj u (x) = x u u u u = x 1 + x 2 + x 3 3 (1, 1, 1) Calculus Uge

21 Beregn projektion Eksempel Tegn en figur for overblik x 2 x = (1, 18) proj u (x) = (9, 12) u = (3, 4) 1 ORTOGONAL PROJEKTION proj u (x) på Span(u) x 1 Calculus Uge

22 Beregn projektion Eksempel fortsat For et underrum U = Span(u) R 2 udspændt af vektoren u = (3, 4) er den ortogonale projektion af en vektor x = (1, 18) på U givet ved proj u (x) = x u u u u = (3, 4) = 3(3, 4) = (9, 12) Calculus Uge

23 Projektion på basis Sætning Lad u 1,..., u k R n være indbyrdes ortogonale egentlige vektorer. Antag at de udspænder underrummet U. Så gælder 1. Sættet u 1,..., u k er en basis for U. 2. Den ortogonale projektion af en vektor x R n på U er givet ved k proj U (x) = proj uj (x) j=1 3. Det er en opskrivning af projektionen i basen u 1,..., u k proj U (x) = k j=1 x u j u j u j u j Calculus Uge

24 Beregn projektion Eksempel Lad u 1 = (1, 1, 1), u 2 = (1, 2, 1) R 3 være indbyrdes ortogonale vektorer der udspænder underrummet U. Så er den ortogonale projektion proj U (x) = proj u1 (x) + proj u2 (x) = x u 1 u 1 u 1 u 1 + x u 2 u 2 u 2 u 2 = x 1 x 2 + x 3 3 = ( x 1 + x 3 2 (1, 1, 1) + x 1 + 2x 2 + x 3 6, x 2, x 1 + x 3 2 ) (1, 2, 1) Calculus Uge

25 Beregn projektion Eksempel figur x proj U x proj u1 x proj u2 x u 1 u 2 Calculus Uge

26 Mindste afstand Sætning Lad U R n være et underrum. Antag at vektoren x har ortogonal projektion v = proj U (x) på U. Så gælder: 1. Projektionen v er den vektor i U, der har kortest afstand til x. 2. Normen af restvektoren x v den korteste afstand. Bevis For en vektor v v U gælder x (v v ) 2 = (x v) + v 2 ifølge Pythagoras, da (x v) v. = x v 2 + v 2 Calculus Uge

27 Mindste afstand Sætning figur x x v x (v v ) v v U MINDSTE AFSTAND TIL UNDERRUM Calculus Uge

28 Afstand til linje Eksempel For en linje U = Span(u) R 3 udspændt af vektoren u = (1, 1, 1) er den vektor i U med kortest afstand til en vektor x = (x 1, x 2, x 3 ) givet ved proj u (x) = x u u u u = x 1 + x 2 + x 3 3 (1, 1, 1) Kvadratafstanden er x proj u (x) 2 = (x 1 m) 2 + (x 2 m) 2 + (x 3 m) 2 hvor m = x 1+x 2 +x 3 3. Calculus Uge

29 Opgave Matematik Alfa 1, August 2002 Opgave 6 Betragt det lineære underrum U R 4, der er udspændt af vektorer u 1 = (1, 1, 1, 1) og u 2 = (0, 1, 1, 0). Angiv den vektor u i U, der har kortest afstand til vektoren v = (1, 2, 3, 4). Løsning Vektoren u er den ortogonale projektion af v på U. Den korteste afstand er v u Calculus Uge

30 Opgave Matematik Alfa 1, August 2002 Opgave 6 - fortsat Vektorerne u 1 = (1, 1, 1, 1) og u 2 = (0, 1, 1, 0) har u 1 u 2 = ( 1) 1 + ( 1) 0 = 0 Projektionen af v = (1, 2, 3, 4) er u = proj U (v) = proj u1 (v) + proj u2 (v) = v u 1 u 1 + v u 2 u 2 u 1 u 1 u 2 u 2 = 4 4 (1, 1, 1, 1) + 5 (0, 1, 1, 0) 2 = ( 1, 3, 7, 1) 2 2 Calculus Uge

31 Opgave Matematik Alfa 1, August 2002 Opgave 6 - ekstra Restvektoren v u = (1, 2, 3, 4) ( 1, 3 2, 7 2, 1) = (2, 1 2, 1 2, 3) har længde, som angiver den mindste afstand fra v til U v u = (2, 1 2, 1 2, 3) = 27 2 = Calculus Uge

32 Tømrermester Bemærkning To vektorer kan rettes op w = v proj u (v) v proj u (v) TO VEKTORER RETTET OP u Calculus Uge

33 Tømrermester Bemærkning fortsat Lad u, v være ikke-parallelle vektorer der udspænder underrummet U. Sæt w = v proj u (v) = v v u u u u Så er u, w ortogonale og udspænder U. Den ortogonale projektion af vektoren x på U er da proj U (x) = proj u (x) + proj w (x) = x u u u u + x w w w w Calculus Uge

34 Tømrermester arbejder Eksempel Lad u = (1, 1, 1), v = (1, 2, 3) være vektorer der udspænder underrummet U. Sæt w = v proj u (v) = v v u u u u = (1, 2, 3) 2(1, 1, 1) = ( 1, 0, 1) Den ortogonale projektion af vektoren x = (3, 3.6, 6) på U er da proj U (x) = proj u (x) + proj w (x) = x u u u u + x w w w w = (1, 1, 1) = (2.7, 4.2, 5.7) ( 1, 0, 1) Calculus Uge

35 Tømrermester arbejder Calculus 2 Januar 2006 Opgave 4 - let modificeret Betragt følgende vektorer i R 4 u 1 = (1, 0, 1, 0), u 2 = (2, 1, 0, 0) og lad U betegne underrummet U = Span(u 1, u 2 ). 1) Opret vektorerne ovenfor til et ortogonalt sæt u 1, u 3 som udspænder U. 2) Lad v betegne vektoren v = (5, 4, 3, 3). Angiv den ortogonale projektion proj U (v) af vektoren v på U. 3) Beregn den korteste afstand fra v til U. Calculus Uge

36 Tømrermester arbejder Calculus 2 Januar 2006 Løsning 1) Vektoren u 3 er givet ved opretning u 3 = u 2 proj u1 (u 2 ) = u 2 u 2 u 1 u 1 u 1 u 1 = (2, 1, 0, 0) (1, 0, 1, 0) = (1, 1, 1, 0) 2) Bemærk, at u 3 U og u 2 = u 1 + u 3 Span(u 1, u 3 ), så U = Span(u 1, u 3 ) er udspændt af to ortogonale vektorer. Projektionen af v på underrummet U er proj U (v) = proj u1 (v) + proj u3 (v) = v u 1 u 1 u 1 u 1 + v u 3 u 3 u 3 u 3. Calculus Uge

37 Tømrermester arbejder Calculus 2 Januar 2006 Løsning - fortsat u 1 = (1, 0, 1, 0), u 3 = (1, 1, 1, 0), v = (5, 4, 3, 3): u 1 u 1 = (1, 0, 1, 0) (1, 0, 1, 0) = = 2 u 1 v = (1, 0, 1, 0) (5, 4, 3, 3) = = 8 u 3 u 3 = (1, 1, 1, 0) (1, 1, 1, 0) = = 3 u 3 v = (1, 1, 1, 0) (5, 4, 3, 3) = = 6 proj U (v) = v u 1 u 1 u 1 u 1 + v u 3 u 3 u 3 u 3 = 8 2 (1, 0, 1, 0) + 6 (1, 1, 1, 0) 3 = (4, 0, 4, 0) + (2, 2, 2, 0) = (6, 2, 2, 0) Calculus Uge

38 Tømrermester arbejder Calculus 2 Januar 2006 Løsning - fortsat 3) Problemstillingen er vist på figuren v v proj U (v) proj U (v) U Længden af restvektoren er v proj U (v) er den korteste afstand fra v til U. Calculus Uge

39 Tømrermester arbejder Calculus 2 Januar 2006 Løsning - fortsat 3) v = (5, 4, 3, 3), proj U (v) = (6, 2, 2, 0). Længden af restvektoren er v proj U (v) er den korteste afstand fra v til U. Restvektoren udregnes v proj U (v) = (5, 4, 3, 3) (6, 2, 2, 0) = ( 1, 2, 1, 3) og den korteste afstand beregnes ( 1, 2, 1, 3) = = 15. Calculus Uge

40 Gram-Schmidt Sætning Et sæt vektorer v 1,..., v m R n som udspænder et underrum U kan oprettes til en basis u 1,..., u k for U bestående af indbyrdes ortogonale vektorer. Bevis Tag vektorer 0 fra følgende procedure u = v j+1 proj Span(v1,...,v j )(v j+1 ) Calculus Uge

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2 Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50.

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oersigt [LA],, Prikprodkt Nøgleord og begreber Ortogonlitet Ortogonlt komplement Tømrerprincippet Ortogonl projektion Pthgors formel Kortest fstnd Agst 00, opge 6 Cch-Schwrz lighed For ektorer =,..., n,

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Symmetriske matricer. enote Skalarprodukt

Symmetriske matricer. enote Skalarprodukt enote 19 1 enote 19 Symmetriske matricer I denne enote vil vi beskæftige os med et af de mest benyttede resultater fra lineær algebra den såkaldte spektralsætning for symmetriske matricer. Den siger kort

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

LINEÆR ALGEBRA DIFFERENTIALLIGNINGER

LINEÆR ALGEBRA DIFFERENTIALLIGNINGER LINEÆR ALGEBRA DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 006 NIELSEN - SALOMONSEN INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 006 Indhold Forord 5. Vektorer og linearkombinationer 7. Basis og dimension

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

DesignMat Uge 11. Vektorrum

DesignMat Uge 11. Vektorrum DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en

Læs mere

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge

Eksempler Determinanten af en kvadratisk matrix. Calculus Uge Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Denne note er skrevet med udgangspunkt i [, p 24-243, 249 Et videre studium kan eksempelvis tage udgangspunkt i [2 Eventuelle kommentarer kan sendes til olav@mathaaudk

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne en mængde af opgaver, som tilsammen dækker 100 point. De små opgaver giver hver 5 point,

Læs mere

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement OPGAVER 1 Opgaver til Uge 11 Lille Dag Opgave 1 Det ortogonale komplement a) I R 2 er der givet vektoren (3, 7). Angiv en basis for det ortogonale komplement. b) Find i R 3 en basis for det ortogonale

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

LinAlg Skriftlig prøve 20. januar 2009, 9 12 Vejledende besvarelse

LinAlg Skriftlig prøve 20. januar 2009, 9 12 Vejledende besvarelse LinAlg Skriftlig prøve. januar 9, 9 Vejledende besvarelse Dette eksamenssæt løber over 5 sider, denne side inklusive. Sættet stilles til løsning over 3 timer med alle sædvanlige hjælpemidler, bortset fra

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2012 Institution Uddannelse Fag og niveau VUF - Voksenuddannelsescenter Frederiksberg GSK Matematik

Læs mere

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer. LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Mat1GA Minilex. Indhold. Henrik Dahl, Hold januar Definitioner 2. 2 Sætninger m.v Regneregler Kriterier 43.

Mat1GA Minilex. Indhold. Henrik Dahl, Hold januar Definitioner 2. 2 Sætninger m.v Regneregler Kriterier 43. Mat1GA Minilex Henrik Dahl, Hold 10 3. januar 2003 Indhold 1 Definitioner 2 2 Sætninger m.v. 17 3 Regneregler 36 4 Kriterier 43 5 Kogebog 44 Resumé ADVARSEL - dette er livsfarligt at bruge ukritisk. Der

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

4.1 Lineære Transformationer

4.1 Lineære Transformationer SEKTION 41 LINEÆRE TRANSFORMATIONER 41 Lineære Transformationer Definition 411 ([L], s 175) Lad V, W være F-vektorrum En lineær transformation L : V W er en afbildning, som respekterer lineær struktur,

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Matroider Majbritt Felleki

Matroider Majbritt Felleki 18 Rejselegatsformidlingsaktivitet Matroider Majbritt Felleki Den amerikanske matematiker Hassler Whitney fandt i 1935 sammenhænge mellem sætninger i grafteori og sætninger i lineær algebra. Dette førte

Læs mere

Lineære Afbildninger. enote 8. 8.1 Om afbildninger

Lineære Afbildninger. enote 8. 8.1 Om afbildninger enote 8 enote 8 Lineære Afbildninger Denne enote undersøger afbildninger mellem vektorrum af en bestemt type, nemlig lineære afbildninger Det vises, at kernen og billedrummet for lineære afbildninger er

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Lineær Algebra. Differentialligninger

Lineær Algebra. Differentialligninger Lineær Algebra og Differentialligninger til Calculus 1 og 2 Århus 2005 Anders Kock og Holger Andreas Nielsen Indhold 1 Koordinatvektorer........................ 1 2 Matricer..............................

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Bo Løvschall

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere