Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Størrelse: px
Starte visningen fra side:

Download "Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer."

Transkript

1 Grådige algoritmer

2 Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

3 Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen bid for bid ved hele tiden af vælge hvad der lige nu ser ud som bedste valg (uden at tænke på resten af løsningen). Dvs. man håber på at lokal optimering giver global optimering.

4 Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen bid for bid ved hele tiden af vælge hvad der lige nu ser ud som bedste valg (uden at tænke på resten af løsningen). Dvs. man håber på at lokal optimering giver global optimering. Mere præcist kræver metoden en definition af bedste valg (også kaldet grådig valg ), samt et bevis for gentagen brug af dette ender med en optimal løsning.

5 Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen bid for bid ved hele tiden af vælge hvad der lige nu ser ud som bedste valg (uden at tænke på resten af løsningen). Dvs. man håber på at lokal optimering giver global optimering. Mere præcist kræver metoden en definition af bedste valg (også kaldet grådig valg ), samt et bevis for gentagen brug af dette ender med en optimal løsning. Mange grådige algoritmer kan forklares som specialtilfælde af begrebet Matroide (afsnit 16.4, ikke pensum), men vi vil nøjes med at tænke på grådige algoritmer som et løst princip, hvor bedste valg og korrekthedsbevis skal opfindes individuelt fra problem til problem.

6 Eksempel: et simpelt skeduleringsproblem Input: en samling aktiviteter, hver med en starttid og sluttid. Output: en størst mulig mængde af ikke-overlappende aktivititer.

7 Eksempel: et simpelt skeduleringsproblem Input: en samling aktiviteter, hver med en starttid og sluttid. Output: en størst mulig mængde af ikke-overlappende aktivititer. Grådigt forslag: Sorter aktiviteter efter stigende sluttid For hver aktivitet a taget i den rækkefølge: If a overlapper allerede valgte aktiviteter: Skip a Else Vælg a... Tid

8 Analyse Bevis for korrekthed: Flg. invariant vedligeholdes: Lad s være sluttiden for aktiviteten testet i sidst udførte iteration af for-løkken (og lad s = før første iteration). Der findes en optimal løsning, hvis aktiviteter med sluttid s netop er de af algoritmen indtil nu valgte aktiviteter.

9 Analyse Bevis for korrekthed: Flg. invariant vedligeholdes: Lad s være sluttiden for aktiviteten testet i sidst udførte iteration af for-løkken (og lad s = før første iteration). Der findes en optimal løsning, hvis aktiviteter med sluttid s netop er de af algoritmen indtil nu valgte aktiviteter. Bevis (induktion): Basis: Klart før første iteration af for-løkken (for enhver optimal løsning er aktiviteterne med sluttid de samme som de af algoritmen indtil nu valgte aktiviteter, nemlig ingen).

10 Analyse Bevis (induktion): Skridt: Hvis udsagnet gælder før en iteration, gælder det også efter: Lad X være den optimale løsning fra induktionsudsagnet før iterationen. If-case: Her overlapper den næste aktivitet a de allerede passerede aktiviteter fra X, så dennne aktivitet kan ikke være en del af X. Da algoritmen ikke vælger a, kan X (gen)bruges i induktionsudsagnet efter iterationen. Else-case: Lad a være den aktivitet i resten af X, som har mindst sluttid. Det er nemt at se, at man kan udskifte a med den af algoritmen valgte a uden at få overlap med andre i X. Da dette ikke ændrer antal aktiviteter i X, er den stadig optimal, og kan bruges i induktionsudsagnet efter iterationen.

11 Analyse Bevis (induktion): Køretid: Skridt: Hvis udsagnet gælder før en iteration, gælder det også efter: Lad X være den optimale løsning fra induktionsudsagnet før iterationen. If-case: Her overlapper den næste aktivitet a de allerede passerede aktiviteter fra X, så dennne aktivitet kan ikke være en del af X. Da algoritmen ikke vælger a, kan X (gen)bruges i induktionsudsagnet efter iterationen. Else-case: Lad a være den aktivitet i resten af X, som har mindst sluttid. Det er nemt at se, at man kan udskifte a med den af algoritmen valgte a uden at få overlap med andre i X. Da dette ikke ændrer antal aktiviteter i X, er den stadig optimal, og kan bruges i induktionsudsagnet efter iterationen.

12 Analyse Bevis (induktion): Skridt: Hvis udsagnet gælder før en iteration, gælder det også efter: Lad X være den optimale løsning fra induktionsudsagnet før iterationen. Køretid: Sortering + O(n). If-case: Her overlapper den næste aktivitet a de allerede passerede aktiviteter fra X, så dennne aktivitet kan ikke være en del af X. Da algoritmen ikke vælger a, kan X (gen)bruges i induktionsudsagnet efter iterationen. Else-case: Lad a være den aktivitet i resten af X, som har mindst sluttid. Det er nemt at se, at man kan udskifte a med den af algoritmen valgte a uden at få overlap med andre i X. Da dette ikke ændrer antal aktiviteter i X, er den stadig optimal, og kan bruges i induktionsudsagnet efter iterationen.

13 Rygsæksproblemet Rygsæk som kan bære W kg. Ting med værdi og vægt. Ting nr. i Vægt w i Værdi v i

14 Rygsæksproblemet Rygsæk som kan bære W kg. Ting med værdi og vægt. Ting nr. i Vægt w i Værdi v i Mål: tag mest mulig værdi med uden at overskride vægtgrænsen.

15 Rygsæksproblemet Fractional version af problemet (dele af ting kan medtages i rygsækken) kan løses med en grådig algoritme: vælg tingene efter aftagende nytte = værdi/vægt. Et simplet udskiftningsargument viser, at den optimale løsning kun kan være som den af algoritmen valgte.

16 Rygsæksproblemet Fractional version af problemet (dele af ting kan medtages i rygsækken) kan løses med en grådig algoritme: vælg tingene efter aftagende nytte = værdi/vægt. Et simplet udskiftningsargument viser, at den optimale løsning kun kan være som den af algoritmen valgte. NB: Denne grådige algoritme virker IKKE for 0-1 versionen af problemet (hvor kun hele ting kan medtages):

17 Rygsæksproblemet Fractional version af problemet (dele af ting kan medtages i rygsækken) kan løses med en grådig algoritme: vælg tingene efter aftagende nytte = værdi/vægt. Et simplet udskiftningsargument viser, at den optimale løsning kun kan være som den af algoritmen valgte. NB: Denne grådige algoritme virker IKKE for 0-1 versionen af problemet (hvor kun hele ting kan medtages):

18 Rygsæksproblemet Fractional version af problemet (dele af ting kan medtages i rygsækken) kan løses med en grådig algoritme: vælg tingene efter aftagende nytte = værdi/vægt. Et simplet udskiftningsargument viser, at den optimale løsning kun kan være som den af algoritmen valgte. NB: Denne grådige algoritme virker IKKE for 0-1 versionen af problemet (hvor kun hele ting kan medtages): Eksempel på at grådige valg ikke bare kan antages at virke for alle problemer (lokal optimering giver ikke altid global optimering).

19 Huffman-koder Kodning af sekvens af tegn (fil) via binære koder (for at gemme på disk, sende over netværk,... ). Ønsker kortest mulig fil (kompression).

20 Huffman-koder Kodning af sekvens af tegn (fil) via binære koder (for at gemme på disk, sende over netværk,... ). Ønsker kortest mulig fil (kompression). Eksempel:

21 Huffman-koder Kodning af sekvens af tegn (fil) via binære koder (for at gemme på disk, sende over netværk,... ). Ønsker kortest mulig fil (kompression). Eksempel: Fixed-length version: 3 ( ) = bits Variable-length version: = bits

22 Prefix-kode = træer Kodeord = sti i binært træ: 0 gå til venstre, 1 gå til højre Prefix(-fri) kode: ingen kode for et tegn er starten (prefix) af koden for et andet tegn ( dekodning utvetydig). Så tegn svarer til knuder med nul børn (blade).

23 Prefix-kode = træer Kodeord = sti i binært træ: 0 gå til venstre, 1 gå til højre Prefix(-fri) kode: ingen kode for et tegn er starten (prefix) af koden for et andet tegn ( dekodning utvetydig). Så tegn svarer til knuder med nul børn (blade). For en givet fil (tegn og deres frekvenser), find bedste variable-length prefix-kode. Dvs. for Cost(tree) = kodet fil, find træ med lavest cost.

24 Prefix-kode = træer Kodeord = sti i binært træ: 0 gå til venstre, 1 gå til højre Prefix(-fri) kode: ingen kode for et tegn er starten (prefix) af koden for et andet tegn ( dekodning utvetydig). Så tegn svarer til knuder med nul børn (blade). For en givet fil (tegn og deres frekvenser), find bedste variable-length prefix-kode. Dvs. for Cost(tree) = kodet fil, find træ med lavest cost. Optimale træer kan ikke have knuder med kun ét barn (alle tegn i undertræet for en sådan knude kan forkortes med en bit, jvf. (a) ovenfor). Så kun knuder med to eller nul børn findes.

25 Huffmans algoritme Byg op nedefra (fra mindste til største frekvenser) ved hele tiden at lave flg. grådige valg : slå de to deltræer med de to mindste samlede frekvenser sammen:

26 Køretid Givet en en tabel med n tegn og deres frekvenser laver Huffmans algoritme n 1 iterationer. (Der er n træer til start, ét træ til slut, og hver iteration mindsker antallet med præcis én.)

27 Køretid Givet en en tabel med n tegn og deres frekvenser laver Huffmans algoritme n 1 iterationer. (Der er n træer til start, ét træ til slut, og hver iteration mindsker antallet med præcis én.) Ved at bruge en (min-)prioritetskø, f.eks. implementeret ved en heap, kan hver iteration udføres med: to ExtractMin-operationer én Insert-operation O(1) andet arbejde.

28 Køretid Givet en en tabel med n tegn og deres frekvenser laver Huffmans algoritme n 1 iterationer. (Der er n træer til start, ét træ til slut, og hver iteration mindsker antallet med præcis én.) Ved at bruge en (min-)prioritetskø, f.eks. implementeret ved en heap, kan hver iteration udføres med: to ExtractMin-operationer én Insert-operation O(1) andet arbejde. Hver prioritetskø-operation tager hver O(log n) tid.

29 Køretid Givet en en tabel med n tegn og deres frekvenser laver Huffmans algoritme n 1 iterationer. (Der er n træer til start, ét træ til slut, og hver iteration mindsker antallet med præcis én.) Ved at bruge en (min-)prioritetskø, f.eks. implementeret ved en heap, kan hver iteration udføres med: to ExtractMin-operationer én Insert-operation O(1) andet arbejde. Hver prioritetskø-operation tager hver O(log n) tid. Så samlet køretid for de n iterationer er O(n log n).

30 Korrekthed Huffman algoritme slår i første skridt de to mindste tegn sammen. Mere præcist: For en eller anden nummerering c 1, c 2, c 3,..., c n af tegnene i inputalfabetet, for hvilken der gælder at de tilsvarende frekvenser er ikke-faldende f 1 f 2 f 3 f n, slår Huffmans algoritme tegn c 1 og c 2 sammen. Denne formulering dækker alle mulige valg af de to mindste tegn, også for input såsom disse tre: Tegn a b c d e f g Frekvens Frekvens Frekvens

31 Korrekthed Eksempel: Hvis input er Tegn a b c d e f g Frekvens er følgende rækkefølger (samt en del yderligere) alle mulige: Tegn b d e g c f a Frekvens Tegn e d b g c f a Frekvens Tegn e d b g c a f Frekvens Huffman vælger én af dem, og slår de to første tegn sammen.

32 Korrekthed Lemma: For ethvert input (n 2) med Tegn c 1 c 2 c 3... c n Frekvens f 1 f 2 f 3... f n f 1 f 2 f 3 f n, findes et optimalt træ hvor bladene for tegnene c 1 og c 2 er søskende.

33 Korrekthed Lemma: For ethvert input (n 2) med Tegn c 1 c 2 c 3... c n Frekvens f 1 f 2 f 3... f n f 1 f 2 f 3 f n, findes et optimalt træ hvor bladene for tegnene c 1 og c 2 er søskende. Bevis: Lad T være et optimalt træ. Se på et blad af størst dybde i T. Da n 2, har bladet en forælder. Denne forælder har mere end nul undertræer, altså har den to (i optimale træer har ingen knuder ét undertræ, se tidligere). Dens andet undertræ må være blot et blad, ellers er det første blad ikke et dybeste blad.

34 Korrekthed Lemma: For ethvert input (n 2) med Tegn c 1 c 2 c 3... c n Frekvens f 1 f 2 f 3... f n f 1 f 2 f 3 f n, findes et optimalt træ hvor bladene for tegnene c 1 og c 2 er søskende. Bevis: Lad T være et optimalt træ. Se på et blad af størst dybde i T. Da n 2, har bladet en forælder. Denne forælder har mere end nul undertræer, altså har den to (i optimale træer har ingen knuder ét undertræ, se tidligere). Dens andet undertræ må være blot et blad, ellers er det første blad ikke et dybeste blad. Altså findes to blade som er søskende og begge er af størst dybde. Lad deres tegn være c i og c j, med i < j.

35 Korrekthed Mulige situationer: c 1 c 2 c 3... Handling: c i c j Ingen c i c j Byt c 2 og c j c i c j Byt c 1 og c j c i c j Byt c 1 og c i, samt c 2 og c j

36 Korrekthed Mulige situationer: c 1 c 2 c 3... Handling: c i c j Ingen c i c j Byt c 2 og c j c i c j Byt c 1 og c j c i c j Byt c 1 og c i, samt c 2 og c j c 1 c 2 d c 2 c i c i c j c 1 c j

37 Korrekthed Mulige situationer: c 1 c 2 c 3... Handling: c i c j Ingen c i c j Byt c 2 og c j c i c j Byt c 1 og c j c i c j Byt c 1 og c i, samt c 2 og c j c 1 c 2 d c 2 c i c i c j c 1 c j Lad d være c i s blads dybde minus c 1 s blads dybde. Da er ændringen af filens længde ved byt af c 1 og c i lig d f 1 d f i = d (f 1 f i ).

38 Korrekthed Mulige situationer: c 1 c 2 c 3... Handling: c i c j Ingen c i c j Byt c 2 og c j c i c j Byt c 1 og c j c i c j Byt c 1 og c i, samt c 2 og c j c 1 c 2 d c 2 c i c i c j c 1 c j Lad d være c i s blads dybde minus c 1 s blads dybde. Da er ændringen af filens længde ved byt af c 1 og c i lig d f 1 d f i = d (f 1 f i ). Eftersom d 0 (da c i s blad var af størst dybde) og f 1 f i 0 (da i 1, se tabel ovenfor), kan filens længde ikke blive større. Dvs. træet kan ikke blive dårlige ved byt af c 1 og c i.

39 Korrekthed Mulige situationer: c 1 c 2 c 3... Handling: c i c j Ingen c i c j Byt c 2 og c j c i c j Byt c 1 og c j c i c j Byt c 1 og c i, samt c 2 og c j c 1 c 2 d c 2 c i c i c j c 1 c j Lad d være c i s blads dybde minus c 1 s blads dybde. Da er ændringen af filens længde ved byt af c 1 og c i lig d f 1 d f i = d (f 1 f i ). Eftersom d 0 (da c i s blad var af størst dybde) og f 1 f i 0 (da i 1, se tabel ovenfor), kan filens længde ikke blive større. Dvs. træet kan ikke blive dårlige ved byt af c 1 og c i. Tilsvarende kan vises for et byt af c 1 og c j, og for et byt af c 2 og c j.

40 Korrekthed Mulige situationer: c 1 c 2 c 3... Handling: c i c j Ingen c i c j Byt c 2 og c j c i c j Byt c 1 og c j c i c j Byt c 1 og c i, samt c 2 og c j c 1 c 2 d c 2 c i c i c j c 1 c j Lad d være c i s blads dybde minus c 1 s blads dybde. Da er ændringen af filens længde ved byt af c 1 og c i lig d f 1 d f i = d (f 1 f i ). Eftersom d 0 (da c i s blad var af størst dybde) og f 1 f i 0 (da i 1, se tabel ovenfor), kan filens længde ikke blive større. Dvs. træet kan ikke blive dårlige ved byt af c 1 og c i. Tilsvarende kan vises for et byt af c 1 og c j, og for et byt af c 2 og c j. Da træet var optimalt før byt, er det også efter. Og c 1 og c 2 er nu søskende.

41 Korrekthed Sætning: Huffmans algoritme returnerer et optimalt træ.

42 Korrekthed Sætning: Huffmans algoritme returnerer et optimalt træ. Bevis: Vi vil vise via induktion at det gælder for input med n tegn, for alle n 2.

43 Korrekthed Sætning: Huffmans algoritme returnerer et optimalt træ. Bevis: Vi vil vise via induktion at det gælder for input med n tegn, for alle n 2. Basis n = 2: Da knuder i optimale træer enten har to eller nul børn, er der præcis ét træ for n = 2 (en rod og to blade), hvilket dermed er det optimale træ. Det er netop træet returneret af Huffmans algoritme når n = 2.

44 Korrekthed Sætning: Huffmans algoritme returnerer et optimalt træ. Bevis: Vi vil vise via induktion at det gælder for input med n tegn, for alle n 2. Basis n = 2: Da knuder i optimale træer enten har to eller nul børn, er der præcis ét træ for n = 2 (en rod og to blade), hvilket dermed er det optimale træ. Det er netop træet returneret af Huffmans algoritme når n = 2. Induktionsskridtet n > 2: Lad input I være og se på input I Tegn c 1 c 2 c 3... c n Frekvens f 1 f 2 f 3... f n med f 1 f 2 f 3 f n, Tegn z c 3... c n Frekvens f 1 + f 2 f 3... f n

45 Korrekthed Lad T være Huffmans output på input I. Lad T være Huffmans output på input I (optimalt træ pr. induktionsantagelse, da antal tegn i dette input er n 1). Lad T være et optimalt træ på input I hvor bladene for tegnene c 1 og c 2 er søskende (et sådant optimalt træ eksisterer iflg. lemma). Lad T være T hvor bladene for tegnene c 1 og c 2 samt deres forælder er erstattet af bladet z (med frekvens f 1 + f 2 ).

46 Korrekthed Lad T være Huffmans output på input I. Lad T være Huffmans output på input I (optimalt træ pr. induktionsantagelse, da antal tegn i dette input er n 1). Lad T være et optimalt træ på input I hvor bladene for tegnene c 1 og c 2 er søskende (et sådant optimalt træ eksisterer iflg. lemma). Lad T være T hvor bladene for tegnene c 1 og c 2 samt deres forælder er erstattet af bladet z (med frekvens f 1 + f 2 ). For et træ τ for input I, lad Expand(τ) være τ med bladet med tegnet z erstattet af et træ med en rod og to blade med tegnene c 1 og c 2.

47 Korrekthed Lad T være Huffmans output på input I. Lad T være Huffmans output på input I (optimalt træ pr. induktionsantagelse, da antal tegn i dette input er n 1). Lad T være et optimalt træ på input I hvor bladene for tegnene c 1 og c 2 er søskende (et sådant optimalt træ eksisterer iflg. lemma). Lad T være T hvor bladene for tegnene c 1 og c 2 samt deres forælder er erstattet af bladet z (med frekvens f 1 + f 2 ). For et træ τ for input I, lad Expand(τ) være τ med bladet med tegnet z erstattet af et træ med en rod og to blade med tegnene c 1 og c 2. T = Expand(T ) (pga. definition af T ). Cost(Expand(τ)) = Cost(τ) + f 1 + f 2 (koder for c 1 og c 2 forlænges med én). T = Expand(T ) (pga. Huffman-algoritmens virkemåde).

48 Korrekthed Lad T være Huffmans output på input I. Lad T være Huffmans output på input I (optimalt træ pr. induktionsantagelse, da antal tegn i dette input er n 1). Lad T være et optimalt træ på input I hvor bladene for tegnene c 1 og c 2 er søskende (et sådant optimalt træ eksisterer iflg. lemma). Lad T være T hvor bladene for tegnene c 1 og c 2 samt deres forælder er erstattet af bladet z (med frekvens f 1 + f 2 ). For et træ τ for input I, lad Expand(τ) være τ med bladet med tegnet z erstattet af et træ med en rod og to blade med tegnene c 1 og c 2. T = Expand(T ) (pga. definition af T ). Cost(Expand(τ)) = Cost(τ) + f 1 + f 2 (koder for c 1 og c 2 forlænges med én). T = Expand(T ) (pga. Huffman-algoritmens virkemåde). Cost(T ) Cost(T ) = Cost(Expand(T )) = Cost(T ) + f 1 + f 2 Cost(T ) + f 1 + f 2 = Cost(Expand(T )) = Cost(T ).

49 Illustration Input: I Input: I T Expand Contract T Expand T T Contract Contract(τ) er her det omvendte af Expand() [kun mulig når c 1 og c 2 er søskende i τ]. Argument igen: Cost(T ) Cost(T ) = Cost(Expand(T )) = Cost(T ) + f 1 + f 2 Cost(T ) + f 1 + f 2 = Cost(Expand(T )) = Cost(T ). Så Cost(T ) = Cost(T ), hvilket beviser at Huffman leverer et optimalt træ for input I.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træer

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering 1 / 36 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 6, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen.

Invarianter. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af) dens udførelse. Udgør ofte kernen af ideen bag algoritmen. Invariant: Et forhold, som vedligeholdes af algoritmen gennem (dele af)

Læs mere

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer Philip Bille. Vedligehold en dynamisk mængde S af elementer. Hver element x er tilknyttet en nøgle x.key og satellitdata x.data. MAX(): returner element med største nøgle. EXTRACTMAX(): returner og fjern

Læs mere

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer

Prioritetskøer. Prioritetskøer. Prioritetskøer. Prioritetskøer Philip Bille (priority-queues). Vedligehold en dynamisk mængde S af elementer. Hver element x er tilknyttet en nøgle x.key og satellitdata x.data. MAX(): returner element med største nøgle. EXTRACTMAX():

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2016 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 20. april, 2016 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Datastrukturer (recap) Datastruktur = data + operationer herpå

Datastrukturer (recap) Datastruktur = data + operationer herpå Dictionaries Datastrukturer (recap) Datastruktur = data + operationer herpå Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data (ofte underforstået, også

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2017 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 6. april, 2017 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 7. juni 00, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2019 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 10. april, 2019 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille

Binære søgetræer. Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb. Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor Sletning Trægennemløb Philip Bille Binære søgetræer Nærmeste naboer Binære søgetræer Indsættelse Predecessor og successor

Læs mere

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er)

Algoritmeanalyse. Øvre grænse for algoritme. Øvre grænse for problem. Nedre grænse for problem. Identificer essentiel(le) operation(er) Algoritmeanalyse Identificer essentiel(le) operation(er) Øvre grænse for algoritme Find øvre grænse for antallet af gange de(n) essentielle operation(er) udføres. Øvre grænse for problem Brug øvre grænse

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 0205. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Mandag den 6. juni 2016, kl. 15:00 19:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned.

22 Hobe. Noter. PS1 -- Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. 22 Hobe. Binære hobe. Minimum-hob og maximum-hob. Den abstrakte datatype minimum-hob. Opbygning af hobe. Operationen siv-ned. Indsættelse i hobe. Sletning af minimalt element i hobe. Repræsentation. 327

Læs mere

Algoritmer og invarianter

Algoritmer og invarianter Algoritmer og invarianter Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker. Iterative algoritmer Algoritmen er overordnet set een eller flere while eller for-løkker.

Læs mere

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er

Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er Definition : Et træ er en sammenhængende ikke-orienteret graf uden simple kredse. Sætning : En ikke-orienteret graf er et træ hvis og kun hvis der er en unik simpel vej mellem ethvert par af punkter i

Læs mere

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti.

Korteste veje i vægtede grafer. Længde af sti = sum af vægte af kanter på sti. Korteste veje Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. Korteste veje i vægtede grafer Længde af sti = sum af vægte af kanter på sti. δ(u, v) = længden af en korteste

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur (struktur opbygget af et endeligt antal enkeltdele) blandt mange mulige. Eksempler:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen kreds af kanter. Træ

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2013 Projekt, del I Institut for matematik og datalogi Syddansk Universitet 5. marts, 2013 Dette projekt udleveres i to dele. Hver del har sin deadline, således

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter.

Forén og find. Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter. Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening Stikompression Dynamiske sammenhængskomponenter Philip Bille Forén og find Introduktion Hurtig find Hurtig forening Vægtet forening

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 3/2. n logn (3/2) n. 2 3logn (3/2) n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 3/2. n logn (3/2) n. 2 3logn (3/2) n Side af 0 sider Opgave (4%) Ja Nej n er O(n / )? n +n er O(n )? (logn) er O( logn )? n er O()? /n er O(logn)? Opgave (4%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: logn

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 0205. Varighed: 4 timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Minimum udspændende Træer (MST)

Minimum udspændende Træer (MST) Minimum udspændende Træer (MST) Træer Et (frit/u-rodet) træ er en uorienteret graf G = (V, E) som er Sammenhængende: der er en sti mellem alle par af knuder. Acyklisk: der er ingen lukket kreds af kanter

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer (af samme type). 2. Løs delproblemerne ved rekursion (dvs. kald algoritmen

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET EKSAMEN. Grundkurser i Datalogi. Algoritmer og Datastrukturer 1 (2003-ordning)

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET EKSAMEN. Grundkurser i Datalogi. Algoritmer og Datastrukturer 1 (2003-ordning) INSTITUT FOR DATALOGI, AARHUS UNIVERSITET EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 10. august 2012, kl. 9.00-11.00 Eksamenslokale: Finlandsgade

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 2 2 n 1/n (logn) n. n 2 Side af sider Opgave (%) Ja Nej n er O(n n)? n er O(n+n )? ( n ) er O( n )? logn er O(n / )? n +n er O(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn)

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

DM13-1. Obligatorisk opgave E.05. Jacob Aae Mikkelsen

DM13-1. Obligatorisk opgave E.05. Jacob Aae Mikkelsen DM13-1. Obligatorisk opgave E.05 Jacob Aae Mikkelsen - 191076 26. september 2005 Indhold Analyse af problemstillingen........................ 2 Spørgsmål 1................................. 3 Spørgsmål

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Figur: Terminologi: n = V, m = E (eller V og E (mis)bruges som V og E ).

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Intervalsøgning. Algoritmisk geometri. Motivation for intervaltræer. Intervalsøgning. Lad der være givet en database over ansatte i en virksomhed

Intervalsøgning. Algoritmisk geometri. Motivation for intervaltræer. Intervalsøgning. Lad der være givet en database over ansatte i en virksomhed Algoritmisk geometri Intervalsøgning 1 2 Motivation for intervaltræer Intervalsøgning Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Vi kan

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Algoritmisk geometri

Algoritmisk geometri Algoritmisk geometri 1 Intervalsøgning 2 Motivation for intervaltræer Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Antag, at vi ønsker at

Læs mere

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille

Korteste veje. Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs. Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje på DAGs Philip Bille Korteste veje Introduktion Egenskaber for korteste veje Dijkstras algoritme Korteste veje

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Mandag den 27. maj 2002, kl. 9.00 13.00 Opgave 1 (25%) Denne opgave handler om multiplikation af positive heltal.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 7 n 1 7 7/n. 7nlogn. 7n 7nlogn n7

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 7 n 1 7 7/n. 7nlogn. 7n 7nlogn n7 Side af 0 sider Opgave (%) Ja Nej /n er O(n )? n (logn) er O(n 3 )? n + n er O(3 n )? n er O((logn) 3 )? nlogn er Ω(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen:

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 4 n n 3n n 2 /logn 5 n n (logn) 3n n 2 /logn 4 n n 5 n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 4 n n 3n n 2 /logn 5 n n (logn) 3n n 2 /logn 4 n n 5 n Side af 0 sider Opgave (%) Ja Nej n er O(0n logn)? n er O(n )? n +n er O(n )? n logn er O(n )? n logn er O(n)? Opgave (%) Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2018 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 20. marts, 2019 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

INSTITUT FOR DATALOGI, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi INSTITUT FOR DATALOGI, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 12 (tolv) Eksamensdag: Fredag den 16. august 2013,

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2018 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 13. marts, 2018 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:

Læs mere

Mindste udspændende træ

Mindste udspændende træ Mindste udspændende træ Introduktion Repræsentation af vægtede grafer Egenskaber for mindste udspændende træer Prims algoritme Kruskals algoritme Philip Bille Mindste udspændende træ Introduktion Repræsentation

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z},

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 7 n 1/2 2 n /n 3 2logn n 2 /logn

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 7 n 1/2 2 n /n 3 2logn n 2 /logn Eksamen august 0 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) n er Ω(n)? n er O( n )? n er O(8logn)? + er O(n)? n er O(n / )? Opgave (%) Opskriv følgende funktioner efter stigende

Læs mere