Specialundervisningsbehov i Viborg Kommunes skoledistrikter

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Specialundervisningsbehov i Viborg Kommunes skoledistrikter"

Transkript

1 Thomas Astrup Bæk og Søren Teglgaard Jakobsen Specialundervisningsbehov i Viborg Kommunes skoledistrikter En socioøkonomisk tildelingsmodel

2 Specialundervisningsbehov i Viborg Kommunes skoledistrikter En socioøkonomisk tildelingsmodel Publikationen kan hentes på KORA og forfatterne, 2017 Mindre uddrag, herunder figurer, tabeller og citater, er tilladt med tydelig kildeangivelse. Skrifter, der omtaler, anmelder, citerer eller henviser til nærværende, bedes sendt til KORA. Omslag: Mega Design og Monokrom Udgiver: KORA ISBN: Projekt: KORA Det Nationale Institut for Kommuners og Regioners Analyse og Forskning KORA er en uafhængig statslig institution, hvis formål er at fremme kvalitetsudvikling samt bedre ressourceanvendelse og styring i den offentlige sektor.

3 Indhold Resumé Formål Metode og data Metode Datagrundlag Population Resultater for den statistiske model Modellens forklaringskraft Benchmarking af Viborg Kommunes henvisningspraksis Forventet specialundervisningsbehov i Viborg Kommunes skoledistrikter Budgettildelingsmodeller Fordeling af midler til finansiering af segregerede elever i 0. til 9. klasse Fordeling af midler til inkluderende indsatser i klasse Bilag 1 Oversigt over modellens variable... 21

4 Resumé Viborg Kommune har bedt KORA om at gennemføre en analyse af forskelle i det forventede specialundervisningsbehov mellem kommunens skoledistrikter. Analysen tager højde for forskelle i elevernes demografiske, socioøkonomiske og sundhedsmæssige karakteristika. Analysen giver også et forslag til, hvordan midlerne til specialundervisning kan fordeles mellem skolerne på baggrund af de forventede forskelle i specialundervisningsbehovet. Endelig sammenlignes Viborg Kommunes samlede henvisningspraksis til segregeret specialundervisning 1 med henvisningspraksis på landsplan. Det forventede specialundervisningsbehov vurderes ud fra en statistisk model, som viser sammenhængen mellem de demografiske, socioøkonomiske og sundhedsmæssige karakteristika hos eleverne og sandsynligheden for, at den enkelte elev vil modtage segregeret specialundervisning. Den statistiske model er baseret på registerdata for alle grundskoleelever i Danmark og afspejler den gennemsnitlige henvisningspraksis på landsplan. Når vi ser på de relevante karakteristika hos eleverne i Viborg Kommune, forventes det ud fra den statistiske model, at Viborg Kommune henviser 4,0 % af eleverne til segregeret specialundervisning. I praksis henviser kommunen 3,6 % af sine elever. Når der tages højde for elevernes baggrundsforhold, henviser Viborg Kommune altså til segregeret specialundervisning i et lidt mindre omfang end den gennemsnitlige visitationspraksis for alle kommuner. Den statistiske model anvendes til at beregne det forventede specialundervisningsbehov i hvert enkelt skoledistrikt i Viborg Kommune. Dette gøres ved at se på hver enkelt elevs demografiske, socioøkonomiske og sundhedsmæssige karakteristika og herudfra beregne den enkelte elevs sandsynlighed for at modtage segregeret specialundervisning. Disse tal sammenfattes til et gennemsnitligt specialundervisningsbehov for hvert skoledistrikt. Resultaterne viser, at der på baggrund af forskelle i skoledistrikternes elevgrundlag må forventes betydelige forskelle mellem skoledistrikternes specialundervisningsbehov. Særligt har skoledistrikterne for Vestfjendsskolen, Vestervang Skole og Skals Skole forventede specialundervisningsbehov, som ligger væsentligt over gennemsnittet for kommunen. Omvendt har Ulbjerg Skoles skoledistrikt og Overlund Skoles skoledistrikt et relativt lavt forventet specialundervisningsbehov. Vurderingen af skoledistrikternes specialundervisningsbehov foretages, efter aftale med Viborg Kommune, kun på elevgrundlaget i klasse. Skoledistrikternes forventede specialundervisningsbehov anvendes som grundlag for KORAs forslag til fordeling af midlerne til specialundervisning mellem skolerne i Viborg Kommune. Forskellene mellem skoledistrikternes forventede behov betyder, at midlerne i KORAs forslag fordeles anderledes, end hvis midlerne blev fordelt jævnt efter elevtallet. Skoledistrikter med et højt forventet specialundervisningsbehov vil således få et højere beløb pr. elev til specialundervisning end skoler med et lavt forventet specialundervisningsbehov. Forslagene til fordeling af midler bør kun anvendes vedrørende midler til elever i klasse, da dette elevgrundlag danner grundlaget for beregningen af de forventede specialundervisningsbehov. Forslagene til fordelingsmodeller fremgår af afsnit 6 (på side 18). 1 Segregeret specialundervisning indebærer, at eleven modtager undervisning i enten specialklasse eller på specialskole. 4

5 1 Formål Formålet med dette notat er at beskrive forskelle i det forventede specialundervisningsbehov mellem skoledistrikterne i Viborg Kommune. Det forventede specialundervisningsbehov er beregnet på baggrund af en statistisk model (KORA-modellen), som tager højde for den statistiske sammenhæng, der er mellem elevernes demografiske, socioøkonomiske og sundhedsrelaterede forhold og deres sandsynlighed for at modtage segregeret specialundervisning. Første skridt i analysen er estimeringen af den statistiske model, som viser sammenhængen mellem de demografiske, socioøkonomiske og sundhedsrelaterede karakteristika for eleverne og sandsynligheden for, at den enkelte elev modtager segregeret specialundervisning. Segregeret specialundervisning indebærer, at eleven modtager undervisning i enten specialklasse eller på specialskole. Den statistiske model er baseret på registerdata for alle grundskoleelever i Danmark og afspejler således den gennemsnitlige henvisningspraksis på landsplan. Modellen anvendes dernæst på Viborg Kommunes elever til at beregne hver enkelt elevs sandsynlighed for at modtage segregeret specialundervisning, givet deres forskellige karakteristika. Desuden beregnes det antal elever, som man på baggrund af modellen vil forvente skulle modtage segregeret specialundervisning i Viborg Kommunes skoledistrikter, hvis kommunen fulgte den samme henvisningspraksis som på landsplan. Den statistiske model kan anvendes som grundlag for at beskrive forskelle i forventet specialundervisningsbehov mellem Viborg Kommunes skoledistrikter. Samtidig kan modellen anvendes til at benchmarke Viborg Kommunes samlede henvisningspraksis med den gennemsnitlige henvisningspraksis på landsplan, når der tages hensyn til kommunens elevsammensætning. Endelig kan forudsigelserne fra den statistiske model anvendes som grundlag for en budgetfordelingsmodel på specialundervisningsområdet, dvs. som et værktøj til fordeling af midler til specialundervisning mellem skoler i Viborg Kommune. 5

6 2 Metode og data 2.1 Metode Med henblik på at kunne opstille en fordelingsmodel, som tager hensyn til specialundervisningsbehovet i de enkelte skoledistrikter, estimerer KORA en statistisk model for sammenhængen mellem en række demografiske, socioøkonomiske og sundhedsrelaterede karakteristika hos folkeskoleeleverne (og deres forældre) og sandsynligheden for, at eleverne modtager segregeret specialundervisning. Der anvendes en statistisk model 2, som tager højde for den særlige struktur i data, hvor den afhængige variabel kun kan antage to gensidigt udelukkende værdier (modtager af segregeret specialundervisning eller ej). Modellen anvendes til at beregne hver enkelt elevs sandsynlighed for at få segregeret specialundervisning, udelukkende baseret på elevens og forældrenes karakteristika. Herfra kan det beregnes, hvor mange elever der forventes at modtage segregeret specialundervisning i hvert skoledistrikt. Dermed tager KORA-modellen både hensyn til elevernes karakteristika og skoledistrikternes størrelse. 2.2 Datagrundlag Den primære variabel i analysen er en oplysning om, hvorvidt den enkelte elev modtager segregeret specialundervisning. Oplysninger om, hvilke elever der modtager segregeret specialundervisning, stammer fra registerdata indsamlet af Danmarks Statistik. De øvrige data om eleverne og deres forældre er indhentet fra en række forskellige registre hos Danmarks Statistik og Sundhedsdatastyrelsen. Boksen nedenfor indeholder en oversigt over de forklarende variable, som indgår i analyserne. 2 Logit-model. 6

7 Boks 1: Forklarende variable Variable vedrørende eleven: Elevens alder Elevens køn Elevens alder ved skolestart Eleven havde lav fødselsvægt (<2.500 g) Eleven er adopteret Elevens oprindelsesland Elevens gennemsnitlige antal indlæggelser de seneste fem år Elevens gennemsnitlige antal kontakter med alment praktiserende læge i de seneste fem år Eleven har haft kontakt med en speciallæge inden for de seneste fem år 1 Antal hjemmeboende børn i elevens familie Elevens forældre er samboende Mindst én af forældrene er døde Variable vedrørende forældrene: Moderens og faderens alder ved elevens fødsel 2 Moderen og/eller faderen er skilt eller blevet enke(mand) 2 Moderens og faderens alderskorrigerede indkomst (gennemsnit af de seneste fem år) 2 Moderens og faderens alderskorrigerede uddannelsesniveau (gennemsnit af de seneste fem år) 2 Moderens og faderens alderskorrigerede jobprestige (gennemsnit af de seneste fem år) 2 Moderens og faderens dominerende beskæftigelsesstatus i de seneste fem år 2 Moderens og faderens antal kontakter med alment praktiserende læge (gennemsnit af de seneste fem år) 2 Moderen og/eller faderen har haft kontakt med psykiatrien inden for de seneste fem år 2 Moderen og/eller faderen har haft kontakt med en speciallæge inden for de seneste fem år 1, 2 Moderen og/eller faderen har haft kontakt med en tandlæge inden for de seneste fem år 2 Moderens og faderens gennemsnitlige antal indlæggelser de seneste fem år 2 Moderen og/eller faderen har været i behandling for et misbrug inden for de seneste fem år 2 Moderen og/eller faderen er dømt for mindre alvorlige overtrædelser af straffeloven de seneste fem år 2 Moderen og/eller faderen er dømt for alvorlige overtrædelser af straffeloven de seneste fem år 2 Moderen og/eller faderen er dømt for personfarlige overtrædelser af straffeloven de seneste fem år 2 Moderen og/eller faderen er ukendt 2 Note: 1) Ekskl. kontakt til en psykiater. 2) Der er kodet én separat variabel for moderen og én for faderen. Enkelte variable fortjener indledningsvist en nærmere uddybning. KORAs tidligere analyser af henvisning til segregeret specialundervisning har vist, at drenges sandsynlighed for at modtage specialundervisning er højere end pigers. Samtidig har adopterede børn højere sandsynlighed end ikke-adopterede for at modtage segregeret specialundervisning. Der er ikke noget belæg for at forvente, at fordelingen af piger/drenge eller antallet af adopterede børn skulle være systematisk forskellig på tværs af skoledistrikterne i en kommune på grund af forskelle i befolkningssammensætningen. Der kan imidlertid godt over en årrække forekomme forskelle mellem skoledistrikterne i forhold til kønsfordelingen på grund af simpel 7

8 tilfældighed. Det samme gælder for antallet af adopterede børn. Sådanne tilfældige skævvridninger kan, på trods af deres lille omfang, have væsentlig betydning for specialundervisningsbehovet, fordi faktorerne har væsentlig betydning for sandsynligheden for segregeret specialundervisning. De to faktorer er derfor vigtige at have med i modellen. For flere af variablenes vedkommende inddrager vi oplysninger om eleverne og/eller forældrene fem år tilbage i tiden. På den måde bygger variablene ikke kun på oplysninger om hændelser mv., som finder sted i analyseåret, men også på hændelser, som finder sted i tiden op til analyseåret. Variablen for forældrenes jobprestige angiver den socioøkonomiske status, som knytter sig til forældrenes stillingsbetegnelser. Jobprestigen er opgjort i henhold til internationale standarder, og bygger på den såkaldte ISEI-score (International Standard Classification of Occupations). Variablene for både forældrenes indkomstniveau, uddannelsesniveau og jobprestige er alderskorrigeret. Alderskorrektionen består i, at forældrenes niveau på variablene udtrykker, hvor meget forældrene ligger over eller under det forventede niveau for deres aldersgruppe. Dermed tages der højde for, at forældre med højere alder typisk vil være højere uddannet samt have højere indkomst og jobprestige end yngre forældre. KORA-modellen indeholder ikke en variabel for elevernes etniske baggrund. Årsagen er, at anden etnisk baggrund end dansk ikke i sig selv øger sandsynligheden for at modtage segregeret specialundervisning, når der samtidig tages højde for de øvrige variable i modellen. På landsplan er der således ikke nogen tendens til, at børn med anden etnisk baggrund end dansk henvises oftere til segregeret specialundervisning end etnisk danske børn med tilsvarende demografiske og socioøkonomiske karakteristika. Børn med anden etnisk baggrund har isoleret set større sandsynlighed for segregeret specialundervisning end etnisk danske børn, men altså ikke større sandsynlighed end etniske danske børn med samme demografiske og socioøkonomiske baggrund. KORAs analyse viser faktisk, at børn med anden etnisk baggrund end dansk statistisk har en lidt mindre sandsynlighed for at modtage segregeret specialundervisning end etnisk danske børn med tilsvarende demografiske og socioøkonomiske karakteristika. Der kan være flere forklaringer på dette forhold. For det første modtager en del af eleverne med anden etnisk baggrund undervisning i dansk som andetsprog. Undervisning i dansk som andetsprog uden for normalklasser eller i modtagelsesklasser betragtes ikke som segregeret specialundervisning men kan alligevel fungere som en aflastning af klassen/skolen, som gør, at henvisning til specialklasse bliver mindre sandsynlig. En anden forklaring kan være, at forældre med anden etnisk baggrund end dansk i højere grad end etnisk danske forældre oplever det som stigmatiserende, at barnet henvises til specialklasse, og derfor i mindre grad presser på for en udredningsproces for deres barn. Trods den negative sammenhæng er variablen etnisk baggrund udeladt af KORA-modellen på grund af den indholdsmæssige usikkerhed, der er om de bagvedliggende årsager til resultatet. Det er i denne sammenhæng vigtigt at bemærke, at skoler med en høj andel af tosprogede børn eller børn med anden etnisk baggrund end dansk af andre årsager kan have et væsentligt større udgiftsbehov end skoler med en lav andel af sådanne elever. KORAs resultat viser blot, at dette eventuelle højere udgiftsbehov ikke skabes af et større behov for segregeret specialundervisning. 8

9 2.2.1 Population Opgørelser og analyser af henvisning til segregeret specialundervisning kan foretages enten med udgangspunkt i alle elever i grundskolealderen, dvs. både folkeskolelever og elever i privatskoler eller frie grundskoler, eller alternativt kan henvisningsandelen opgøres alene med udgangspunkt i kommunens folkeskoleelever. Det er KORAs vurdering, at det er mest retvisende at foretage analyser og opgørelser af henvisning til segregeret specialundervisning med udgangspunkt i alle grundskoleelever (dvs. både folkeskole- og privatskoleelever), fordi fokus alene på elever i folkeskolen vil skævvride resultaterne for de enkelte kommuner, hvis deres privatskoleandel afviger fra landsgennemsnittet. Tilsvarende kan fokus alene på folkeskoleeleverne skævvride resultaterne ved sammenligning af skoledistrikter internt i en kommune, såfremt privatskoleandelen varierer mellem skoledistrikterne. Som følge af disse overvejelser er populationsgrundlaget for udledningen af KORA-modellen alle danske 5-17-årige grundskoleelever i skoleåret 2014/15. Betydningen af de forskellige demografiske, socioøkonomiske og sundhedsrelaterede karakteristika i modellen er altså estimeret ud fra data, som dækker samtlige grundskoleelever i Danmark. For alle eleverne er der indhentet oplysninger om dem selv og om deres forældres socioøkonomiske karakteristika. Når vi anvender den statistiske model på populationen af elever i Viborg Kommune, får vi derfor hvert barns sandsynlighed for at modtage segregeret specialundervisning under antagelse af, at visitationspraksis er den samme i Viborg som på landsplan. Det skyldes, at modellen er beregnet på baggrund af alle danske børn. De estimerede sandsynligheder for hvert skoledistrikt i Viborg Kommune påvirkes dermed ikke af den faktiske henvisningspraksis i det pågældende distrikt, da det alene er elevernes socioøkonomiske baggrund, der er udslagsgivende for sandsynligheden for at modtage segregeret specialundervisning. Skoleåret 2014/15 er det seneste år, hvor oplysningerne fra Danmarks Statistik er tilgængelige. Oplysningerne om elevgrundlaget i Viborg Kommune kommer fra kommunens eget elevregister og tager udgangspunkt i skoleåret 2016/17. Beregningerne af Viborg Kommunes relative henvisningspraksis set i forhold til landsgennemsnittet tager således udgangspunkt i data for skolebørn i hele landet i 2014/15. Til beregningen af budgettildelingsmodellerne i afsnit 6 anvendes estimaterne fra den statistiske model sammen med Viborgs egne elevoplysninger for skoleåret 2016/17. 9

10 3 Resultater for den statistiske model Tabel 3.1 nedenfor viser de variable i KORA-modellen, som har størst betydning for elevernes sandsynlighed for at modtage segregeret specialundervisning. Fortegnet angiver retningen på den statistiske sammenhæng. For eksempel viser fortegnet ved variablen Barnets alder, at jo ældre barnet er, jo højere er sandsynligheden for, at barnet modtager segregeret specialundervisning. Omvendt mindsker det sandsynligheden for at modtage segregeret specialundervisning, hvis barnet er en pige. Variablene i tabel 3.1 er rangeret efter deres isolerede betydning. Der indgår en række variable i den statistiske model, som for overskuelighedens skyld ikke er vist i tabel 3.1. For eksempel indeholder modellen også variable vedrørende forældrenes indkomst. Indkomstvariablen har en vis sammenhæng med elevernes sandsynlighed for at modtage segregeret specialundervisning, men den selvstændige betydning er forholdsvis lille, når der tages højde for de øvrige variable i modellen. Variablen er derfor ikke medtaget i oversigten i tabel 3.1, men er altså stadig medtaget i modellen. Bilag 1 indeholder en komplet oversigt over alle modellens variable og deres sammenhæng med elevernes sandsynlighed for at modtage segregeret specialundervisning. Variabel Tabel 3.1 KORA-modellen. De væsentligste forklarende variable for elevernes sandsynlighed for at modtage segregeret specialundervisning Elevens køn (pige) - Elevens alder ved skolestart + Elevens gennemsnitlige antal indlæggelser de seneste fem år + Elevens alder + Indikator af, at eleven er anbragt (ingen børn bor hos barnets forældre) 1 + Elevens gennemsnitlige antal kontakter med alment praktiserende læge i de seneste fem år + Eleven havde lav fødselsvægt (<2.500 g) + Eleven har ikke-vestlig oprindelse - Moderens alderskorrigerede uddannelsesniveau (0=forventede uddannelsesniveau) - Eleven er enebarn 1 + Elevens forældre er samboende - Moderens primære beskæftigelsesstatus er kontanthjælpsmodtager i perioden 2 + Eleven er adopteret + Faderens alderskorrigerede uddannelsesniveau (0=forventede uddannelsesniveau) - Moderens primære beskæftigelsesstatus er førtidspensionist i perioden 2 + Fortegn Note: Modellen er beregnet på baggrund af alle landets elever i klasse i skoleåret 2014/2015. Der indgår både elever i folkeskoler, privatskoler og frie grundskoler. N= , Pseudo R2=0,175. Alle de viste variable er statistisk signifikante på 0,001-niveau. 1) Variablen er kodet i seks kategorier. Referencekategorien er 2 børn i familien. Ingen hjemmeboende børn i barnets familie er en indikator for, at eleven er anbragt. Se bilag 1 for en uddybning af de øvrige kategorier. 2) Variablen er kodet i syv kategorier. Referencekategorien er Lønmodtager. Se bilag 1 for en uddybning af de øvrige kategorier. Kilde: KORAs beregninger på baggrund af data fra Danmarks Statistik og Sundhedsdatastyrelsen Vi ser i tabel 3.1, at det er faktorer vedrørende eleven selv og moderen, der har den største betydning for specialundervisningsbehovet på landsplan. 10

11 Mange af de forklarende variable er i det store hele udtryk for noget af det samme. For eksempel vil et højt uddannelsesniveau og en høj indkomst langt hen ad vejen være udtryk for en høj socioøkonomisk status. Når to variable på denne måde er udtryk for det samme, kan de stjæle forklaringskraft fra hinanden. Det vil sige, at nogle af de variable, der ikke er med på listen i tabel 3.1, potentielt kunne have haft større forklaringskraft, hvis nogle af de andre variable var udeladt. Dette skal der tages forbehold for ved rangordningen af de betydende variable Modellens forklaringskraft Præcisionen af den statistiske model dvs. den statistiske models evne til at forudsige, hvilke elever der rent faktisk modtager specialundervisning illustreres i tabel 3.2 nedenfor. Dette gøres ved at undersøge, hvor stor en andel af de faktiske modtagere af specialundervisning vi indfanger, når vi stiller skarpt på de elever, som har højest henholdsvis lavest sandsynlighed for at modtage specialundervisning 4. Tabel 3.2 viser, at 44,7 % af de elever, der rent faktisk modtager specialundervisning i Viborg Kommune, befinder sig blandt de 10 % af eleverne, der har størst sandsynlighed for at modtage specialundervisning. Omvendt befinder kun 0,4 % af specialundervisningseleverne sig blandt de 10 % elever med lavest sandsynlighed. Hvis elevernes baggrundsforhold ikke havde nogen betydning for sandsynligheden for at modtage specialundervisning, ville vi i begge grupper forventes at indfange 10 % af de elever, som faktisk modtager specialundervisning. Tabel 3.2 viser desuden, at modellens træfsikkerhed blandt eleverne i Viborg Kommune stort set er den samme som på landsplan. Tabel 3.2 Andel af de faktiske modtagere af specialundervisning i 2014/15, som indfanges i grupperne af elever med særlig lav og særlig høj sandsynlighed for segregeret specialundervisning 10 % med laveste sandsynlighed 10 % med højeste sandsynlighed Modtagere af segregeret specialundervisning i Viborg 0,4 % 47,7 % Modtagere af segregeret specialundervisning i hele landet 0,8 % 46,5 % Kilde: Danmarks Statistik og Sundhedsdatastyrelsen. KORAs beregninger. Det er væsentligt at bemærke, at modellen aldrig forudsiger, at en elev vil have hverken 100 % eller 0 % sandsynlighed for at modtage segregeret specialundervisning. Uanset hvor belastede baggrundsforhold en elev har, vil det således aldrig blive forudsagt, at sandsynligheden er 100 % for, at barnet vil modtage segregeret specialundervisning. Tilsvarende vil der altid være en vis sandsynlighed for, at et barn uden væsentlige statistiske risikofaktorer vil komme til at modtage segregeret specialundervisning. Sammenlignes Viborg Kommune med hele landet på de mest betydningsfulde forklarende variable, der indgår i den statistiske model, får man et billede af den elevsammensætning, som præger kommunen på de faktorer, der har størst betydning for specialundervisningsbehovet. 3 Når flere af de forklarende variable måler noget af det samme, kan de enkelte variables koefficienter blive usikre og fremstå med insignifikante effekter, selvom der reelt er en effekt af variablen. 4 Normalt anskueliggøres forklaringskraften af en statistisk model ved at se på værdien af R 2. R 2 angiver noget forsimplet forklaret hvor meget bedre man bliver til at gætte værdien af den afhængige variabel, når man har kendskab til de uafhængige variable. I denne analyse benytter vi dog en statistisk metode (logistisk regression), hvor man ikke kan beregne en normal R 2 -værdi. Derimod beregnes den såkaldte Pseudo-R 2, som imidlertid ikke fortolkes parallelt med R 2. 11

12 Tabel 3.3 viser gennemsnittet for Viborg Kommune og for hele landet på de forklarende variable. Tabel 3.3 Gennemsnitsværdier for Viborg Kommune og hele landet på de væsentligste forklarende variable i KORA-modellen. Beregnet forskel og enhedsangivelse Variabel Viborg Hele landet Forskel Enhed Elevens køn (pige) 48,1 % 48,6 % -0,5 % procentpoint Elevens alder ved skolestart 6,2 6,2 0,0 år Elevens gennemsnitlige antal indlæggelser de seneste fem år 0,6 0,5 0,0 indlæggelser Elevens alder 10,8 10,9-0,1 år Indikator af, at eleven er anbragt (ingen børn bor hos barnets forældre) Elevens gennemsnitlige antal kontakter med alment praktiserende læge i de seneste fem år 0,9 % 0,9 % 0,0 % procentpoint 3,5 3,3 0,1 kontakter Eleven havde lav fødselsvægt (<2.500 g) 5,2 % 4,8 % 0,5 % procentpoint Moderens antal års uddannelse ud over grundskole 3,6 3,6 0,0 års uddannelse Eleven er enebarn 10,2 % 13,2 % -2,9 % procentpoint Elevens forældre er samboende 69,0 % 65,7 % 3,2 % procentpoint Moderens primære beskæftigelsesstatus er kontanthjælpsmodtager i perioden 4,5 % 6,0 % -1,5 % procentpoint Eleven er adopteret 0,8 % 0,9 % -0,1 % procentpoint Faderens antal års uddannelse ud over grundskole 3,0 3,2-0,2 Moderens primære beskæftigelsesstatus er førtidspensionist i perioden Note: Data for alle elever i folkeskoler, privatskoler og frie grundskoler i skoleåret 2014/15 Kilde: Danmarks Statistik og Sundhedsdatastyrelsen års uddannelse 3,2 % 3,1 % 0,2 % procentpoint Elevsammensætningen i Viborg Kommune adskiller sig mest markant fra landsgennemsnittet ved, at eleverne oftere er del af en søskendeflok og i højere grad har samboende forældre. Desuden er en lavere andel af mødrene end i resten af landet modtagere af kontanthjælp i Viborg. Derimod modtager lidt flere af mødrene til gengæld førtidspension sammenlignet med resten af landet. På de øvrige centrale variable i modellen ligger Viborg Kommune ganske tæt på landsgennemsnittet. På baggrund af Viborgs gennemsnit på modellens væsentligste variable vil man umiddelbart forvente, at Viborg Kommune henviser en lidt mindre andel af sine elever til segregeret specialundervisning end landsgennemsnittet. 12

13 4 Benchmarking af Viborg Kommunes henvisningspraksis I dette afsnittet præsenteres nøgletal for Viborg Kommunes henvisningspraksis til segregeret specialundervisning. Kommunens henvisningspraksis sammenlignes med den landsgennemsnitlige henvisningspraksis, når der ved hjælp af den statistiske model er taget højde for kommunernes forskellige elevgrundlag på de relevante demografiske, socioøkonomiske og sundhedsrelaterede variable. Resultaterne er sammenfattet i tabel 4.1. Tabel 4.1 Nøgletal for henvisningspraksis til segregeret specialundervisning i Viborg Kommune. Skoleåret 2014/15 Modtagere af specialundervisning Henvisningsandel (andel af alle folkeskoleog privat-/friskoleelever) Hele landet ,2 % Viborg Kommune: faktisk henvisning 471 3,6 % Viborg Kommune: forventet henvisning ud fra KORA-modellen 527 4,0 % Viborg Kommune: forskel på faktisk og forventet henvisning -56-0,4 % Note: Modellen er beregnet på baggrund af alle landets elever i klasse i skoleåret 2014/2015. Der indgår både elever i folkeskoler, privatskoler og frie grundskoler. N= Samlet elevtal i Viborg Kommune: Kilde: Danmarks Statistik og Sundhedsdatastyrelsen. Som tidligere nævnt vurderer KORA, at det er mest retvisende at foretage analyser og opgørelser af henvisning til segregeret specialundervisning med udgangspunkt i alle grundskoleelever (dvs. både folkeskole- og privatskoleelever), fordi et fokus alene på elever i folkeskolen vil skævvride resultaterne for de enkelte kommuner, hvis deres privatskoleandel afviger fra landsgennemsnittet. I tabel 4.1 er henvisningsandelen derfor opgjort med udgangspunkt i alle grundskoleelever. Som det fremgår af tabellen, er den faktiske henvisningsandel til segregeret specialundervisning 0,6 procentpoint lavere for Viborg Kommune end på landsplan. Den gennemsnitlige henvisningsfrekvens til segregeret specialundervisning er således 4,2 % på landsplan, mens den er 3,6 % i Viborg Kommune. Med baggrund i den statistiske model (KORA-modellen) ville man, når det tages højde for de demografiske, socioøkonomiske og sundhedsrelaterede forhold hos kommunens grundskoleelever, forvente, at Viborg Kommune henviste 4,0 % af sine elever til segregeret specialundervisning, forudsat at kommunen følger den landsgennemsnitlige henvisningspraksis. Viborg Kommunes faktiske henvisning til segregeret specialundervisning er dermed lidt lavere, end hvad man på baggrund af den statistiske model skulle forvente i en kommune med Viborg Kommunes elevsammensætning. 13

14 5 Forventet specialundervisningsbehov i Viborg Kommunes skoledistrikter Den statistiske model anvendes til at beregne sandsynligheden for at modtage segregeret specialundervisning for hver enkelt elev i Viborg Kommune på baggrund af elevens demografiske, socioøkonomiske og sundhedsrelaterede karakteristika. Disse beregninger sammenfattes til en gennemsnitlig sandsynlighed for eleverne i hvert af Viborg Kommunes skoledistrikter. Dette mål kan anvendes til at sammenligne de forventede specialundervisningsbehov på tværs af skoledistrikterne. Ved at tage højde for skoledistrikternes størrelse kan vi desuden beregne den forventede fordeling af specialundervisningseleverne i Viborg Kommune. Disse beregninger kan efterfølgende anvendes i en socioøkonomisk budgettildelingsmodel for specialundervisning. Ved beregningen af de forventede specialundervisningsbehov i kommunens skoledistrikter ses der kun på elever i klasse. Beregningen ser således bort fra specialundervisningsbehovet hos elever i 10. klasse. Beregningerne, og de afledte budgettildelinger, kan således kun anvendes for klasse. Tildelingen af midler til segregeret specialundervisning i 10. klasse må håndteres på anden vis uden for modellen. Afgrænsningen til klasse er aftalt med Viborg Kommune. Det er vigtigt at pointere, at de estimerede sandsynligheder for specialundervisning er relative i den forstand, at de er baseret på den faktiske brug af specialundervisning i Danmark i skoleåret 2014/15. Modellen kan med andre ord ikke sige noget om, hvorvidt der ud fra fx et pædagogisk kriterium er behov for, at flere eller færre elever modtager specialundervisning, men kun noget om skoledistrikternes relative specialundervisningsbehov set i forhold til hinanden. Som grundlag for vurderingen af de enkelte skoledistrikters specialundervisningsbehov anvendes det elevgrundlag, som er bosat i skoledistrikterne. Inddelingen i skoledistrikter er foretaget ud fra Viborg Kommunes normale distriktsinddeling, oplyst af kommunen. Det medregnede elevgrundlag medtager både elever i folkeskole, privatskoler og frie grundskoler. Resultaterne er sammenfattet i tabel 5.1 nedenfor. Tabellen viser beregningerne på baggrund af den statistiske model for hvert skoledistrikt. 14

15 Tabel 5.1 Skoledistrikternes forventede specialundervisningsbehov. Opgjort efter elevernes bosætningsdistrikt. Elever klasse, skoleåret 2016/17 Skoledistrikt (bosætning) Elevgrundlag klasse Andel af samlet elevgrundlag klasse Andel af kommunens specialundervisningselever Gennemsnitlig forudsagt sandsynlighed for specialundervisning (KORA-model) Forventet andel af det samlede antal segregerede specialundervisningselever (KORA-model) Indeks for specialundervisningsbehov* (KORA-model) Brattingsborgskolen 152 1,2 % 1,2 % 2,6 % 0,9 % 75 Bøgeskovskolen 594 4,7 % 5,0 % 3,5 % 4,7 % 101 Egeskovskolen 662 5,2 % 7,9 % 3,3 % 4,9 % 94 Finderuphøj Skole 563 4,4 % 3,0 % 2,9 % 3,6 % 82 Frederiks Skole 435 3,4 % 4,0 % 3,8 % 3,8 % 110 Hald Ege Skole 674 5,3 % 3,0 % 2,8 % 4,3 % 82 Hammershøj Skole 324 2,6 % 3,0 % 4,2 % 3,1 % 120 Houlkærskolen 795 6,3 % 5,7 % 3,9 % 7,0 % 112 Karup Skole 397 3,1 % 3,0 % 4,0 % 3,6 % 115 Løgstrup Skole 544 4,3 % 5,2 % 3,2 % 3,9 % 91 Møldrup Skole 513 4,0 % 4,2 % 4,0 % 4,6 % 114 Møllehøjskolen 286 2,3 % 1,5 % 2,7 % 1,7 % 77 Mønsted Skole 277 2,2 % 1,7 % 3,6 % 2,2 % 103 Nordre Skole 521 4,1 % 4,5 % 3,3 % 3,9 % 95 Overlund Skole 842 6,6 % 3,0 % 2,4 % 4,5 % 68 Rødkærsbro Skole 505 4,0 % 6,2 % 3,6 % 4,2 % 104 Skals Skole 390 3,1 % 2,0 % 4,2 % 3,7 % 121 Sparkær Skole 85 0,7 % 0,0 % 2,6 % 0,5 % 74 Stoholm Skole 475 3,7 % 1,5 % 3,6 % 3,8 % 103 Sødalskolen 522 4,1 % 3,2 % 3,4 % 4,1 % 99 Søndre Skole 702 5,5 % 7,7 % 3,8 % 6,0 % 108 Ulbjerg Skole 109 0,9 % 0,5 % 2,1 % 0,5 % 62 Vestervang Skole 631 5,0 % 7,9 % 4,3 % 6,1 % 123 Vestfjendsskolen 323 2,5 % 1,5 % 4,7 % 3,4 % 135 Vestre Skole 944 7,4 % 9,2 % 3,5 % 7,5 % 101 Ørum Skole 410 3,2 % 4,5 % 3,5 % 3,2 % 99 Total ,0 % 100,0 % 3,5 % 100,0 % 100 Note: Data for alle elever i klasse i Viborg Kommune i folkeskoler, privat og friskoler, 2014/15. * Indeks 100=gennemsnitlig sandsynlighed for specialundervisning i Viborg Kommune Kilde: Danmarks Statistik, Sundhedsdatastyrelsen og Viborg Kommunes elevregister 15

16 Som det fremgår af tabel 5.1, var der i skoleåret 2014/15 samlet set ca elever i klasse med adresse i et af skoledistrikterne i Viborg Kommune (det samlede elevgrundlag). Skoledistrikterne for Overlund Skole, Houlkærskolen og Vestre Skole har de største elevgrundlag med henholdsvis 842 elever (6,6 %), 795 elever (6,3 %) og 944 elever (7,4 %). Sparkær Skole og Ulbjerg Skole har det mindste elevgrundlag med 85 elever (0,7 %) og 109 elever (0,9 %). Fordelingen af kommunens elever i segregeret specialundervisning viser, at 9,2 % af de faktisk henviste elever i Viborg Kommune i skoleåret 2016/17 kommer fra Vestre Skoles skoledistrikt. I den anden ende af skalaen ligger Sparkær Skoles skoledistrikt. Ingen af eleverne bosat i skoledistriktet for Sparkær Skole er således visiteret til segregeret specialundervisning i dette skoleår. Generelt viser fordelingen af det samlede elevgrundlag og fordelingen af de faktiske specialundervisningselever, at der er væsentlige forskelle på skoledistrikternes andel af elevgrundlaget og deres andel af specialundervisningseleverne. Den gennemsnitlige forudsagte sandsynlighed (ifølge KORA-modellen) for at modtage segregeret specialundervisning varierer da også væsentligt fra skoledistrikt til skoledistrikt. Lavest er den for elevgrundlagt på Ulbjerg Skole, som ved en landsgennemsnitlig henvisningspraksis vil have en gennemsnitlig sandsynlighed på 2,1 % for at modtage segregeret specialundervisning. Den højeste gennemsnitlige sandsynlighed for at modtage segregeret specialundervisning har elevgrundlaget for Vestfjendsskolen med 4,7 %. Det gennemsnitlige forventede specialundervisningsbehov pr. elev er med andre ord mere end dobbelt så højt i Vestfjendsskolens skoledistrikt som i skoledistriktet for Ulbjerg Skole. Ved at gange skoledistriktets gennemsnitlige sandsynlighed for, at eleverne modtager segregeret specialundervisning, med skoledistriktets elevtal, fås det antal specialundervisningselever, som der forventes at være i hvert skoledistriktet, hvis alle distrikter fulgte den landsgennemsnitlige henvisningspraksis. Dette tal er i tabel 5.1 omregnet, så der vises den andel af kommunens segregerede specialundervisningselever, som forventes at komme fra de enkelte skoledistrikter, givet skoledistrikternes elevsammensætning og størrelse. Dette mål tager således højde for både skoledistriktets størrelse og elevernes forventede specialundervisningsbehov. Det forventes eksempelvis på baggrund af skoledistriktets størrelse og elevsammensætning, at 7,0 % af kommunens segregerede specialundervisningselever vil komme fra Houlkærskolens distrikt. Ved at sammenholde skoledistrikternes andel af de forventede segregerede specialundervisningselever med skolens andel af det samlede elevtal fås et udtryk for skolernes specialundervisningsbehov pr. elev 5. Det indekserede specialundervisningsbehov er et tal, der enten er større eller mindre end 100. Hvis tallet er mindre end 100, fx 95, indikerer det et forventet specialundervisningsbehov hos elevgrundlaget, som er 5 % mindre end gennemsnittet for kommunen. Hvis tallet er større end 100, fx 105, ligger det forventede specialundervisningsbehov 5 % over gennemsnittet for kommunen. For Frederiks Skole giver denne beregning eksempelvis et indekseret specialundervisningsbehov på (3,8 %/3,4 %)*100=110. Det vil sige, at elevgrundlaget for Frederiks Skole har et forventet specialundervisningsbehov, som ligger ca. 10 % over gennemsnittet for kommunen. Generelt viser resultaterne, at der med udgangspunkt i skoledistrikternes elevsammensætninger må forventes forskelle mellem skoledistrikternes specialundervisningsbehov i Viborg Kommune. Dette fremgår af tabel 5.1 direkte ved skoledistrikternes forskellige gennemsnitlige sandsynligheder for henvisning til segregeret specialundervisning. Samtidig er det illustreret 5 Indeks for specialundervisningsbehov = (forventet andel af segregerede elever/andel af samlet elevgrundlag)*100

17 ved det indekserede specialundervisningsbehov, som sammenholder skoledistrikternes forventede andel af de segregerede elever med deres andel af det samlede elevgrundlag. Elevgrundlaget i Vestfjendsskolens distrikt har det højeste forventede specialundervisningsbehov med et behov, som er 35 % højere end det gennemsnitlige specialundervisningsbehov i Viborg Kommune. I distrikterne for Ulbjerg Skole og Overlund Skole giver elevsammensætningerne omvendt en forventning om et relativt lavt specialundervisningsbehov, som er henholdsvis 38 % og 32 % lavere end kommunens gennemsnitlige specialundervisningsbehov. Tabel 5.1 viser også, at forskellene i forudsagt specialundervisningsbehov har en vis sammenhæng med de faktiske henvisningsmønstre til segregeret specialundervisning i dag. De skoledistrikter, som ifølge KORA-modellen forventes at have en stor andel af de segregerede specialundervisningselever, har det således også i praksis. Der er dog også visse forskelle mellem den faktiske og den forventede henvisningspraksis i skoledistrikterne. Disse forskelle er illustreret i figur 5.1. For eksempel udgør andelen af segregerede specialundervisningselever for Karup Skoles skoledistrikt 3,0 % af specialundervisningseleverne i Viborg Kommune. På baggrund af skoledistriktets elevsammensætning og størrelse henvises der således færre elever til specialundervisning end de 3,6 %, man kan forvente. Omvendt udgør de henviste specialundervisningselever fra Vestervang Skoles skoledistrikt 7,9 % af alle segregerede specialundervisningselever i kommunen. Ud fra skoledistriktets elevgrundlag henvises der på denne måde flere elever til segregerede specialundervisningstilbud end de 6,1 %, det kan forventes, når man tager højde for elevernes demografiske, socioøkonomiske og sundhedsrelaterede forhold. Figur 5.1 Forventet og faktisk andel af de segregerede specialundervisningselever i Viborg Kommunes skoledistrikter (bosætning). Skoleåret 2016/17 10,0% 9,0% 8,0% 7,0% 6,0% 5,0% 4,0% 3,0% 2,0% 1,0% 0,0% Forventet andel af det samlede antal segregerede specialundervisningelever (KORA-model) Andel af kommunens specialundervisningelever Kilde: Danmarks Statistik, Sundhedsdatastyrelsen og Viborg Kommunes elevregister 17

18 6 Budgettildelingsmodeller Afsnittet viser, hvordan KORA-modellens forventede specialundervisningsbehov for Viborg Kommunes skoledistrikter kan anvendes som grundlag for en budgettildelingsmodel for midler til specialundervisning. Der er tale om relative fordelingsmodeller, som fordeler en politisk fastlagt budgetramme ud på skolerne efter de relative forskelle, der er imellem distrikternes specialundervisningsbehov. Modellen siger således ikke noget om, hvorvidt midlerne samlet set er tilstrækkelige ud fra en pædagogisk betragtning. Der beregnes separate forslag til fordelingsmodeller for midler til segregeret specialundervisning og midler til inkluderende indsatser. Beregningsprincipperne for de to modeller er uddybet nærmere nedenfor. 6.1 Fordeling af midler til finansiering af segregerede elever i 0. til 9. klasse KORAs forslag til fordeling af midler til finansiering af segregerede elever fordeler midlerne efter skoledistrikternes forventede andel af de segregerede elever. Hvis et skoledistrikt på baggrund af den statistiske model forventes at have 5 % af kommunens segregerede elever bosat i distriktet, tildeles skolen således også 5 % af midlerne. Tildelingsmodellen forudsætter, at skolen ligeledes har betalingsforpligtigelsen for alle elever bosat i distriktet. Resultaterne er vist i tabel 6.1 nedenfor. 18

19 Tabel 6.1 Budgetfordeling af midler til finansiering af segregerede elever i klasse Skoledistrikt (bosætning) Elevgrundlag klasse Budgetandel på baggrund af KORA-modellen Brattingsborgskolen 152 0,9 % Bøgeskovskolen 594 4,7 % Egeskovskolen 662 4,9 % Finderuphøj Skole 721 5,0 % Frederiks Skole 435 3,8 % Hald Ege Skole 674 4,3 % Hammershøj Skole 324 3,1 % Houlkærskolen 795 7,0 % Karup Skole 397 3,6 % Løgstrup Skole 544 3,9 % Møldrup Skole 513 4,6 % Møllehøjskolen 286 1,7 % Mønsted Skole 277 2,2 % Nordre Skole 521 3,9 % Overlund Skole 842 4,5 % Rødkærsbro Skole 505 4,2 % Skals Skole 390 3,7 % Sparkær Skole 85 0,5 % Stoholm Skole 475 3,8 % Sødalskolen 522 4,1 % Søndre Skole 702 6,0 % Ulbjerg Skole 109 0,5 % Vestervang Skole 631 6,1 % Vestfjendsskolen 323 3,4 % Vestre Skole 786 6,2 % Ørum Skole 410 3,2 % Total ,0 % 6.2 Fordeling af midler til inkluderende indsatser i klasse KORA har endvidere udarbejdet et forslag til en model, som kan anvendes til at fordele midlerne til inkluderende indsatser på de enkelte skoler. Der gøres i den forbindelse opmærksom på, at det budget, der lægges ud på skolen efter denne model, er til inklusion af alle elever på skolerne. Det drejer sig ikke om støtte til enkelte elever, men om ressourcer til at kunne tilrettelægge undervisningen, så alle elever får optimalt udbytte. KORAs forslag til fordeling af midlerne til inkluderende indsatser tager også udgangspunkt i skolernes relative specialundervisningsbehov. Specialundervisningsbehovet vurderes ud fra en tilpasset udgave af modellen for segregeret specialundervisning. Anvendelsen af modellen for segregeret specialundervisning er baseret på en antagelse om, at det er de samme karakteristika hos eleverne, som er afgørende for behovet for de inkluderende indsatser. Aldersvariablen er dog udeladt fra modellen. Udeladelsen af aldersvariablen skyldes en forventning om, at behovet for inkluderende indsatser ikke på samme måde, som ved behovet for segregerede indsatser, stiger efterhånden, som eleverne bliver ældre. Dette skyldes blandt andet, at de elever, som har de største udfordringer, netop har tendens til at blive henvist til segregeret 19

20 specialundervisning på de ældre klassetrin og derfor ikke vil kræve ressourcer via de inkluderende indsatser. Elevgrundlaget for vurdering af skolernes relative behov for inkluderende indsatser er anderledes end ved vurderingen af behovet for segregeret specialundervisning. Ved vurdering af behovet for inkluderende indsatser ses der på de elever, som er indskrevet på skolen, fratrukket de elever, som modtager segregeret specialundervisning. Dette skyldes, at vi dermed netop har isoleret den gruppe af elever, som skolerne potentielt vil skulle lave inkluderende indsatser for. Der er dermed sammenhæng mellem tildelingskriterium og finansieringsansvar. Beregningen af budgettildelingen til finansieringen af inkluderende indsatser på skolerne sker ved at tage andelen af skolernes elever og vægte det med skolernes indekserede specialundervisningsbehov. Skolernes specialundervisningsbehov vedrørende inkluderende indsatser afviger fra specialundervisningsbehovet vedrørende segregerede indsatser. Dette skyldes en kombination af, at elevernes alder ikke har betydning for vurderingen af behovet for inkluderende indsatser, samt at elevgrundlaget er forskelligt mellem de to modeller. Resultaterne er vist i tabel 6.2. Tabel 6.2 Budgetfordeling af midler til finansiering af inkluderende indsatser i klasse Skole (indskrivning) Elever (indskrevet på skolen ekskl. segregerede elever) Indeks for forventet specialundervisningsbehov - inkluderende indsatser Budgetandel på baggrund af KORA-modellen Brattingsborgskolen ,4 % Bøgeskovskolen ,2 % Egeskovskolen ,4 % Finderuphøj Skole ,2 % Frederiks Skole ,6 % Hald Ege Skole ,3 % Hammershøj Skole ,6 % Houlkærskolen ,0 % Karup Skole ,4 % Løgstrup Skole ,7 % Møldrup Skole ,2 % Møllehøjskolen ,2 % Mønsted Skole ,2 % Nordre Skole ,1 % Overlund Skole ,8 % Rødkærsbro skole ,0 % Skals Skole ,2 % Sparkær Skole ,8 % Stoholm Skole ,5 % Sødalskolen ,3 % Søndre Skole ,0 % Ulbjerg Skole ,6 % Vestervang Skole ,5 % Vestfjendsskolen ,6 % Vestre Skole ,1 % Ørum Skole ,1 % Total ,0 % 20

21 Bilag 1 Oversigt over modellens variable Gruppe Variabel Fortegn Signifikansniveau Barnets alder + *** Barnets køn (Pige) - *** Barnets alder ved skolestart + *** Barnet havde lav fødselsvægt (<2.500 g) + *** Barnet har ikke-vestlig oprindelse - *** Barnet Barnet er adopteret + *** Barnets gennemsnitlige antal kontakter med alment praktiserende læge i de seneste fem år + *** Barnet har haft kontakt med en speciallæge inden for de seneste fem år Barnets gennemsnitlige antal indlæggelser de seneste fem år + *** + *** Hjemmeboende børn i barnets familie Ingen hjemmeboende børn i barnets familie + *** Et hjemmeboende barn i barnets familie + *** Barnets familie To hjemmeboende børn i barnets familie Ref - Tre hjemmeboende børn i barnets familie - * Fire hjemmeboende børn i barnets familie - ** Fem eller flere hjemmeboende børn i barnets familie - - Barnets forældre er samboende - *** Mindst én af forældrene er døde - - Moderen er ukendt - *** Faderen er ukendt - *** Moderens beskæftigelsesstatus (ref. kategori = "lønmodtager") Selvstændig - *** Topleder - ** Lønmodtager Ref Ledig + *** Barnets forældre Førtidspensionist + *** Kontanthjælpsmodtager + *** Øvrige - - Faderens beskæftigelsesstatus (ref. kategori = "lønmodtager") Selvstændig - *** Topleder - *** Lønmodtager Ref Ledig + * Førtidspensionist + *** Kontanthjælpsmodtager + *** Øvrig

22 Gruppe Variabel Fortegn Signifikansniveau Moderens alderskorrigerede uddannelsesniveau (0=forventede uddannelsesniveau) Faderens alderskorrigerede uddannelsesniveau (0=forventede uddannelsesniveau) - *** - *** Moderens alderskorrigerede jobprestige - *** Faderens alderskorrigerede jobprestige - *** Moderens alderskorrigerede indkomst (ref. kategori = " til ") Under * til *** til *** til ** til Ref til til *** til *** til * Mere end * Faderens alderskorrigerede indkomst (ref. kategori = " til ") Under *** til *** til *** til til Ref til til til til Mere end Moderens alder ved barnets fødsel - *** Faderens alder ved barnets fødsel + ** Moderen dømt for en mindre alvorlig straffelovsovertrædelse de seneste fem år Moderen dømt for en alvorlig straffelovsovertrædelse de seneste fem år Moderen dømt for en personfarlig straffelovsovertrædelse de seneste fem år Faderen dømt for en mindre alvorlig straffelovsovertrædelse de seneste fem år Faderen dømt for en alvorlig straffelovsovertrædelse de seneste fem år Faderen dømt for en personfarlig straffelovsovertrædelse de seneste fem år Moderen har haft kontakt med psykiatrien inden for de seneste fem år *** + * *** + *** 22

23 Gruppe Variabel Fortegn Signifikansniveau Faderen har haft kontakt med psykiatrien inden for de seneste fem år + *** Moderen har været i behandling for et misbrug - - Faderen har været i behandling for et misbrug - ** Moderens gennemsnitlige antal kontakter med alment praktiserende læge i de seneste fem år Moderen har været til tandlæge inden for de seneste fem år Moderen har haft kontakt med en speciallæge inden for de seneste fem år Faderens gennemsnitlige antal kontakter med alment praktiserende læge i de seneste fem år *** - *** + - Faderen har været til tandlæge inden for de seneste fem år - *** Faderen har haft kontakt med en speciallæge inden for de seneste fem år Moderens gennemsnitlige antal indlæggelser de seneste fem år Faderens gennemsnitlige antal indlæggelser de seneste fem år Moderen er hverken blevet skilt eller enke i perioden - * Faderen er hverken blevet skilt eller enkemand i perioden + ** Note: Modellen er beregnet for alle elever i folkeskoler, privatskoler og frie grundskoler i skoleåret 2014/15. N= , Pseudo R 2 =0,175. * Sammenhængen er statistisk signifikant på minimum 5 %-niveau. ** Sammenhængen er statistisk signifikant på minimum 1 %-niveau. *** Sammenhængen er statistisk signifikant på minimum 0,1 %-niveau. Kilde: Danmarks Statistik og Sundhedsdatastyrelsen. 23

24

Specialundervisningsbehov i Favrskov Kommunes skoledistrikter

Specialundervisningsbehov i Favrskov Kommunes skoledistrikter Thomas Astrup Bæk og Jacob Seier Petersen Specialundervisningsbehov i Favrskov Kommunes skoledistrikter Demografiske, socioøkonomiske og sundhedsrelaterede faktorer Specialundervisningsbehov i Favrskov

Læs mere

Specialundervisningsbehov i Fredensborg Kommunes skoledistrikter

Specialundervisningsbehov i Fredensborg Kommunes skoledistrikter Notat Specialundervisningsbehov i Fredensborg Kommunes skoledistrikter Thomas Astrup Bæk og Jacob Seier Petersen Specialundervisningsbehov i Fredensborg Kommunes skoledistrikter VIVE og forfatterne, 2017

Læs mere

Ressourcetildelingsmodel på specialundervisningsområdet Viborg Kommune. Workshop den 11. januar 2017

Ressourcetildelingsmodel på specialundervisningsområdet Viborg Kommune. Workshop den 11. januar 2017 Ressourcetildelingsmodel på specialundervisningsområdet Viborg Kommune Workshop den 11. januar 2017 Dagsorden: Rationalet bag decentralisering af midlerne til specialundervisning Den statistiske model

Læs mere

Søren Teglgaard Jakobsen og Thomas Astrup Bæk. Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet i Svendborg Kommune

Søren Teglgaard Jakobsen og Thomas Astrup Bæk. Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet i Svendborg Kommune Søren Teglgaard Jakobsen og Thomas Astrup Bæk Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet i Svendborg Kommune Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet

Læs mere

Fordeling af midler til specialundervisning på baggrund af skoledistrikter

Fordeling af midler til specialundervisning på baggrund af skoledistrikter NOTAT Fordeling af midler til specialundervisning på baggrund af skoledistrikter Model for Norddjurs Kommune Søren Teglgaard Jakobsen Maj 2013 Indholdsfortegnelse FORMÅL... 1 METODE... 1 POPULATION...

Læs mere

Fordeling af midler til specialundervisning

Fordeling af midler til specialundervisning NOTAT Fordeling af midler til specialundervisning Model for Norddjurs Kommune Søren Teglgaard Jakobsen December 2012 Købmagergade 22. 1150 København K. tlf. 444 555 00. kora@kora.dk. www.kora.dk Indholdsfortegnelse

Læs mere

Ressourcetildelingsmodel på området for udsatte børn og unge

Ressourcetildelingsmodel på området for udsatte børn og unge Jacob Seier Petersen og Anne Line Tenny Jordan Ressourcetildelingsmodel på området for udsatte børn og unge Socioøkonomiske udgiftsbehov i seks administrative distrikter i Københavns Kommune Ressourcetildelingsmodel

Læs mere

Den økonomiske styring af specialundervisningsområdet i Randers Kommune

Den økonomiske styring af specialundervisningsområdet i Randers Kommune Jacob Seier Petersen, Thomas Astrup Bæk og Søren Teglgaard Jakobsen Den økonomiske styring af specialundervisningsområdet i Randers Kommune En gennemgang af udvikling og styringspraksis Den økonomiske

Læs mere

Ressourcetildelingsmodel for almen undervisning af elever med særlige behov

Ressourcetildelingsmodel for almen undervisning af elever med særlige behov Notat Ressourcetildelingsmodel for almen undervisning af elever med særlige behov Folkeskolers socioøkonomiske udgiftsbehov til inkluderende specialundervisning i Københavns Kommune Jacob Seier Petersen

Læs mere

Fordeling af specialundervisningsmidler i Aarhus Kommune

Fordeling af specialundervisningsmidler i Aarhus Kommune Thomas Astrup Bæk og Søren Teglgaard Jakobsen Fordeling af specialundervisningsmidler i Aarhus Kommune Sammenligning af Aarhus-modellen og KORA-modellen Fordeling af specialundervisningsmidler i Aarhus

Læs mere

Den nye model på almendelen indeholder følgende:

Den nye model på almendelen indeholder følgende: Ny ressourcetildelingsmodel på skoleområdet 2018 Forslaget til en ny ressourcetildelingsmodel på skoleområdet fra 2018 og frem, tager udgangspunkt i parametrene fra forliget om Udfordringer til alle &

Læs mere

Elev- og klasseprognose for Viborg Kommune 2014-2029

Elev- og klasseprognose for Viborg Kommune 2014-2029 Elev- og klasseprognose for Viborg Kommune 2014-2029 Udarbejdet maj 2014 Indhold INDLEDNING... 3 OVERORDNET PROGNOSE FOR DE KOMMUNALE FOLKESKOLER... 3 PROGNOSE FOR DE ENKELTE SKOLER... 4 Brattingborgskolen...

Læs mere

Udviklingen i Aarhus Kommunes udgiftsbehov

Udviklingen i Aarhus Kommunes udgiftsbehov Rapport Udviklingen i Aarhus Kommunes udgiftsbehov En analyse af udgiftsbehovet på det specialiserede børneområde og specialundervisningsområdet Jacob Seier Petersen og Mikkel Munk Quist Andersen Udviklingen

Læs mere

Forslag til ændringer i tildelings- og betalingsmodellen i Udviklingsplan for specialundervisningsområdet

Forslag til ændringer i tildelings- og betalingsmodellen i Udviklingsplan for specialundervisningsområdet Notat Postadresse: Favrskov Kommune Børn og Skole Sekretariatet Skovvej 20 8382 Hinnerup Tlf. 8964 1010 favrskov@favrskov.dk www.favrskov.dk 27. januar 2016 Forslag til ændringer i tildelings- og betalingsmodellen

Læs mere

Udfordringer til alle og uddannelse til flere

Udfordringer til alle og uddannelse til flere Udfordringer til alle og uddannelse til flere Byrådets plankonference Resurse tildeling 28. marts 2017 Almen-området Før og nu Nuværende model (budget 2017) Grundtildeling 2,3 mio.kr. til skoler/matrikler

Læs mere

Udviklingen i Københavns Kommunes socioøkonomiske udgiftsbehov på specialundervisningsområdet

Udviklingen i Københavns Kommunes socioøkonomiske udgiftsbehov på specialundervisningsområdet Jacob Seier Petersen, Anne Line Tenney Jordan, Jesper Wittrup og Peter Holdt-Olesen Udviklingen i Københavns Kommunes socioøkonomiske udgiftsbehov på specialundervisningsområdet Udviklingen i Københavns

Læs mere

Analyse af udviklingen i det socioøkonomiske udgiftsbehov på specialundervisningsområdet

Analyse af udviklingen i det socioøkonomiske udgiftsbehov på specialundervisningsområdet KØBENHAVNS KOMMUNE Børne- og Ungdomsforvaltningen Center for Policy NOTAT Til Børne- og Ungdomsudvalget Analyse af udviklingen i det socioøkonomiske udgiftsbehov på specialundervisningsområdet KORA (Det

Læs mere

Thomas Astrup Bæk og Søren Teglgaard Jakobsen. Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet for Lolland Kommune

Thomas Astrup Bæk og Søren Teglgaard Jakobsen. Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet for Lolland Kommune Thomas Astrup Bæk og Søren Teglgaard Jakobsen Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet for Lolland Kommune Socioøkonomisk ressourcetildelingsmodel for specialundervisningsområdet

Læs mere

Jan Christensen og Eskild Klausen Fredslund. Fælles ældre. Opgørelse af 65+ borgere i hjemmeplejen og i hospitalssektoren

Jan Christensen og Eskild Klausen Fredslund. Fælles ældre. Opgørelse af 65+ borgere i hjemmeplejen og i hospitalssektoren Jan Christensen og Eskild Klausen Fredslund Fælles ældre Opgørelse af 65+ borgere i hjemmeplejen og i hospitalssektoren Publikationen Fælles ældre kan hentes fra hjemmesiden www.kora.dk KORA og forfatterne

Læs mere

Notat om socioøkonomi og tildelingsmodellen på skoleområdet

Notat om socioøkonomi og tildelingsmodellen på skoleområdet Til: Skole og dagtilbud Notat om socioøkonomi og tildelingsmodellen på skoleområdet 24. februar 2017 Kontaktperson: Claus Humlum Gudiksen 87535549 chg@syddjurs.dk Kort om statens socioøkonomiske reference

Læs mere

Benchmarking på anbringelsesområdet i Aabenraa Kommune

Benchmarking på anbringelsesområdet i Aabenraa Kommune Benchmarking på anbringelsesområdet i Aabenraa Kommune Aabenraa Kommune har henvendt sig til for at få belyst, hvilke forhold der er afgørende for udgiftsbehovet til anbringelser, og for at få sat disse

Læs mere

Evaluering af de økonomiske kriterier for budgettildelingsmodellen for inklusion på skoleområdet

Evaluering af de økonomiske kriterier for budgettildelingsmodellen for inklusion på skoleområdet Evaluering af de økonomiske kriterier for budgettildelingsmodellen for inklusion på skoleområdet J.nr.: 17.01.10 A00 Sagsnr.: 15/24431 BESLUTNINGSTEMA I 2013 besluttedes en budgettildelingsmodel vedrørende

Læs mere

Specialundervisning og inklusion, 2014/15

Specialundervisning og inklusion, 2014/15 Ligestillingsudvalget 2014-15 (2. samling) LIU Alm.del Bilag 3 Offentligt Specialundervisning og inklusion, 2014/15 Efter aftalen om kommunernes økonomi for 2013 er målet, at andelen af elever inkluderet

Læs mere

De socioøkonomiske referencer for gymnasiekarakterer Metodenotat

De socioøkonomiske referencer for gymnasiekarakterer Metodenotat De socioøkonomiske referencer for gymnasiekarakterer 2017 Metodenotat Indhold Sammenfatning... 5 Baggrund... 7 Datagrundlag... 9 Elever... 9 Fag, prøveform og niveau... 9 Socioøkonomiske baggrundsvariable...

Læs mere

ANALYSE AF SKOLERNES SOCIALE PROFIL

ANALYSE AF SKOLERNES SOCIALE PROFIL ANALYSE AF SKOLERNES SOCIALE PROFIL RAPPORT VERSION 4.0 MARTS 2012 INDHOLD 1. Indledning... 3 2. Metode og fremgangsmåde... 4 2.1 Udregning af den sociale profil score... 4 2.2 Aggregering af social profil

Læs mere

De socioøkonomiske referencer for gymnasiekarakterer 2014

De socioøkonomiske referencer for gymnasiekarakterer 2014 De socioøkonomiske referencer for gymnasiekarakterer 2014 Indhold Sammenfatning... 5 Indledning... 7 Datagrundlag... 9 Elever... 9 Fag, prøveform og niveau... 9 Socioøkonomiske baggrundsvariable... 10

Læs mere

Simon Hartwell Christensen og Eli Nørgaard. Forslag til ny demografimodel på ældreområdet i Viborg Kommune

Simon Hartwell Christensen og Eli Nørgaard. Forslag til ny demografimodel på ældreområdet i Viborg Kommune Simon Hartwell Christensen og Eli Nørgaard Forslag til ny demografimodel på ældreområdet i Viborg Kommune Forslag til ny demografimodel på ældreområdet i Viborg Kommune kan hentes fra hjemmesiden www.kora.dk

Læs mere

Udviklingen i Københavns Kommunes socioøkonomiske udgiftsbehov på området for udsatte børn og unge

Udviklingen i Københavns Kommunes socioøkonomiske udgiftsbehov på området for udsatte børn og unge Anne Line Tenney Jordan, Jacob Seier Petersen, Jesper Wittrup og Peter Holdt-Olesen Udviklingen i Københavns Kommunes socioøkonomiske udgiftsbehov på området for udsatte børn og unge Udviklingen i Københavns

Læs mere

De socioøkonomiske referencer for gymnasiekarakterer 2016

De socioøkonomiske referencer for gymnasiekarakterer 2016 De socioøkonomiske referencer for gymnasiekarakterer 2016 Indhold Sammenfatning... 5 Indledning... 7 Datagrundlag... 9 Elever... 9 Fag, prøveform og niveau... 9 Socioøkonomiske baggrundsvariable... 10

Læs mere

De socioøkonomiske referencer for grundskolekarakterer 2016

De socioøkonomiske referencer for grundskolekarakterer 2016 De socioøkonomiske referencer for grundskolekarakterer 2016 1 Indhold Sammenfatning.. 4 Elevgrundlag... 8 Skoleåret 2015/2016... 8 3-års perioden 2013/2014-2015/2016... 10 Skoletype... 11 December 2016

Læs mere

De kommunale budgetter 2014 Forbedret driftsresultat, men stadig samlet underskud

De kommunale budgetter 2014 Forbedret driftsresultat, men stadig samlet underskud NOTAT De kommunale budgetter 2014 Forbedret driftsresultat, men stadig samlet underskud Bo Panduro, tlf. 7226 9971, bopa@kora.dk Amanda Madsen, amma@kora.dk Marts 2014 Købmagergade 22. 1150 København K.

Læs mere

De kommunale budgetter 2015

De kommunale budgetter 2015 Steffen Juul Krahn, Bo Panduro og Søren Hametner Pedersen De kommunale budgetter 2015 Begrænset budgetteret underskud for gennemsnitskommunen De kommunale budgetter 2015 Begrænset budgetteret underskud

Læs mere

Ifølge SFI-rapporten Kommuners rammevilkår for beskæftigelsesindsatsen 1 fra 2013 kan man ud fra Aabenraa kommunes rammebetingelser forvente, at borgere i kommunen i gennemsnit er på arbejdsløshedsdagpenge

Læs mere

Analyse 8. september 2014

Analyse 8. september 2014 8. september 2014 Børn med ikke-vestlig baggrund har klaret sig markant dårligere i den danske grundskole gennem de seneste ti år Af Kristian Thor Jakobsen og Katrine Marie Tofthøj Personer med ikke-vestlig

Læs mere

Jacob Nielsen Arendt og Astrid Kiil. Socioøkonomisk budgettildelingsmodel for specialundervisning i folkeskolen i Kerteminde Kommune

Jacob Nielsen Arendt og Astrid Kiil. Socioøkonomisk budgettildelingsmodel for specialundervisning i folkeskolen i Kerteminde Kommune Jacob Nielsen Arendt og Astrid Kiil Socioøkonomisk budgettildelingsmodel for specialundervisning i folkeskolen i Kerteminde Kommune Publikationen Socioøkonomisk budgettildelingsmodel for specialundervisning

Læs mere

Elev/lærer ratio i grundskolen 2009/2010

Elev/lærer ratio i grundskolen 2009/2010 Elev/lærer ratio i grundskolen 2009/2010 Af Anne Mette Byg Hornbek Elev/lærer ratioen er større i frie grundskoler (12,6) end i folkeskoler (11,2) for skoleåret 2009/2010. I folkeskolen har ratioen stort

Læs mere

Andel elever, der er inkluderet i den almindelige undervisning, 2015/16

Andel elever, der er inkluderet i den almindelige undervisning, 2015/16 Andel elever, der er inkluderet i den almindelige undervisning, 2015/16 Dette notat giver overblik over andelen af elever, der er inkluderet i den almindelige undervisning den såkaldte inklusionsgrad.

Læs mere

Elevtal for grundskolen 2009/2010

Elevtal for grundskolen 2009/2010 Elevtal for grundskolen 29/21 Af Alexander Uldall Kølving Elevtallet har været faldende i perioden 26/7 til 29/1. For skoleåret 29/1 var der sammenlagt 715.833 elever i den danske grundskole, og sammenlagt

Læs mere

Elevernes herkomst i grundskolen 2008/2009

Elevernes herkomst i grundskolen 2008/2009 Elevernes herkomst i grundskolen 2008/2009 Af Anne Mette Byg Hornbek 10 pct. af eleverne i grundskolen er af anden etnisk herkomst end dansk. Det absolutte antal efterkommere og indvandrere i folkeskolen

Læs mere

Formålet med denne rapport er at tilvejebringe ny viden om specialundervisningsområdet.

Formålet med denne rapport er at tilvejebringe ny viden om specialundervisningsområdet. November 2011 Forord Gennem de seneste årtier er stadigt flere børn blevet henvist til specialundervisning. Resultatet er, at udgifterne til specialundervisningsområdet er vokset mærkbart. Formålet med

Læs mere

Analyse af nystartende elever og omgængere i grundskolens børnehaveklasse. Baseret på data for skoleåret 2010/11

Analyse af nystartende elever og omgængere i grundskolens børnehaveklasse. Baseret på data for skoleåret 2010/11 Analyse af nystartende elever og omgængere i grundskolens børnehaveklasse Baseret på data for skoleåret 2010/11 Analyse af nystartende elever og omgængere i grundskolens børnehaveklasse Baseret på data

Læs mere

Elever i grundskolen, 2015/16

Elever i grundskolen, 2015/16 Elever i grundskolen, Dette notat giver overblik over antallet af elever i grundskolen. Opgørelsen viser, at antallet af elever i folkeskolen er faldet siden 2011/12, mens antallet af elever i frie grundskoler

Læs mere

Specialundervisning og segregering, 2012/2013

Specialundervisning og segregering, 2012/2013 Specialundervisning og segregering, 2012/2013 Skolerne nærmer sig målet om, at andelen af elever i den almindelige folkeskole skal øges til 96 procent af eleverne. I 2012/2013 var 5,2 procent af eleverne

Læs mere

SOCIOØKONOMISKE FAKTORER I GRUNDSKOLEN

SOCIOØKONOMISKE FAKTORER I GRUNDSKOLEN SOCIOØKONOMISKE FAKTORER I GRUNDSKOLEN Dansk Friskoleforening besluttede januar 2009 at indhente data fra Danmarks Statistik, som kan danne grundlag for at vurdere de socioøkonomiske faktorer hos eleverne

Læs mere

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater.

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. 1 Sammenfatning Der er en statistisk signifikant positiv sammenhæng mellem opnåelse af et godt testresultat og elevernes oplevede

Læs mere

Indhold SOLRØD KOMMUNE SKOLE OG DAGTILBUD NOTAT. Emne: Solrød Folkeskoler i tal. Til: Orientering. Dato: 17. november 2014

Indhold SOLRØD KOMMUNE SKOLE OG DAGTILBUD NOTAT. Emne: Solrød Folkeskoler i tal. Til: Orientering. Dato: 17. november 2014 SOLRØD KOMMUNE SKOLE OG DAGTILBUD NOTAT Emne: Til: Solrød Folkeskoler i tal Orientering Dato: 17. november 2014 Sagsbeh.: Thomas Petersen Sagsnr.: Indhold Karaktergennemsnit... 2 Folkeskolens afgangsprøver

Læs mere

Elevtal for grundskolen 2010/2011

Elevtal for grundskolen 2010/2011 Elevtal for grundskolen 2010/2011 Af Mathilde Ledet Molsgaard I 2010/11 er der ca. 713.000 elever i grundskolen. Andelen af elever i frie grundskoler og efterskoler har været stigende i perioden siden

Læs mere

Vedrørende: Elevtal pr. 30. september 2011 (skoleåret 2011/2012) Skrevet af: Line Steinmejer Nikolajsen og Mathilde Ledet Molsgaard

Vedrørende: Elevtal pr. 30. september 2011 (skoleåret 2011/2012) Skrevet af: Line Steinmejer Nikolajsen og Mathilde Ledet Molsgaard Notat vedr. elevtal Vedrørende: Elevtal pr. 30. september 2011 (skoleåret 2011/2012) 21.11.2012 Skrevet af: Line Steinmejer Nikolajsen og Mathilde Ledet Molsgaard Indledning Dette notat beskriver eleverne

Læs mere

Status for folkeskolerne i Viborg Kommune. April 2015

Status for folkeskolerne i Viborg Kommune. April 2015 Status for folkeskolerne i Viborg Kommune April 2015 Indholdsfortegnelse 1. Baggrund... 2 2. Fagligt niveau og spredning... 3 2.1 Fagligt niveau og socioøkonomiske forhold... 5 3. Elevtrivsel... 7 4. Overgang

Læs mere

Børne- og Undervisningsudvalget 2014-15 BUU Alm.del Bilag 51 Offentligt. De socioøkonomiske referencer for grundskolekarakterer 2014

Børne- og Undervisningsudvalget 2014-15 BUU Alm.del Bilag 51 Offentligt. De socioøkonomiske referencer for grundskolekarakterer 2014 Børne- og Undervisningsudvalget 2014-15 BUU Alm.del Bilag 51 Offentligt De socioøkonomiske referencer for grundskolekarakterer 2014 1 Indhold Sammenfatning... 4 Indledning... 6 Resultater... 8 Elever...

Læs mere

De kommunale budgetter 2017

De kommunale budgetter 2017 Bo Panduro og Mette Brinch Hansen De kommunale budgetter 2017 Fornuftig balance mellem udgifter og indtægter De kommunale budgetter 2017 Fornuftig balance mellem udgifter og indtægter Publikationen kan

Læs mere

Hæmsko: 10 sociale faktorer der øger risikoen for at stå uden uddannelse

Hæmsko: 10 sociale faktorer der øger risikoen for at stå uden uddannelse Hæmsko: 1 sociale faktorer der øger risikoen for at stå uden uddannelse AE har undersøgt en lang række sociale og faglige faktorer for at finde frem til barrierer for at få en ungdomsuddannelse. Resultaterne

Læs mere

SOCIOØKONOMISKE BEREGNINGER I FORDELINGSMODELLERNE

SOCIOØKONOMISKE BEREGNINGER I FORDELINGSMODELLERNE SOCIOØKONOMISKE BEREGNINGER I FORDELINGSMODELLERNE AGENDA 1 2 3 Hvorfor arbejdes der med decentralisering og socioøkonomiske beregninger? Hvordan indgår beregningerne i modellerne? Et konkret, illustrativt

Læs mere

Socioøkonomiske tildelingsmodeller på specialundervisningsområdet. Tema- og netværksmøde i BKF Region Syddanmark, fredag d. 4.

Socioøkonomiske tildelingsmodeller på specialundervisningsområdet. Tema- og netværksmøde i BKF Region Syddanmark, fredag d. 4. Socioøkonomiske tildelingsmodeller på specialundervisningsområdet Tema- og netværksmøde i BKF Region Syddanmark, fredag d. 4. oktober 2013 Dagsorden: 1. Hvorfor bruge decentralisering og socioøkonomiske

Læs mere

Elevfravær i folkeskolen og karaktergennemsnit, 2012/13

Elevfravær i folkeskolen og karaktergennemsnit, 2012/13 Elevfravær i folkeskolen og karaktergennemsnit, Elever med højt samlet fravær får gennemsnitligt set lavere karakterer end elever med lavt fravær. Selv når der tages højde for elevernes sociale baggrund,

Læs mere

Rehabiliterende hjemmepleje efter Egedal-modellen

Rehabiliterende hjemmepleje efter Egedal-modellen Jakob Kjellberg og Rikke Ibsen Rehabiliterende hjemmepleje efter Egedal-modellen En analyse af de økonomiske konsekvenser af initiativer igangsat i hjemmeplejen i Egedal Kommune i løbet af 2015 Rehabiliterende

Læs mere

Elever i børnehaveklasse, skoleåret 2016/2017

Elever i børnehaveklasse, skoleåret 2016/2017 Elever i børnehaveklasse, skoleåret 2016/2017 Elevtallene for børnehaveklasse i grundskolen for skoleåret 2016/17 viser, at: I skoleåret 2016/2017 startede ca. 66.300 elever i børnehaveklasse i grundskolen.

Læs mere

Kilde: UNI-C s databank. Tabel (EGS) Bestand og GRS Klassetype og Institutioner og Tid Skoleår.

Kilde: UNI-C s databank. Tabel (EGS) Bestand og GRS Klassetype og Institutioner og Tid Skoleår. N OTAT Inklusion/segregering og tilvalg af folkeskolen Debatten på folkeskoleområdet berører ofte udfordringerne med inklusion. Herunder fremføres den øgede inklusion som grund til at forældre i stigende

Læs mere

VEJEN KOMMUNE ANALYSE AF SKOLERNES SOCIALE PROFIL

VEJEN KOMMUNE ANALYSE AF SKOLERNES SOCIALE PROFIL VEJEN KOMMUNE ANALYSE AF SKOLERNES SOCIALE PROFIL RAPPORT VERSION 1.0 MARTS 2014 INDHOLD 1. Indledning... 3 2. Metode og fremgangsmåde... 4 2.1 Udregning af den sociale profil score... 4 2.2 Aggregering

Læs mere

Bilag 5: Data. Data om børn og unge, som bor i Gellerup, Tovshøj og Ellekær

Bilag 5: Data. Data om børn og unge, som bor i Gellerup, Tovshøj og Ellekær Bilag 5: Data Data om børn og unge, som bor i Gellerup, Tovshøj og Ellekær Metode og data Eksisterende data om børnene og de unge koblet med bopælsoplysninger (skoledistrikter) Som udgangspunkt præsenteres

Læs mere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Bilag I afrapportering af signifikanstest i tabeller i artikel er der benyttet følgende illustration af signifikans: * p

Læs mere

Skolebestyrelsen arbejder for at give skolens elever det bedst tænkelige udgangspunkt, når de engang forlader skolen og skal videre i livet.

Skolebestyrelsen arbejder for at give skolens elever det bedst tænkelige udgangspunkt, når de engang forlader skolen og skal videre i livet. Et vigtigt valg I den kommende tid skal der vælges medlemmer til skolebestyrelsen ved din skole. Viborg Kommune vil med denne lille folder fortælle om skolebestyrelsens arbejde og valgets gang. Skolebestyrelsen

Læs mere

Specialundervisning i folkeskolen skoleåret 2008/09

Specialundervisning i folkeskolen skoleåret 2008/09 Specialundervisning i folkeskolen skoleåret 2008/09 Af Anne Mette Byg Hornbek Indledende overblik Dette notat belyser specialundervisning i folkeskolen i skoleåret 2008/2009, herunder i almindelige folkeskoler,

Læs mere

Pædagogisk personale i folkeskoler og frie grundskoler

Pædagogisk personale i folkeskoler og frie grundskoler Pædagogisk personale i folkeskoler og frie grundskoler Af Det pædagogiske personale i folkeskoler 1 og frie grundskoler talte godt 69.000 medarbejdere 2 i skoleåret 2009/10. Lærerne udgør langt den største

Læs mere

Tabel 1 Samlede nettodriftsudgifter på skoleområdet i Helsingør Kommune (kr.) Regnskab 2016 Budget Folkeskoler

Tabel 1 Samlede nettodriftsudgifter på skoleområdet i Helsingør Kommune (kr.) Regnskab 2016 Budget Folkeskoler NOTAT Center for Økonomi og Ejendomme Økonomi Service Stengade 59 3000 Helsingør Cvr nr. 64 50 20 18 Dato 17.08.2017 Faktanotat om skolernes økonomi, september 2017. Notatet indeholder en status på skolernes

Læs mere

En stor del af indvandreres og efterkommeres lavere karakterer i forhold til danskere kan forklares

En stor del af indvandreres og efterkommeres lavere karakterer i forhold til danskere kan forklares 30. november 2017 2017:18 19. december 2017: Der var desværre fejl i et tal i boks 2. Rettelsen er markeret med rødt. Desuden er der tilføjet en boks 4 sidst i analysen. En stor del af indvandreres og

Læs mere

De socioøkonomiske referencer for gymnasiekarakterer 2013

De socioøkonomiske referencer for gymnasiekarakterer 2013 De socioøkonomiske referencer for gymnasiekarakterer 2013 Indhold Sammenfatning... 5 Indledning... 7 Datagrundlag... 9 Elever... 9 Fag, prøveform og niveau... 9 Socioøkonomiske baggrundsvariable... 9

Læs mere

Velfærdens Danmarkskort - Ældrepleje

Velfærdens Danmarkskort - Ældrepleje 1 Velfærdens Danmarkskort - Ældrepleje Velfærdens Danmarkskort kortlægger udviklingen på nogle af de mest centrale velfærdsområder i Danmark. Dette notat fokuserer på udviklingen i ældreplejen gennem de

Læs mere

UPV i 8. Klasse. Deskriptiv analyse af uddannelsesparathedsvurderinger i 8. klasse

UPV i 8. Klasse. Deskriptiv analyse af uddannelsesparathedsvurderinger i 8. klasse UPV i 8. Klasse Deskriptiv analyse af uddannelsesparathedsvurderinger i 8. klasse UPV i 8. klasse Deskriptiv analyse af uddannelsesparathedsvurderinger i 8. klasse 2015 UPV i 8. klasse 2015 Danmarks Evalueringsinstitut

Læs mere

Grundskolekarakterer 9. klasse Prøvetermin maj/juni 2012 1

Grundskolekarakterer 9. klasse Prøvetermin maj/juni 2012 1 Grundskolekarakterer 9. klasse Prøvetermin maj/juni 2012 1 Af Line Steinmejer Nikolajsen og Katja Behrens I dette notat præsenteres udvalgte resultater for folkeskolens afgangsprøver i 9. klasse for prøveterminen

Læs mere

Bilag De socioøkonomiske referencer for gymnasiekarakterer. Bilag 1: Socioøkonomiske baggrundsoplysninger

Bilag De socioøkonomiske referencer for gymnasiekarakterer. Bilag 1: Socioøkonomiske baggrundsoplysninger Bilag De socioøkonomiske referencer for gymnasiekarakterer 2017 Bilag 1: Socioøkonomiske baggrundsoplysninger Bilagstabel 1 Baggrundsoplysninger Baggrundsoplysning 9. klasse FSA karaktergennemsnit Køn

Læs mere

Elever i børnehaveklasse, skoleåret 2014/2015

Elever i børnehaveklasse, skoleåret 2014/2015 Elever i børnehaveklasse, skoleåret 2014/2015 Elevtallene for børnehaveklasse i grundskolen for skoleåret 2014/15 viser, at: I skoleåret 2014/2015 startede knap 67.600 elever i børnehaveklasse i grundskolen.

Læs mere

Skoleudvalget har tidligere har besluttet, at der skal igangsættes en ny visitationsmodel med ikrafttrædelse august Kommissoriet indeholder to

Skoleudvalget har tidligere har besluttet, at der skal igangsættes en ny visitationsmodel med ikrafttrædelse august Kommissoriet indeholder to Visitationsmodel Skoleudvalget har tidligere har besluttet, at der skal igangsættes en ny visitationsmodel med ikrafttrædelse august 2017. Kommissoriet indeholder to faser: Fase 1: udarbejdelse af en ny

Læs mere

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår Bonus A Forfattere: Jeppe Christiansen og Lone Juul Hune UNI C UNI C, juni

Læs mere

Alder ved skolestart i børnehaveklasse 1

Alder ved skolestart i børnehaveklasse 1 Alder ved skolestart i børnehaveklasse 1 Af Katja Behrens I skoleåret 2009/10 startede knap 85 pct. af eleverne rettidigt i børnehaveklasse, dvs. de inden udgangen af 2009 fylder 6 år. Kun få elever starter

Læs mere

Efterskolernes effekt på unges uddannelse og beskæftigelse. Efterskoleforeningen. Efterskolernes effekt på unges uddannelse og beskæftigelse

Efterskolernes effekt på unges uddannelse og beskæftigelse. Efterskoleforeningen. Efterskolernes effekt på unges uddannelse og beskæftigelse Efterskoleforeningen Efterskolernes effekt på unges uddannelse og beskæftigelse Capacent Epinion September 2008 Indhold 1. Indledning 2 2. Resume 4 3. Målgruppeprofil 6 3.1 Hvad karakteriserer unge, som

Læs mere

September 2012. Resume: Efterskolerne og uddannelsesmobilitet. Udarbejdet af DAMVAD for Efterskoleforeningen

September 2012. Resume: Efterskolerne og uddannelsesmobilitet. Udarbejdet af DAMVAD for Efterskoleforeningen September 2012 Resume: Efterskolerne og uddannelsesmobilitet Udarbejdet af DAMVAD for Efterskoleforeningen For information on obtaining additional copies, permission to reprint or translate this work,

Læs mere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere

Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere DET ØKONOMISKE RÅD S E K R E T A R I A T E T d. 20. maj 2005 SG Betydningen af konjunktur og regelændringer for udviklingen i sygedagpengemodtagere Baggrundsnotat vedr. Dansk Økonomi, forår 2005, kapitel

Læs mere

Statistisk modellering af udgiftsbehov - Statistisk model for udgifter vedrørende børn og unge med særlige behov

Statistisk modellering af udgiftsbehov - Statistisk model for udgifter vedrørende børn og unge med særlige behov Statistisk modellering af udgiftsbehov - Statistisk model for udgifter vedrørende børn og unge med særlige behov Konferencen Den gode anbringelse Vejle, 9. maj 2011 Eskil Heinesen, AKF Datagrundlag Registerdata

Læs mere

Beskrivelse af ny ressourcetildelingsmodel på skoleområdet

Beskrivelse af ny ressourcetildelingsmodel på skoleområdet Beskrivelse af ny ressourcetildelingsmodel på skoleområdet Med udgangspunkt i det budgetforlig, der blev indgået den 02-09-2016, er der nedsat en arbejdsgruppe, som har udarbejdet et forslag til en ny

Læs mere

Benchmark af indsatsen over for sygedagpengemodtagere. Beskæftigelsesregion Midtjylland

Benchmark af indsatsen over for sygedagpengemodtagere. Beskæftigelsesregion Midtjylland Beskæftigelsesregion Midtjylland Notat om registeranalyser af langvarigt sygefravær og selvforsørgelse efter sygefravær Benchmark af indsatsen over for sygedagpengemodtagere i kommunerne i Beskæftigelsesregion

Læs mere

Tine Rostgaard og Mads Ulrich Matthiessen. At arbejde rehabiliterende i hjemmeplejen gør arbejdet meningsfuldt

Tine Rostgaard og Mads Ulrich Matthiessen. At arbejde rehabiliterende i hjemmeplejen gør arbejdet meningsfuldt Tine Rostgaard og Mads Ulrich Matthiessen At arbejde rehabiliterende i hjemmeplejen gør arbejdet meningsfuldt At arbejde rehabiliterende i hjemmeplejen gør arbejdet meningsfuldt Publikationen kan hentes

Læs mere

Betydning af elevernes sociale baggrund. Undervisningsministeriet

Betydning af elevernes sociale baggrund. Undervisningsministeriet Betydning af elevernes sociale baggrund Undervisningsministeriet Betydning af elevernes sociale baggrund Pointe 1: Der er flest fagligt svage elever på hf...... 4 Pointe 2: Et fagligt svagt elevgrundlag

Læs mere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere 1 Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Færre med ikke-vestlige oprindelse end dansk oprindelse er medlem af en forening. Men ikke-vestlige indvandrere og efterkommere

Læs mere

KERTEMINDE KOMMUNE. Casebeskrivelse

KERTEMINDE KOMMUNE. Casebeskrivelse KERTEMINDE KOMMUNE Casebeskrivelse 58 Overblik Region: Region Syddanmark Kommunestørrelse: 23.787 Socioøkonomisk indeks: Mellem Antal folkeskoler: 7 (inkl. et 10. klassecenter) Antal elever: Total:3146

Læs mere

Frafaldsindikatorer til opfølgning på eud reformens klare mål 2, herunder socioøkonomisk reference og frafald fra uddannelsesstart til hovedforløb

Frafaldsindikatorer til opfølgning på eud reformens klare mål 2, herunder socioøkonomisk reference og frafald fra uddannelsesstart til hovedforløb Frafaldsindikatorer til opfølgning på eud reformens klare mål 2, herunder socioøkonomisk reference og frafald fra uddannelsesstart til hovedforløb Et af hovedmålene med erhvervsuddannelsesreformen er,

Læs mere

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner:

Helt overordnet er der to skridt i udvælgelsen af sammenlignelige kommuner: N OTAT Metode, FLIS sammenligningskommuner Dette notat præsenterer metoden bag udregning af sammenligningskommuner i FLIS. Derudover præsenteres de første tre modeller der anvendes til at finde sammenligningskommuner

Læs mere

NYBORG KOMMUNE BRUGERUNDERSØGELSE PÅ SKOLEOMRÅDET 2014 NYBORG KOMMUNE SKOLEOMRÅDET 2014

NYBORG KOMMUNE BRUGERUNDERSØGELSE PÅ SKOLEOMRÅDET 2014 NYBORG KOMMUNE SKOLEOMRÅDET 2014 BRUGERUNDERSØGELSE PÅ INDHOLD 1. Indledning.. 3 2. Svarprocent 4 3. Del 1 I. Valg af skole... 5 II. Information... 19 III.Tilfredshed med folkeskolen..... 24 IV. Konklusion del 1........ 32 4. Del 2 I.

Læs mere

ELEVTALSPROGNOSE SVENDBORG KOMMUNE 2014/15-2027/28

ELEVTALSPROGNOSE SVENDBORG KOMMUNE 2014/15-2027/28 ELEVTALSPROGNOSE SVENDBORG KOMMUNE /-/ INDHOLD Indledning og hovedforudsætninger Modelmæssige forudsætninger Elevfordelingstabeller 9 Elevtalsprognosens hovedresultater Resultattabeller 6 Elevtalsprognosen

Læs mere

FORÆLDRENES SKOLEVALG

FORÆLDRENES SKOLEVALG 24. november 2005 FORÆLDRENES SKOLEVALG Af Niels Glavind Resumé: Det er en udbredt antagelse, at de bedste skoler er dem, hvor eleverne opnår den højeste gennemsnitskarakter. Som en service over for forældre,

Læs mere

Vandringer mellem folkeskoler og frie grundskoler

Vandringer mellem folkeskoler og frie grundskoler Vandringer mellem folkeskoler og frie grundskoler Sammenfatning På de frie grundskoler er andelen af elever steget med 2,7 procentpoint siden 2010/11, og i den tilsvarende periode er andelen af elever

Læs mere

Hovedresultater fra PISA Etnisk 2015

Hovedresultater fra PISA Etnisk 2015 Hovedresultater fra PISA Etnisk 2015 Baggrund I PISA-undersøgelserne fra 2009, 2012 og 2015 er der i forbindelse med den ordinære PISA-undersøgelse foretaget en oversampling af elever med anden etnisk

Læs mere

KORAs kortlægning af dagtilbudsområdet

KORAs kortlægning af dagtilbudsområdet Børn & Kultur Dagtilbud 13. juli 2016 (jko) Sagsid. 16/14059 NOTAT KORAs kortlægning af dagtilbudsområdet Indhold og metode KORA 1 har med brug af 2014-tal analyseret kommunernes personaleforbrug i dagtilbud

Læs mere

Notat. Metode, EUD socioøkonomisk reference på frafald. Baggrund Under mål 2 i klare mål for erhvervsuddannelserne er det beskrevet at:

Notat. Metode, EUD socioøkonomisk reference på frafald. Baggrund Under mål 2 i klare mål for erhvervsuddannelserne er det beskrevet at: Notat Vedrørende: Metode, EUD socioøkonomisk reference på frafald Baggrund Under mål 2 i klare mål for erhvervsuddannelserne er det beskrevet at: Der udvikles ligeledes en indikator på skoleniveau med

Læs mere

Mange unge har ikke afsluttet folkeskolen

Mange unge har ikke afsluttet folkeskolen Mange unge har ikke afsluttet folkeskolen Hver. ung uden ungdomsuddannelse har ikke fuldført. klasse, og det er seks gange flere end blandt de unge, der har fået en ungdomsuddannelse. Derudover har mere

Læs mere

Analyse 17. marts 2015

Analyse 17. marts 2015 17. marts 2015 Indvandrerpiger fra ghettoer klarer sig særligt dårligt i grundskolen Af Kristian Thor Jakobsen Børn med ikke-vestlig baggrund klarer sig dårligst ved grundskolens afgangsprøver i dansk

Læs mere

Fakta om frie skoler

Fakta om frie skoler Fakta om frie skoler FAKTA OM FRIE SKOLER Af Christina Lüthi og Bettina Carlsen, Nationalt Videncenter for Frie Skoler Rapporten er blevet peer reviewet Nationalt Videncenter for Frie Skoler, maj 2012

Læs mere

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst

Baggrundsnotat: Søskendes uddannelsesvalg og indkomst 17. december 2013 Baggrundsnotat: Søskendes uddannelsesvalg og indkomst Dette notat redegør for den økonometriske analyse af indkomstforskelle mellem personer med forskellige lange videregående uddannelser

Læs mere

Bilag 1: Sociale baggrundsvariable og deres effekt på eksamenskaraktererne

Bilag 1: Sociale baggrundsvariable og deres effekt på eksamenskaraktererne Bilag 1: Sociale baggrundsvariable og deres effekt på eksamenskaraktererne Bilag til rapporten Folkeskolens faglige kvalitet. Analyse af skolernes undervisningseffekt. De baggrundsvariable, der er anvendt

Læs mere

De kommunale regnskaber fortsatte tegn på økonomisk stabilisering

De kommunale regnskaber fortsatte tegn på økonomisk stabilisering NOTAT De kommunale regnskaber 2012 fortsatte tegn på økonomisk stabilisering Bo Panduro tlf. 7226 9971, bopa@kora.dk Juni 2013 Købmagergade 22. 1150 København K. tlf. 444 555 00. kora@kora.dk. www.kora.dk

Læs mere