Noter om seriediagrammet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Noter om seriediagrammet"

Transkript

1 Noter om seriediagrammet Jacob Anhøj 21. september 2013 Indhold Indhold 1 1 Indledning 2 2 Signaler om ikke-tilfældig variation Skiftsignalet Krydssignalet Andre signaler Seriediagrammets sensitivitet og specificitet 5 4 Principper for brug af seriediagrammer 7 5 Konklusion 8 Litteratur 9 6 Appendiks 1: Praktisk brug og fortolkning af seriediagrammer 10 7 Appendiks 2: Grænseværdier for serielængde og antal kryds i seriediagrammer 12 1

2 1 Indledning Seriediagrammet er et enkelt og nyttigt redskab til at studere udviklingen af kvalitet over tid. En statistisk analyse af seriediagrammet kan med stor sikkerhed afgøre, om den proces, man studerer, indeholder andet end blot tilfældig variation. Ikke-tilfældig variation kan være resultatet af bevidste forbedringstiltag eller utilsigtede, måske uønskede, forandringer i processen[1, 2, 3]. Diagramitel Indikatorværdi Tid/rækkefølge Figur 1: Seriediagram Seriediagrammet er et kurvediagram med indikatorværdien på y-aksen og tiden eller rækkefølgen på x-aksen (figur 1). Midt i diagrammet er en vandret linje, der markerer medianen, som deler datapunkterne, så halvdelen ligger over medianen og halvdelen ligger under. Et datapunkt repræsenterer indikatorværdien i en enkelt stikprøve. Stikprøven kan stamme fra en (klinisk) arbejdsgang, fx andelen af indlagte patienter, som har fået målt puls, blodtryk og temperatur ved indlæggelsen eller ventiden fra henvisning til undersøgelse. Eller stikprøven kan repræsentere et (klinisk) outcome, fx postoperativ mortalitet eller navlesnors-ph hos nyfødte. Hvis den proces, man studerer, kun udviser tilfældig variation, vil datapunkterne fordele sig tilfældigt omkring medianen. Ved tilfældigt forstås, at man aldrig på forhånd kan vide, på hvilken side af medianen det næste punkt vil falde, men at sandsynligheden for begge udfald er lige stor, 50 %, og at datapunkterne er indbyrdes uafhængige, dvs. at placeringen af ét datapunkt ikke har nogen betydning for placeringen af det næste. Hvis processen på et tidspunkt begynder at ændre sig, så niveauet stiger eller falder betydeligt, ændres disse forudsætninger, og der vil opstå særlige mønstre i datapunkternes fordeling. Disse mønstre kalder vi signaler. 2

3 2 Signaler om ikke-tilfældig variation I teorien kan man opfinde mange test for signaler, som vil kunne bruges til at identificere ikke-tilfældig variation. Men i praksis har særligt to signaler vist sig anvendelige. Skiftsignal: Der optræder usædvanlig lange serier af datapunkter på samme side af medianen. Krydssignal: Kurven krydser medianen usædvanlig få gange. Grænsen for, hvor mange datapunkter, der skal til et skiftsignal eller hvor få kryds, der skal til et krydssignal, afhænger af det totale antal datapunkter i diagrammet og kan beregnes eller slås op i en tabel (Appendiks 2: Grænseværdier for serielængde og antal kryds i seriediagrammer) Seriediagrammet i figur 1 indeholder i alt 20 datapunkter. Den længste serie af datapunkter på samme side af medianen er 4 (punkt 4 7), og kurven krydser medianen 9 gange. Ifølge tabellen er den øvre grænse for længste serie (skiftsignalet) 7 og nedre grænse for antal kryds (krydssignalet) 6. Diagrammet viser således kun tilfældig variation. 2.1 Skiftsignalet Skiftsignalet bygger på theory of long runs og er beskrevet af bl.a. Schilling[4]. En serie (run) er en række af ens elementer i en sekvens. Det kan fx være plat og krone, plus og minus, mænd og kvinder eller datapunkter over og under medianen. Teorien er i øvrigt ikke begrænset til situationer med kun to slags elementer eller udfald med lige stor sandsynlighed. Men disse tilfælde er naturligvis enklest at regne på. Kaster man fx en mønt 12 gange kunne udfaldet være dette: PKKKPKPPKKKK. Der er i alt 6 serier, og den længste serie er på 4 elementer. Ifølge teorien er den forventede længste serie lig med log 2 (n), hvor n er antallet af elementer i alt. I eksemplet med 12 kast med en mønt forventer vi altså, at den længste serie er log 2 (12) = 4 (efter afrunding til nærmeste heltal). Den længste serie har i praksis naturligvis ikke altid præcis den forventede længde. Det kan vises, at spredningen er uafhængigt af antallet af elementer, og at det omtrentlige 95 % prædiktionsinterval er log 2 (n) ± 3. Dvs. at det vil være udsædvanligt at finde en serie med flere end 7 elementer, hvis vi kaster en mønt 12 gange. Kaster vi mønten 23 gange, er grænsen 8. Det er værd at være opmærksom på, at skiftsignalet er mere følsomt for ikketilfældig variation, hvis medianen på forhånd er kendt og fastholdes i modsætning til, hvis medianen er flydende og genberegnes efter hvert nyt datapunkt. Det er derfor god stil, at fastlægge medianen, så snart man har nok datapunkter, som kun udviser tilfældig variation. I praksis bør man have mindst 12, helst 20 3

4 eller flere, datapunkter til at fastlægge medianen. Medianen bør genberegnes, hvis processen ændrer sig. 2.2 Krydssignalet Krydssignalet er en forenkling af metoden, som blev beskrevet af Swed og Eisenhart i 1943 og ofte kaldes runs analysis (serieanalyse)[5]. Serieanalysen bygger på den teoretiske fordelingen af antallet af serier i en sekvens. Formlerne til beregning af de tilhørende sandsynligheder er komplicerede, så i praksis bruger man ofte tabelopslag til at afgøre, om der i en sekvens er for få eller for mange serier i forhold til, hvad man ville forvente, hvis sekvensen var tilfældig. Chen har for nyligt beskrevet en enklere tilgang til samme problem[6]: I stedet for at tælle antallet af serier, tæller man, hvor mange gange sekvensen skifter i vores tilfælde, at kurven krydser medianen. Antallet af kryds er i sagens natur én mindre end antallet af serier. Antallet af kryds i en sekvens ligger mellem 0 og n 1 og følger en binomialfordeling. Det betyder, at grænseværdier for det forventede antal kryds kan regnes ud eller slås op i en tabel over binomialfordelingens kumulerede sandsynligheder. Til vores formål, at identificere ændringer i processers niveau, er vi interesserede i den nedre grænse for antal kryds. Den nedre 5 %-grænse kan beregnes i et regneark, fx Excel, med formlen CRITBINOM(n 1; 0,5; 0,05), hvor n er antallet af datapunkter. Den tilsvarende funktion i R hedder qbinom(0.05, n 1, 0.5). Med 12 datapunkter er grænseværdien 3. Det vil således være usædvanligt at finde færre end 3 kryds i et seriediagram med 12 datapunkter. 2.3 Andre signaler Foruden disse to test til identifikation af ikke-tilfældig variation, bør man også vurdere seriediagrammet for andre tegn på ikke-tilfældig variation. Det kan fx være cykliske mønstre pga. sæson- eller døgnvariation i målingerne eller oplagt afvigende enkeltmålinger. Man skal dog være meget forsigtig med at dømme en enkeltmåling ude blot fordi den er den højeste eller laveste i et datasæt. En afvigende enkeltmåling er normalt en, som alle vil undre sig over. Et hyppigt anbefalet og meget brugt signal for ikke-tilfældig variation er trendsignalet. En trend er en udsædvanlig lang serie af målinger, der stiger eller falder. De fleste sætter en fast grænse ved 5, 6 eller 7 datapunkter[1, 2, 3], men den præcise grænseværdi afhænger ligesom for de andre signaler af antallet af datapunkter, som er til rådighed og kan slås op i en tabel[7]. Trendsignalet er udviklet til at opdage små vedvarende skred (afdrift) i målingerne. I praksis har trendsignalet dog vist sig uegnet til formålet[8]. Den tilfældige variation (støjen) mellem nabomålinger vil næsten altid overstige afdriften (signalet), hvorfor signalet alligevel opdages af skift- eller krydssignalet, længe før trenden (ved en tilfældighed) viser sig. Og i de sjældne tilfælde, hvor afdriften overstiger 4

5 den tilfældige variation, vil de øvrige signaler give sig til kende meget hurtigt. Trendsignalet tilføjer derfor intet udover falske alarmer til seriediagramsanalysen og kan ikke anbefales. 3 Seriediagrammets sensitivitet og specificitet Som ved alle statistiske test er der risiko for, at seriediagrammet signalerer, selvom der reelt ingen forandringer er sket, eller omvendt ikke signalerer, selvom der er sket forandringer i processen. Risikoen for falske signaler (type 1-fejl) ligger for skift- og krydssignalet med de foreslåede grænseværdier omkring 5 %, uanset hvor mange datapunkter man har. Kombinerer man de to test, stiger risikoen for falske signaler en smule til gengæld for en højere følsomhed. Hvis der derimod sker forandringer i processen, vil seriediagrammet på et eller andet tidspunkt signalere. Spørgsmålet er bare, hvor længe man skal vente på signalet (type 2-fejl). Det kommer naturligvis an på, hvor stor forandringen (signalet) er i forhold til den tilfældige variation, som også er i processen (støjen). Med simulationsstudier kan man vise, at hvis forandringen er af en størrelse, der svarer til 1,5 standardafvigelse, vil seriediagrammet med stor sikkerhed signalere før der er gået 20 datapunkter. Er forandringen 2 standardafvigelser, vil seriediagrammet med stor sikkerhed signalere allerede inden, der er gået 10 datapunkter (figur 2). Selvom seriediagrammet normalt anses for at være mindre effektivt end kontroldiagrammet, viser simulationsstudiet, at skift- og krydssignalerne i praksis er mindst lige så følsomme for ikke-tilfældig variation i størrelsesordenen 1 2 standardafvigelser som sigmasignalet, der benyttes i kontroldiagrammer, når et punkt falder uden for kontrolgrænsen. 5

6 Signal rate during shift in process mean (N simulations = 1000) Crossings signal Shift signal 1.0 Proportion of run charts with signal Shift 0.0* Sigma signal Number of data points in run chart Figur 2: Graferne viser andelen af simulerede seriediagrammer, som signalerer med hhv. skift-, kryds- og sigmasignalet. Sigmasignalet er det klassiske signal i kontroldiagrammer, når et datapunkt findes mere end 3 standardafvigelser fra midtlinjen. Andelen af seriediagrammer som signalerer afhænger af antallet af datapunkter og størrelsen af ændringen (shift). Stjerne (*) angiver at simulationen er foretaget med en flydende median, dvs. at medianen genberegnes efter hvert datapunkt. De øvrige grafer er beregnet med fast median. 6

7 4 Principper for brug af seriediagrammer Indikatormålinger kan principielt benyttes i mindst tre situationer: (1) Når man til planlægning af en forbedringsindsats ønsker at opnå kendskab til, på hvilket niveau en proces fungerer, og om der findes ikke-tilfældig variation. (2) Når man ønsker at dokumentere, at indsatsen medfører de ønskede forbedringer. (3) Når man ønsker at monitorere og kontrollere kritiske processer, som allerede fungerer på et tilfredsstillende niveau for hurtigt at kunne opdage og reagere på eventuelle forværringer. Særligt i situation 1 og 2, er det selvsagt nødvendigt med et vist tempo i seriediagrammet, hvis man inden for en overskuelig tidsperiode ønsker at af- eller bekræfte tilstedeværelsen af ikke-tilfældig variation. Man skal som minimum tage stikprøver hyppigere end de forventede forandringer udvikler sig. Arbejder man fx med en proces, man forventer vil forandre sig i løbet af uger til måneder, skal man som minimum måle ugentligt. Det giver ingen mening, og er i øvrigt statistisk ugyldigt, at måle hen over perioder, som indeholder væsentlige forandringer. Omvendt skal måleperioden være lang nok til, at tallene er store nok. Som tommelfingerregel kan man tilstræbe at nævneren altid er tocifret, og at tælleren aldrig (eller sjældent) er nul. Til opgørelse af de fleste procesindikatorer, kan man komme meget langt med små daglige stikprøver fra de processer, man ønsker at følge. Hvis man dagligt udtager en tilfældig stikprøve på 3 5 dataelementer (fx patienter eller handlinger) og herefter aggregerer data ugentligt, har man således mellem 21 og 35 i nævneren i hvert datapunkt, hvilket i langt de fleste tilfælde er rigeligt til et troværdigt seriediagram. I eksemplet fra indledningen tjekker man hver dag 3 5 tilfældige indlæggelser for, om patienten fik målt temperatur, puls, og blodtryk. Indikatoren opgøres ugentligt ved at dividere det samlede antal indlæggelser, hvor vitalværdierne blev målt med det samlede antal indlæggelser i ugens stikprøver. Disse principper for brug af seriediagrammer er velegnede til situation 1 og 2. Hvis formålet derimod som i situation 3 er at monitorere og kontrollere kritiske processer, som allerede fungerer på et tilfredsstillende niveau for hurtigt at kunne opdage og handle på eventuelle forværringer, kan man overveje dels at reducere målehyppigheden fx fra dag til uge, uge til måned eller måned til kvartal og dels at slække på grænseværdierne i tabellen. Dette kan være rimeligt at mindst to grunde: (1) Identifikation af en forværring i en tidligere stabil proces er i princippet en ensidet test, hvorfor det er statistisk i orden at slække på grænseværdierne. (2) Prisen for at opnå den høje sikkerhed mod falske signaler, som de konservative grænseværdier giver, kan være uacceptabel høj, hvis der er tale om (livs)kritiske resultatindikatorer, fx komplikations- eller mortalitetsrater. Beslutningen om at slække grænseværdierne bør naturligvis helst tages før, man begynder at samle data og i hvert fald før man konstruerer sit seriediagram. Men i virkeligheden er seriediagrammet ikke det bedste redskab til overvågningsformål. 7

8 Klassiske kontroldiagrammer (Shewhart Charts) er velegnede til hurtigt at identificere pludselige store forandringer i en ellers stabil proces. Og visse typer kontroldiagrammer (CUSUM, EWMA) er følsomme for små vedvarende forandringer[9, 10]. Kontroldiagrammer er derfor mere velegnede til kontrol- og overvågningsformål. Men kontroldiagrammer er komplicerede at konstruere, kræver specialsoftware eller programmering, og er følsomme for afvigelser fra antagelser om datas teoretiske fordelinger. 5 Konklusion Seriediagrammet er et enkelt og nyttigt redskab til at identificere ikke-tilfældig variation i kliniske arbejdsgange og resultater. Ikke-tilfældig variation findes, hvis den længste serie er længere end grænseværdien eller hvis antallet af kryds er mindre end grænseværdien. Grænseværdierne kan slås op i en tabel eller beregnes i et regneark. Det ofte anbefalede trendsignal har vist sig ubrugelig i praksis og bør ikke anvendes. 8

9 Litteratur [1] Jacob Anhøj og Brian Bjørn: Statistisk kvalitetsstyring i sundhedsvæsenet; Ugeskrift for Læger, 171/21, 18. maj 2009 [2] Carey RG. How Do You Know That Your Care Is Improving? Part I: Basic Concepts in Statistical Thinking. J Ambulatory Care Manage 2002;25(1):80-87 [3] Perla RJ, Provost LP, Murray SK. The run chart: a simple analytical tool for learning from variation in healthcare processes. BMJ Qual Saf 2011;20(1):46-51 [4] Schilling MF. The Surprising Predictability of Long Runs. Mathematics Magazine, 2012;85(2): [5] Swed FS, Eisenhart C. Tables for Testing Randomness of Grouping in a Sequence of Alternatives. The Annals of Mathematical Statistics 1943;14(1):66-87 [6] Chen Z. A note on the runs test. Model Assisted Statistics and Applications. 2010;5(2):73-77 [7] Olmstead PS. Distribution of Sample Arrangements for Runs Up and Down. The Annals of Mathematical Statistics 1943;17(1):24-33 [8] Davis RB, Woodall WH. Performance of the Control Chart Trend Rule Under Linear Shift. Journal of Quality Technology 1988;20(4): [9] Langley GL, Nolan KM, Nolan TW, Norman CL, Provost LP. The Improvement Guide: A Practical Approach to Enhancing Organizational Performance (2nd edition). San Francisco: Jossey-Bass Publishers; 2009 [10] Per Winkel, Nien Fan Zhang. Statistical Development of Quality in Medicine. John Wiley & Sons, Ltd, Chichester, UK

10 6 Appendiks 1: Praktisk brug og fortolkning af seriediagrammer 1. Beskriv den eller de relevante indikatorer og (hvis relevant) fastsæt et mål for den ønskede forbedring. 2. Indsaml data og afsæt datapunkterne i rækkefølge i et diagram. Forbind datapunkterne med rette linjer. 3. Efter mindst 12, helst 20 eller flere datapunkter, indtegn medianen i diagrammet, så halvdelen af datapunkterne befinder sig over medianen og halvdelen under. 4. Tæl antallet af brugbare datapunkter, dvs. datapunkter, som ikke ligger direkte på medianen. 5. Find den længste serie af datapunkter over eller under medianen. Datapunkter, som ligger direkte på medianen tæller ikke med, dvs. de hverken bryder eller bidrager til serien. 6. Tæl antallet af gange kurven krydser medianen. 7. Sammenlign længste serie og antallet af kryds med grænseværdierne i tabellen. Ikke-tilfældig variation findes, hvis den længste serie er længere end grænseværdien eller, hvis antallet af kryds er mindre end grænsværdien. 8. Se efter andre mønstre i data, der tyder på ikke-tilfældig variation, fx oplagt afvigende enkeltmålinger eller cykliske mønstre. 9. Hvis diagrammet kun viser tilfældig variation, forlæng medianen og fortsæt med at indsamle og plotte data, og arbejd på at forbedre processen. Hvis diagrammet viser uønsket ikke-tilfældig variation, identificer og eliminer årsagen eller årsagerne. 10. Når målet er nået, fastlæg den nye median, benyt evt. målet som median. 11. Forbedring er opnået og fastholdt, når processen kun udviser tilfældig variation omkring mållinjen. 12. Overvej at benytte et kontroldiagram til at overvåge processen fremover. 10

11 Postop mortality before and after implementation of safe surgery Percent Baseline Data New Data 1.11 Jan 2010 Jul 2010 Jan 2011 Jul 2011 Jan 2012 Jul 2012 Month Obs. (usefull) = 35 (35) Crossings (min) = 15 (12) Longest run (max) = 9 (8) Figur 3: Seriediagrammet viser et eksempel på anvendelse af principperne for brug af seriediagrammer til dokumentation af forbedringer: Indikatoren er den postoperative mortalitet på et dansk sygehus før og efter indførsel af WHO s sikker kirurgi-tjekliste. Medianen er beregnet for baselineperioden og forlænget ind i efter-perioden. Diagrammet viser et skift i efter-perioden, idet den længste serie består af ni datapunkter mod forventet højst otte. Skiftet går i den ønskede retning, og forandringen repræsenterer derfor en forbedring. 11

12 7 Appendiks 2: Grænseværdier for serielængde og antal kryds i seriediagrammer Ikke-tilfældig variation findes, hvis den længste serie er længere end grænseværdien eller hvis antallet af kryds er mindre end grænseværdien. Antal datapunkter som ikke er på medianen Øvre grænse for længste serie Nedre grænse for antal kryds

13 Antal datapunkter som ikke er på medianen Øvre grænse for længste serie Nedre grænse for antal kryds

14 Antal datapunkter som ikke er på medianen Øvre grænse for længste serie Nedre grænse for antal kryds

15 Antal datapunkter som ikke er på medianen Øvre grænse for længste serie Nedre grænse for antal kryds

Noter om seriediagrammet

Noter om seriediagrammet Noter om seriediagrammet Jacob Anhøj 7. januar 2013 Indhold Indhold 1 1 Indledning 2 2 Signaler om ikke-tilfældig variation 3 2.1 Skiftsignalet.............................. 3 2.2 Krydssignalet.............................

Læs mere

Statistisk kvalitetsudvikling med seriediagrammer

Statistisk kvalitetsudvikling med seriediagrammer Statistisk kvalitetsudvikling med seriediagrammer Jacob Anhøj Overlæge, DIT, Rigshospitalet 5. januar 2015 Indhold 1 Variationsbegrebet 2 2 Seriediagrammets anatomi og fysiologi 4 3 Signaler om ikke-tilfældig

Læs mere

Mål med mening: Statistisk kvalitetsudvikling med seriediagrammer

Mål med mening: Statistisk kvalitetsudvikling med seriediagrammer Mål med mening: Statistisk kvalitetsudvikling med seriediagrammer Jacob Anhøj Overlæge, DIT, Rigshospitalet 31. august 2014 jacob.anhoej@regionh.dk Indhold Indhold 1 1 Indledning: Variationsbegrebet 3

Læs mere

Datadrevet forbedringsarbejde. Rie L R Johansen Dansk Selskab for Patientsikkerhed

Datadrevet forbedringsarbejde. Rie L R Johansen Dansk Selskab for Patientsikkerhed Datadrevet forbedringsarbejde Rie L R Johansen Dansk Selskab for Patientsikkerhed Formål med sessionen Genopfriske teori om seriediagrammer Træne tolkning af seriediagrammer Er der nogle særlige spørgsmål,

Læs mere

Sjov med tal. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj. Dansk Selskab for Patientsikkerhed

Sjov med tal. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj. Dansk Selskab for Patientsikkerhed Sjov med tal Introduktion til statistisk kvalitetsudvikling Jacob Anhøj Dansk Selskab for Patientsikkerhed 2013 Dilbert om tal Jacob Anhøj (DSFP) Sjov med tal 2013 2 / 28 Tre spørgsmål og en cykel??? o^ô

Læs mere

Mål med mening 2. Videre med SPC. Jacob Anhøj. 10 maj Overlæge, DIT, Rigshospitalet

Mål med mening 2. Videre med SPC. Jacob Anhøj. 10 maj Overlæge, DIT, Rigshospitalet Mål med mening 2 Videre med SPC Jacob Anhøj Overlæge, DIT, Rigshospitalet 10 maj 2016 Program Mål, målinger og variation Seriediagrammet, kvalitetsudviklerens schweizerkniv Indikatorer, målestrategi og

Læs mere

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj. Dansk Selskab for Patientsikkerhed

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj. Dansk Selskab for Patientsikkerhed Mål med mening Introduktion til statistisk kvalitetsudvikling Jacob Anhøj Dansk Selskab for Patientsikkerhed 2013 Statistik om statistik Jacob Anhøj (DSFP) Mål med mening 2013 2 / 50 Virkelighedsfjerne

Læs mere

Data driver arbejdet. Rie L R Johansen Dansk Selskab for Patientsikkerhed

Data driver arbejdet. Rie L R Johansen Dansk Selskab for Patientsikkerhed Data driver arbejdet Rie L R Johansen Dansk Selskab for Patientsikkerhed Hvad kan data bruges til i jeres forbedringsarbejde? Forbedringsmodellen Hvad ønsker vi at opnå? Hvornår ved vi, at en forandring

Læs mere

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj, overlæge, DIT. Diagnostisk Center, Rigshospitalet

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj, overlæge, DIT. Diagnostisk Center, Rigshospitalet Mål med mening Introduktion til statistisk kvalitetsudvikling Jacob Anhøj, overlæge, DIT Diagnostisk Center, Rigshospitalet 2014 Indhold Om at se på data Kvalitetsudviklerens fornemmelse for variation

Læs mere

Mål med mening. Hvordan måler vi, om en forandring er en forbedring? Jacob Anhøj, overlæge, DIT. Rigshospitalet

Mål med mening. Hvordan måler vi, om en forandring er en forbedring? Jacob Anhøj, overlæge, DIT. Rigshospitalet Mål med mening Hvordan måler vi, om en forandring er en forbedring? Jacob Anhøj, overlæge, DIT Rigshospitalet 2015-11-05 Jacob Anhøj (Rigshospitalet) Mål med mening 2015-11-05 1 / 28 Program Om at se på

Læs mere

Mål med mening: Om at bruge data til forbedring af den faglige kvalitet

Mål med mening: Om at bruge data til forbedring af den faglige kvalitet Mål med mening: Om at bruge data til forbedring af den faglige kvalitet Jacob Anhøj, overlæge, DIT Rigshospitalet 2013-11-05 Mål for kvalitet Nye styringsmekanismer skal understøtte kvalitet frem for kvantitet

Læs mere

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj Overlæge, DIT, Rigshospitalet

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj Overlæge, DIT, Rigshospitalet Mål med mening Introduktion til statistisk kvalitetsudvikling Jacob Anhøj Overlæge, DIT, Rigshospitalet 2015-04-28 Læringsmål at forstå kvalitetsdatas dynamiske natur at kunne konstruere og fortolke seriediagrammer

Læs mere

Datadrevet forbedringsarbejde. Rie L R Johansen Brian Bjørn Dansk Selskab for Patientsikkerhed

Datadrevet forbedringsarbejde. Rie L R Johansen Brian Bjørn Dansk Selskab for Patientsikkerhed Datadrevet forbedringsarbejde Rie L R Johansen Brian Bjørn Dansk Selskab for Patientsikkerhed Hvorfor måler vi? Kan vi forkaste nulhypotesen? Set over tid, er der så tegn til, at kvaliteten bliver bedre?

Læs mere

Datadrevet forbedringsarbejde

Datadrevet forbedringsarbejde Datadrevet forbedringsarbejde Læringsseminar 2 23. september 2014 Indhold Hvorfor måler vi? Forstå variation Seriediagrammet Hvorfor måler vi? 7 trin til gode målinger http://www.youtube.com/watch?v=za1o77janbw

Læs mere

Seriediagrammer - Guide til konstruktion i LibreOffice Calc

Seriediagrammer - Guide til konstruktion i LibreOffice Calc Seriediagrammer - Guide til konstruktion i LibreOffice Calc På forbedringsvejlederuddannelsen anvender vi seriediagrammer til at skelne mellem tilfældig og ikketilfældig variation. Med et seriediagram

Læs mere

Hvor skal vi hen du? Driverdiagrammer i praksis LKT antibiotika, 1. læringsseminar 13. og 14. november 2017

Hvor skal vi hen du? Driverdiagrammer i praksis LKT antibiotika, 1. læringsseminar 13. og 14. november 2017 Hvor skal vi hen du? Driverdiagrammer i praksis LKT antibiotika, 1. læringsseminar 13. og 14. november 2017 v/ Anne-Marie Blok Hellesøe, Specialkonsulent, Diagnostisk Center, Rigshospitalet, Region Hovedstaden

Læs mere

Mål med mening. Introduktion til statistisk kvalitetsstyring. Overlæge Jacob Anhøj Dansk Selskab for Patientsikkerhed

Mål med mening. Introduktion til statistisk kvalitetsstyring. Overlæge Jacob Anhøj Dansk Selskab for Patientsikkerhed Mål med mening Introduktion til statistisk kvalitetsstyring Overlæge Jacob Anhøj Dansk Selskab for Patientsikkerhed Virkelighedsfjerne kvalitetskrav Hvis I virkelig ønsker store besparelser og høj kvalitet

Læs mere

Statistisk processtyring i sundhedsvæsenet

Statistisk processtyring i sundhedsvæsenet 1764 VIDENSKAB Ugeskr Læger 171/21 18. maj 2009 lige krav til indsigt og situationsfornemmelse hos regulator, men anerkendelse af, at der er plads til forskellighed, må forventes at motivere aktørerne.

Læs mere

Kompendium i kvalitetsforbedring for sundhedsarbejdere. Jacob Anhøj Overlæge, DIT, Rigshospitalet

Kompendium i kvalitetsforbedring for sundhedsarbejdere. Jacob Anhøj Overlæge, DIT, Rigshospitalet Kompendium i kvalitetsforbedring for sundhedsarbejdere Jacob Anhøj Overlæge, DIT, Rigshospitalet 18. oktober 2014 Indledning Jeg var til møde på et dansk sygehus. Mødet handlede om et lokalt kvalitetsudviklingsinitiativ,

Læs mere

Det store overblik. Hundrede år med kvalitetsudvikling. Jacob Anhøj, overlæge, DIT. Diagnostisk Center, Rigshospitalet

Det store overblik. Hundrede år med kvalitetsudvikling. Jacob Anhøj, overlæge, DIT. Diagnostisk Center, Rigshospitalet Det store overblik Hundrede år med kvalitetsudvikling Jacob Anhøj, overlæge, DIT Diagnostisk Center, Rigshospitalet 2014 Noget om resultatstyring Eliminate management by numbers and goals. Instead, substitute

Læs mere

Nordsjællands Hospital. Workshop 5. Sikker medicinering

Nordsjællands Hospital. Workshop 5. Sikker medicinering Nordsjællands Hospital Workshop 5 Sikker medicinering Titel/beskrivelse (Sidehoved/fod) Navn (Sidehoved/fod) 1 Nordsjællands Hospital Program for i dag Titel/beskrivelse (Sidehoved/fod) Navn (Sidehoved/fod)

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj & Anne-Marie Blok Hellesøe. Diagnostisk Center, Rigshospitalet

Mål med mening. Introduktion til statistisk kvalitetsudvikling. Jacob Anhøj & Anne-Marie Blok Hellesøe. Diagnostisk Center, Rigshospitalet Mål med mening Introduktion til statistisk kvalitetsudvikling Jacob Anhøj & Anne-Marie Blok Hellesøe Diagnostisk Center, Rigshospitalet 2014 Indhold Om at se på data Kvalitetsudviklerens fornemmelse for

Læs mere

Diskutér to og to. 1. Hvorfor bruger vi data i forbedringsarbejdet? 2. Hvornår bruger vi data i forbedringsarbejdet?

Diskutér to og to. 1. Hvorfor bruger vi data i forbedringsarbejdet? 2. Hvornår bruger vi data i forbedringsarbejdet? Data vi lærer af Diskutér to og to 1. Hvorfor bruger vi data i forbedringsarbejdet? 2. Hvornår bruger vi data i forbedringsarbejdet? Hvorfor har vi så stor fokus på data? Fordi data brugt rigtigt kan understøtte

Læs mere

Mål og indikatorer Tryksår og medicin

Mål og indikatorer Tryksår og medicin Mål og indikatorer Tryksår og medicin Mål og indikatorer Tryksår og medicin Version 1, udgivet februar 2017 Indledning I Sikre Hænder har til formål at vise, at det er muligt med en målrettet indsats at

Læs mere

Hvordan ved vi, at en forandring er en forbedring?

Hvordan ved vi, at en forandring er en forbedring? Hvordan ved vi, at en forandring er en forbedring? Rie L R Johansen, Dansk Selskab for Patientsikkerhed Arjen Stoop, Dansk Selskab for Patientsikkerhed Pia Bladt Tjørnelund, Sønderborg Kommune Reflekter

Læs mere

Introduktion til statistisk processtyring

Introduktion til statistisk processtyring Introduktion til statistisk processtyring Jacob Anhøj Overlæge Dansk Selskab for Patientsikkerhed Program Noget om omgang med data Noget om at måle Noget om processer og variation Noget om serie- og kontroldiagrammer

Læs mere

Hvornår ved vi at en forandring er en forbedring?

Hvornår ved vi at en forandring er en forbedring? Hvornår ved vi at en forandring er en forbedring? Forbedringsmodellen Hvad ønsker vi at opnå? Hvornår ved vi, at en forandring er en forbedring? Hvilke forandringer kan iværksættes for at skabe forbedringer?

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Indikatorer, mål og målestrategi for Patientsikkert Sygehus

Indikatorer, mål og målestrategi for Patientsikkert Sygehus Indikatorer, mål og målestrategi for Patientsikkert Sygehus Indledning... 3 Overordnede målsætninger... 4 Målestrategi og -metoder... 5 Identifikation og beskrivelse af forbedringer... 7 Mobilt akutsystem...

Læs mere

Sikre fødsler. Sikre fødsler. Sikre. Sikre. Sikre. Pakker, indikatorer og målestrategi for Pakker, indikatorer og målestrategi for SIKRE FØDSLER

Sikre fødsler. Sikre fødsler. Sikre. Sikre. Sikre. Pakker, indikatorer og målestrategi for Pakker, indikatorer og målestrategi for SIKRE FØDSLER Sikre fødsler Sikre fødsler Sikre Sikre Sikre Pakker, indikatorer og målestrategi for Pakker, indikatorer og målestrategi for SIKRE SIKRE FØDSLER 1 Pakker, indikatorer og målestrategi for Sikre Fødsler

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Udvikling af den danske HSMR model. DSKS årsmøde den 15. januar 2010 Malene Cramer Engebjerg

Udvikling af den danske HSMR model. DSKS årsmøde den 15. januar 2010 Malene Cramer Engebjerg Udvikling af den danske HSMR model DSKS årsmøde den 5. januar Malene Cramer Engebjerg Program Konstruktion af datasæt Prediktionsmodellen Validering af prediktionsmodel Udregning af HSMR med prediktionsmodel

Læs mere

Introduktion til statistisk processtyring

Introduktion til statistisk processtyring Introduktion til statistisk processtyring Jacob Anhøj Overlæge Enhed for Patientsikkerhed Region Hovedstaden Program Processer og variation Seriediagrammet Kontroldiagrammet Introduktion til EpiData og

Læs mere

Dødelighed i ét tal giver det mening?

Dødelighed i ét tal giver det mening? Dødelighed i ét tal giver det mening? Jacob Anhøj Diagnostisk Center, Rigshospitalet 2014 Hospitalsstandardiseret mortalitetsrate, HSMR Definition HSMR = antal d/odsfald forventet antal d/odsfald 100 Antal

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Fig. 1 Billede af de 60 terninger på mit skrivebord

Fig. 1 Billede af de 60 terninger på mit skrivebord Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt

Læs mere

Statistik og beregningsudredning

Statistik og beregningsudredning Bilag 7 Statistik og beregningsudredning ved Overlæge Søren Paaske Johnsen, medlem af Ekspertgruppen Marts 2008 Bilag til Ekspertgruppens anbefalinger til videreudvikling af Sundhedskvalitet www.sundhedskvalitet.dk

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Forbedringsmodellen. En introduktion til et forbedringsværktøj og anvendelse af småskala-afprøvning

Forbedringsmodellen. En introduktion til et forbedringsværktøj og anvendelse af småskala-afprøvning Forbedringsmodellen En introduktion til et forbedringsværktøj og anvendelse af småskala-afprøvning Maria Staun, kvalitetskonsulent, Improvement Advisor, Sygehus Lillebælt Timeplan Inden kl. 1500 Inden

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Hvordan er brugen af data til forbedring forbundet med de daglige borger opgaver?

Hvordan er brugen af data til forbedring forbundet med de daglige borger opgaver? Hvordan er brugen af data til forbedring forbundet med de daglige borger opgaver? LS 2 ISH 10 & 11 oktober 2017 Pia Tjørnelund, sygeplejerske Sønderborg kommune Arjen Stoop, chefkonsulent Dansk Selskab

Læs mere

Kvalitetsudvikling i sundhedsvæsenet

Kvalitetsudvikling i sundhedsvæsenet Kvalitetsudvikling i sundhedsvæsenet Denne tekst forklarer og uddyber den tænkemåde, der ligger bag standard 1.2.1 Kvalitetsudvikling. Formålet med kvalitetsudvikling er bredt at øge kvaliteten af sundhedsvæsenets

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Introduktion Kursusholder: Kasper K. Berthelsen Opbygning: Kurset består af 5 blokke En blok består af: To normale

Læs mere

Data i det daglige. Søren Brogaard Brian Bjørn

Data i det daglige. Søren Brogaard Brian Bjørn Data i det daglige Søren Brogaard Brian Bjørn Forbedringsmodellen Mål Målinger Hvad ønsker vi at opnå? Hvornår ved vi, at en forandring er en forbedring? Hvilke forandringer kan iværksæ6es for at skabe

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 4 Statistik & sandsynlighedsregning 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet. Version 1, oktober 2013

Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet. Version 1, oktober 2013 Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet Version 1, oktober 2013 Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet Version 1, oktober 2013 Udgivet af DANSK SELSKAB FOR

Læs mere

Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet

Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet Version 1, oktober 2013 Metoder til hurtige og holdbare forbedringer i sundhedsvæsenet Version 1. oktober 2013 Udgivet af DANSK SELSKAB FOR

Læs mere

Mål og indikatorer Version 5, marts 2016

Mål og indikatorer Version 5, marts 2016 Mål og indikatorer Version 5, marts 2016 1 Indledning I sikre hænder er et projekt, som har til formål at vise, at det er muligt med en målrettet indsats at reducere unødige skader på borgere i primærsektoren.

Læs mere

Patientsikkert Sygehus. Model for improvement, data facillitering og patientinddragelse. - udvikler klinisk praksis og faglig stolthed

Patientsikkert Sygehus. Model for improvement, data facillitering og patientinddragelse. - udvikler klinisk praksis og faglig stolthed Patientsikkert Sygehus Model for improvement, data facillitering og patientinddragelse - udvikler klinisk praksis og faglig stolthed 2 Jørgen 57 år Amalie 77 år Thomas 31 år Karen 73 år 16% færre dør -

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Referencelaboratoriet for måling af emissioner til luften

Referencelaboratoriet for måling af emissioner til luften Referencelaboratoriet for måling af emissioner til luften Rapport nr.: 77 Titel Hvordan skal forekomsten af outliers på lugtmålinger vurderes? Undertitel - Forfatter(e) Arne Oxbøl Arbejdet udført, år 2015

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Forbedringsmodellen test og implementering af forbedringer

Forbedringsmodellen test og implementering af forbedringer Forbedringsmodellen test og implementering af forbedringer Oplægsholder: Tina Lynge og Vibeke Rischel!"##$%& P(&"$)& *+,- Hvorfor sker der ingen forandring? Every system is perfectly designed to achieve

Læs mere

Praktisk forbedringsarbejde Introduktion til forbedringsmodellen. Tina Lynge Dansk Selskab for Patientsikkerhed

Praktisk forbedringsarbejde Introduktion til forbedringsmodellen. Tina Lynge Dansk Selskab for Patientsikkerhed Praktisk forbedringsarbejde Introduktion til forbedringsmodellen Tina Lynge Hvem er vi og hvordan arbejder vi? blev stiftet december 2001 med det formål at fungere som organisatorisk ramme for arbejdet

Læs mere

Dage mellem levendefødte med NS-pH < 7,0

Dage mellem levendefødte med NS-pH < 7,0 6 Dage mellem levendefødte med NS-pH < 7,0 Resultatindikator, opgøres på afdelingsniveau. Antal dage mellem hver fødsel af levende barn med gestationsalder >= 24+0 uger og arteriel NS-pH < 7,0. Alle fødsler

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Monitorering af retningslinjernes effekt

Monitorering af retningslinjernes effekt Monitorering af retningslinjernes effekt Leif Panduro Jensen Vicedirektør Nordsjællands Hospital Konference: Nationale kliniske retningslinjer, Sundhedsstyrelsen 28.10.2013 Monitorering af effekten af

Læs mere

Dagens program og Forbedringsmodellens effekt

Dagens program og Forbedringsmodellens effekt Dagens program og Forbedringsmodellens effekt 1 Dagens program og Forbedringsmodellens effekt Håndbog i kvalitetsforbedring bygger på Forbedringsmodellen = PDSA-modellen 2 Dagens program og Forbedringsmodellens

Læs mere

Hvad siger statistikken?

Hvad siger statistikken? Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

FLIS. Region Hovedstadens Fælles Ledelsesinformationssystem. Landsdækkende Kliniske Kvalitetsdatabaser

FLIS. Region Hovedstadens Fælles Ledelsesinformationssystem. Landsdækkende Kliniske Kvalitetsdatabaser 2014 FLIS Region Hovedstadens Fælles Ledelsesinformationssystem Landsdækkende Kliniske Kvalitetsdatabaser En introduktion til afrapporteringen af resultater fra de Landsdækkende Kliniske Kvalitetsdatabaser

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Hjorth Kvalitetsudvikling. Introduktion til SPC og kapabilitet

Hjorth Kvalitetsudvikling. Introduktion til SPC og kapabilitet Introduktion til SPC og kapabilitet Ideel proces uden variation Aksel - Neddrejningsdybde nominel 34,5 mm 38 37 36 35 34 33 32 1 5 9 13 17 21 25 29 33 Det virkelige liv NEDDREJNINGSDYBDE (Y) 34.8 34.7

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

q-værdien som skal sammenlignes med den kritiske Chi-i-Anden værdi p-værdien som skal sammenlignes med signifikansniveauet.

q-værdien som skal sammenlignes med den kritiske Chi-i-Anden værdi p-værdien som skal sammenlignes med signifikansniveauet. Introduktion: Chi-i-Anden test (Goodness of Fit) på computeren fungerer som en "black-boks"- kommando, hvor eleverne med udgangspunkt i en nulhypotese (H ) taster de forventede og de observerede talværdier

Læs mere

Faldpakken. Hospitalsenheden Horsens. Hospitalsenheden Horsens. Version 0 (oktober 2014)

Faldpakken. Hospitalsenheden Horsens. Hospitalsenheden Horsens. Version 0 (oktober 2014) Faldpakken Hospitalsenheden Horsens Hospitalsenheden Horsens. Version 0 (oktober 2014) Hvorfor skal en faldindsats prioriteres højt? Internationale studier viser, at ca. en tredjedel af ældre over 65 år

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

Mål og målinger til Sikkert Patientflow 22. april 2014

Mål og målinger til Sikkert Patientflow 22. april 2014 Mål og målinger til Sikkert Patientflow 22. april 2014 Indhold Projektets overordnede mål... 2 Flowpakkens mål... 2 Målinger... 2 Målinger vedr. nedbringelse af unødig ventetid for patienter på diagnostik

Læs mere

Forbedringsmodellen test og implementering af forbedringer. Ved Tina Lynge

Forbedringsmodellen test og implementering af forbedringer. Ved Tina Lynge Forbedringsmodellen test og implementering af forbedringer Ved Tina Lynge En lille øvelse. Hvor gode er sundhedsvæsenet til at indføre nye tiltag (implementere) 17 år Det tager i gennemsnit 17 år fra

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17

Dig og din puls. 17-10-2004 Dig og din puls Side 1 af 17 Dig og din puls Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Dig og din puls Side 1 af 17

Læs mere

Hjertesvigt TeleCare Nord. Opfølgning på data i kommune Formål. Aktør. Kompetencer. Data. Farvekoder. Kommunen følger op på borgerens data.

Hjertesvigt TeleCare Nord. Opfølgning på data i kommune Formål. Aktør. Kompetencer. Data. Farvekoder. Kommunen følger op på borgerens data. Opfølgning på data i kommune Formål Kommunen følger op på borgerens data. Aktør Kommune Hjertesvigt TeleCare Nord Kompetencer Sygeplejefaglige kompetencer som beskrevet i Opgave- og ansvarsfordeling. Data

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Projekt 6.1 Rygtespredning - modellering af logistisk vækst Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene

Læs mere

Lineære sammenhænge, residualplot og regression

Lineære sammenhænge, residualplot og regression Lineære sammenhænge, residualplot og regression Opgave 1: Er der en bagvedliggende lineær sammenhæng? I mange sammenhænge indsamler man data som man ønsker at undersøge og afdække eventuelle sammenhænge

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

04/14. side 13. Mål det rigtige og skab resultater effektive og udviklende kvalitetsmål

04/14. side 13. Mål det rigtige og skab resultater effektive og udviklende kvalitetsmål 04/14 side 13 DFK KONFERENCE: Mål det rigtige og skab resultater effektive og udviklende kvalitetsmål Torsdag den 27. november 2014 Hotel Storebælt, Nyborg indhold 03 I 08 I 13 I 16 I 20 I 23 I 27 I 29

Læs mere

MAD-pakken Formålet med MAD-pakken er at optimere patienternes ernærings tilstand, at forebygge komplikationer og forlænget rekonvalescens samt

MAD-pakken Formålet med MAD-pakken er at optimere patienternes ernærings tilstand, at forebygge komplikationer og forlænget rekonvalescens samt MAD-pakken Formålet med MAD-pakken er at optimere patienternes ernærings tilstand, at forebygge komplikationer og forlænget rekonvalescens samt at fremme helbredelsen hos patienter i ernæringsmæssig risiko

Læs mere

Definition. Definitioner

Definition. Definitioner Definition Landmålingens fejlteori Lektion Diskrete stokastiske variable En reel funktion defineret på et udfaldsrum (med sandsynlighedsfordeling) kaldes en stokastisk variabel. - kkb@math.aau.dk http://people.math.aau.dk/

Læs mere

Implementering af systematisk testning med Motor Assessment Scale (MAS) af patienter med apopleksi i rehabiliteringsforløb på Glostrup Hospital

Implementering af systematisk testning med Motor Assessment Scale (MAS) af patienter med apopleksi i rehabiliteringsforløb på Glostrup Hospital Implementering af systematisk testning med Motor Assessment Scale (MAS) af patienter med apopleksi i rehabiliteringsforløb på Glostrup Hospital Regions- og højtspecialiserede funktioner Østdanmark Neurorehabilitering

Læs mere

Datadreven ledelse og kvalitetsudvikling. Leif Panduro Jensen Centerdirektør, Finsencentret, Rigshospitalet

Datadreven ledelse og kvalitetsudvikling. Leif Panduro Jensen Centerdirektør, Finsencentret, Rigshospitalet Datadreven ledelse og kvalitetsudvikling Leif Panduro Jensen Centerdirektør, Finsencentret, Rigshospitalet VI STOPPER IKKE MED AT MÅLE, TVÆRTIMOD NICK HÆKKERUP, SUNDHEDSMINISTER DSS ÅRSMØDE 7.5.2015 Lånt

Læs mere

Fredag den 9. januar, 2009. DSKS årsmøde, Nyborg Strand. Global Trigger Tool Marie Lund tidl. Specialkonsulent ved Center for Kvalitet i Region Syddanmark. Hvordan opnås viden om patientsikkerhed? Via

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Version april

Version april Introduktion til SPC og kapabilitet Ideel proces uden variation Aksel - Neddrejningsdybde nominel 34,5 mm 38 37 36 35 34 33 32 5 9 3 7 2 25 29 33 Version 2 30. april 2007 Det virkelige liv NEDDREJNINGSDYBDE

Læs mere

INDIKATORER FOR MEDICINPAKKERNE

INDIKATORER FOR MEDICINPAKKERNE INDIKATORER FOR MEDICINPAKKERNE Indikatorer for medicinpakkerne I projektet Sikker Psykiatri indgår en række løbende målinger, der har til formål at støtte og monitorere forbedringsprocessen. Mere om målestrategien

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Patientsikkert AUH. Forbedringsmodellen som redskab til at implementere tryksårs-, kirurgi- og sepsispakken. Jesper Buchholdt Gjørup

Patientsikkert AUH. Forbedringsmodellen som redskab til at implementere tryksårs-, kirurgi- og sepsispakken. Jesper Buchholdt Gjørup Patientsikkert AUH Forbedringsmodellen som redskab til at implementere tryksårs-, kirurgi- og sepsispakken Jesper Buchholdt Gjørup CFK Folkesundhed og Kvalitetsudvikling CFK Folkesundhed og Kvalitetsudvikling

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

En intro til radiologisk statistik. Erik Morre Pedersen

En intro til radiologisk statistik. Erik Morre Pedersen En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 11, 2016 1/22 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere