Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016"

Transkript

1 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende til opgave at forklare, hvordan man kommer frem til facit i de enkelte opgaver. Der er altså ikke afkrydsningsfelter, der er kun facit og tilhørende udregninger. Udregningerne er meget udpenslede, så de este kan være med.

2 Indhold Problem 3 Problem 2 6 Problem 3 8 Problem 4 2

3 Problem I vektorrummet V = R 2 [x] af reelle polynomier af grad m 2 betragtes polynomierne b (x) = (x ) 2, b 2 (x) = (x 2) 2, b 3 (x) = (x 3) 2. a. Opskriv betingelsen for at sættet B = (b, b 2, b 3 ) er lineært afhængigt i R 2 [x]. Vis dernæst, at B er et lineært uafhængigt sæt. Betingelsen er, at man kan skrive en af polynomierne som en linearkombination af de to andre. Dvs. hvis vi kan nde konstanter a og a 2 i R, sådan at b 3 (x) = a b (x) + a 2 b 2 (x). Vi har: b (x) = x 2 2x +, b 2 (x) = x 2 4x + 4, b 3 (x) = x 2 6x + 9. Koecienterne gør, at vi kan opstille en matrix A og rækkereducere denne: A = Vi ser altså, at der er pivotindgange i alle søjler, hvorfor polynomierne er lineært uafhængige. b. Vis, at B udgør en basis for V. Find dernæst koordinatsøjlen [v] B med hensyn til B for vektoren v(x) = x 2. Vi viste før, at de 3 polynomier er uafhængige i V, hvorfor de må udgøre en basis for V, da dim V = 3. Vi kan beskrive v(x) som en vektor med koecienterne som værdier i indgangene. Vi har: v = [ 0 ]. Denne kan vi så sætte i forlængelse af koecientmatricen, A, fra opgave a. Reduceres denne matrix så til [I [v] B ], kan vi aæse koordinatsøjlen [v] B : Vi har altså, at [v] B = [ ]. INDHOLD 3

4 c. Vis, at mængden U = {p R 2 [x] p(3) = 0} udgør et underrum af R 2 [x]. Godtgør dernæst, at q(x) = b (x) 4b 2 (x) tilhører U. Mængden U er polynomier af højst anden grad, der alle har 3 som en rod. c. U er et underrum. Vi tjekker, om 0 er et element i U, om to polynomier fra U ved addition giver et polynomium i U, samt om skalarmultiplikation af polynomier i U giver et element i U. Lad P (x) = 0, da er P (3) = 0, hvorfor P (x) = 0 U. Lad P (x), Q(x) U være vilkårlige. Da er: hvorfor (P (x) + Q(x)) U. P (3) + Q(3) = = 0, Lad k være en konstant samt P (x) U. Da er: k P (3) = k 0 = 0. Derfor er (k P (x)) U, hvorfor U altså er et underrum. c2. q(x) = b (x) 4b 2 (x) tilhører U. Vi har: q(3) = b (3) 4b 2 (3) = (3 ) 2 4(3 2) 2 = = 4 4 = 0. Dermed er q(x) U. d. Bestem en basis for U og dimensionen af U. Lad P (x) = ax 2 + bx + c sådan at P (3) = 0. Da er Dermed er P (3) = a b 3 + c = 9a + 3b + c = 0 c = 9a 3b. P (x) = ax 2 + bx 9a 3b = a(x 2 9) + b(x 3). Dette betyder, at alle polynomier af højest orden 2 med 3 som rod kan skrives som en linearkombination af polynomierne x 2 9 og x 3, hvorfor vi har: Dermed er dim U = 2. U = span{x 2 9, x 3}. INDHOLD 4

5 e. Undersøg om R 2 [x] = U W gælder for underrummet W = span{x} Vi skal tjekke om {x 2 9, x 3, x} er uafhængige. Vi får følgende koecientmatrix, som reduceres: Da der er tre pivotindgange har vi tre uafhængige polynomier, hvorfor R 2 [x] = U W. INDHOLD 5

6 Problem 2 Her er der givet to reelle vektorrum V og W med dim V = 5 og dim W = 3. Desuden er der givet R L(V, V ) og T L(V, W ) samt L L(W, W ), hvor R er injektiv, T er surjektiv og L er surjektiv. Vi konkluderer først på nogle af de ting, vi ved. En lineær transformation er injektiv, hvis alle søjler er pivotsøjler. Ligeledes er en lineær transformation surjektiv, hvis alle rækker har pivot. Da R: V V er injektiv, da er denne også surjektiv. Ligeledes da L: W W er surjektiv, da må denne være injektiv. Dermed er både R og L bijektive. Vi ved desuden, at T er surjektiv. Problemet er, at denne går fra et rum af dimension 5 til 3, hvorfor denne ikke kan være injektiv. a. Afgør om LT er surjektiv. Både L og T er surjektive, da er også LT surjektiv. b. Afgør om LT er injektiv. Nej. Da T ikke er injektiv, ndes en vektor v V, hvor v 0, sådan at T (v) = 0. Vi har da, at LT (v) = L(0) = 0, hvorfor LT ikke kan være injektiv. c. Afgør om T R er injektiv, surjektiv eller bijektiv. Da både T og R er surjektive er T R surjektiv. Da R også er injektiv, er det kun nulvektoren, der bliver afbiledet til nulvektoren. Men dette er ligegyldigt, eftersom R mapper til hele V, så ndes en vektor v V, hvor v 0, sådan at T (v) = 0, da T ikke er injektiv. Derfor kan T R heller ikke være injektiv, og dermed heller ikke være bijektiv. T R er altså kun surjektiv. d. Bestem dim Null(LT ) og dim Null(T R). Da T er en afbildning fra V to W. Det vil sige, at standardmatricen for T er en 3 5-matrix. Ligeledes er L en afbildning fra W til W, hvorfor denne har en 3 3- standardmatrix. Afbildningen LT er altså en (3 3) (3 5) = (3 5)-matrix. Da denne er surjektiv har denne pivot i alle rækker. Dermed er rank af LT lig med 3. Dvs. dim Null(LT ) = 5 3 = 2. Da R er en afbildning fra V til V er den tilhørende standardmatrix en 5 5- matrix. Dermed har afbildningen T R en standardmatrix af størrelsen (3 5) (5 5) = (3 5). Da T R er surjektiv har denne rank 3. Dermed er dim Null(T R) = 5 3 = 2. INDHOLD 6

7 e. Antag nu, at V og W begge er udstyret med et indre produkt. Bestem da for S = LT R både dim Null(S ) og dim rank(s ). Da vi arbejder med reelle vektorrum, betragter vi blot den transponerede og ikke den konjugerede transponerede, dvs. S = S. Vi har altså: S = LT R S = (LT R) = R T L. Både L og R er bijektive, derfor er deres transponerede ligeledes dette. Der gælder dog, at T er injektiv i stedet for surjektiv. T L er har en tilhørende 5 3- standardmatrix, som er injektiv. Dette er også gældende for R T L, hvorfor dim rank(s ) = 3. Men dette betyder, at dim Null(S ) = 0. INDHOLD 7

8 Problem 3 Her betragtes rummet C 3 med det sædvanelige indre produkt, og der er givet matricen 5 2 A = a. Vis, at A har sit karakteristiske polynomium givet ved p(λ) = λ(λ 6) 2. Vi betragter det(a λi). Vi har ved brug af rækkeoperationer i forhold til determinanten samt kofaktormetoden: 5 λ λ + (5 λ) 2 det(a λi) = det 2 2 λ 2 = det 0 6 λ 2 2λ 2 5 λ 2 5 λ 0 2(6 λ) λ 2 0λ + 24 = det 0 6 λ 2(6 λ) 2 5 λ [ ] 2(6 λ) λ = ( ) 3+ ( ) det 2 0λ λ 2(6 λ) = ( (2(6 λ)) 2 (6 λ)(λ 2 0λ + 24) ) = (6 λ)(4(6 λ) (λ 2 0λ + 24)) = (λ 6)(24 4λ λ 2 + 0λ 24) = (λ 6)( λ 2 + 6λ) = (λ 6)( λ)(λ 6) = λ(λ 6) 2 b. Bestem egenværdierne for A, og angiv for hver egenværdi en basis for det tilhørende egenrum. Egenværdierne er de lambda, der løser det(a λi) = 0, hvilket let aæses af det karakteristiske polynomium til at være 0 og 6, hvoraf 6 har multiplicitet 2. c. Afgør om der ndes en inverterbar matrix U og en diagonalmatrix D, sådan at A = UDU. Begrund svaret, hvis du svarer "nej". Hvis du svarer "ja", skal U og D angives, og om muligt skal U vælges sådan, at den er ortogonal. A er diagonaliserbar, hvis og kun hvis egenrummet har samme dimension, som den tilhørende egenværdi har multiplicitet. Da alle egenrum har mindst dimension, så skal vi blot tjekke, om der i egenrummet for egenværdien 6 kan ndes 2 lineært uafhængige vektorer. Vi reducerer altså A 6I: = INDHOLD 8

9 Vi har altså to frie variable, hvorfor A er diagonaliserbar. Vi har nemlig, at hvorfor x = 2x 2 x 3, x 2 Fri, x 3 Fri, x 2 x 2 = x 2 + x 3 0, x 3 0 hvilket præcist er to lineært uafhængige vektorer. Altså stemmer dimensionerne af egenrummene overens med multipliciteten af egenværdierne, hvorfor A er diagonaliserbar. D er en diagonalmatrix med egenværdier, og U er en matrix med de tilhørende egenvektorer som søjler (i samme rækkefølge). Vi skal altså først nde en egenvektor til egenværdien 0: Vi har, at x 3 er den frie variabel med x = x 3 og x 2 = 2x 3, hvorfor x x 2 = x 3 2. x 3 Vi kan nu opstille en matrix U, men vi skal opstille denne som en ortogonal matrix. Egenvektorer på tværs af egenrum er ortogonale, men det er de nødvendigvis ikke i de indbyrdes egenrum. Vi skal altså benytte Gram Schmidt på vores basis for egenrummet til egenværdien 6. Lad v = [ 2 0 ] og v2 = [ 0 ]. Så er u = v og: u 2 = v 2 u v 2 u u 2 = = = Da der skal justeres for længden om lidt, betragter vi blot u 2 uden den konstante faktor /5 i første omgang. Nu er alle de valgte egenvektorer indbyrdes ortogonale: 2 u =, u 2 = 2, u 3 = For at U bliver en ortogonalmatrix skal denne dog have søjler, der, udover at være indbyrdes ortogonale, alle har længde. Vi skal altså dividere hver vektor med den respektive længde. u u = 2, 5 0 u 2 u 2 = 2, 30 5 u 3 u 3 = 2 6 Vores matricer U og D bliver altså: U = = , D = INDHOLD 9.

10 d. Afgør om A er en normal matrix. En normalmatrix opfylder, at A A = AA, og da A er reel, så er A = A. Men A er symmetrisk, hvorfor A også er normal. e. Er A inverterbar? Hvis du svarer "ja"skal A bestemmes; svarer du "nej"skal dette begrundes. Nej, da 0 er en egenværdi, hvilket betyder, at determinanten af A er 0, hvorfor der ikke eksisterer en invers matrix. INDHOLD 0

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober 2017 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne de små opgaver i afsnittene 1 5 i løbet af de første 4 halve dage. Dernæst tilføjes

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne en mængde af opgaver, som tilsammen dækker 100 point. De små opgaver giver hver 5 point,

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 LinAlg 2013 Q3 Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 1 Lineær algebra Dispositioner - Dispo 0 2013 Contents 1 Løsninger, og MKL, af lineære ligningssystemer 3 2 Vektorrum

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver!

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver! LINEÆR ALGEBRA 30. januar 2004 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003; i store træk bliver det kapitel 1 3 og 5.1 5.3. Som

Læs mere

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement OPGAVER 1 Opgaver til Uge 11 Lille Dag Opgave 1 Det ortogonale komplement a) I R 2 er der givet vektoren (3, 7). Angiv en basis for det ortogonale komplement. b) Find i R 3 en basis for det ortogonale

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab)

Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Nikolai Plambech Nielsen, LPK331 Version 10 2 februar 2016 Indhold 1 Introduktion, lineære afbildninger og matricer 3 11 Talrum (R & C) 3 12

Læs mere

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =

Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A = OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

Lineær uafhængighed 1. Lineær afbildninger 2. Spektralteori 3. Komplekse tal 4. Indeks 8. u 3 = u 1 + u 2 (3) V u3 =

Lineær uafhængighed 1. Lineær afbildninger 2. Spektralteori 3. Komplekse tal 4. Indeks 8. u 3 = u 1 + u 2 (3) V u3 = Goutham Jørgen Surendran3. januar 22 LINEÆR UAFHÆNGIGHED Indhold Lineær uafhængighed Lineær afbildninger 2 Spektralteori 3 Funktionskalkyle for symmetriske kalkyler 4 Komplekse tal 4 (Hvad ethvert dannet

Læs mere

Lineær Algebra Dispositioner

Lineær Algebra Dispositioner Lineær Algebra Dispositioner Michael Lind Mortensen, 20071202, DAT4 12. august 2008 Indhold 1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer 4 1.1 Disposition............................

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; LINEÆR ALGEBRA 2. februar 2007 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition (men ej anden

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl 2. udgave, oktober 207 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Lineær algebra: Lineære afbildninger. Standardmatricer

Lineær algebra: Lineære afbildninger. Standardmatricer Lineær algebra: Lineære afbildninger. Standardmatricer Institut for Matematiske Fag Aalborg Universitet 2011 Lineære afbildninger En afbildning T : R n R m fra definitionsmængden R n ind i dispositionsmængden

Læs mere

Symmetriske matricer. enote Skalarprodukt

Symmetriske matricer. enote Skalarprodukt enote 19 1 enote 19 Symmetriske matricer I denne enote vil vi beskæftige os med et af de mest benyttede resultater fra lineær algebra den såkaldte spektralsætning for symmetriske matricer. Den siger kort

Læs mere

Indhold. 5. Vektorrum og matricer Koordinattransformationer

Indhold. 5. Vektorrum og matricer Koordinattransformationer Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære

Læs mere

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; LINEÆR ALGEBRA 1. februar 2008 Oversigt nr. 1 I kurset Lineær Algebra skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1 I PE-kurset i skal vi bruge [A] Sheldon Axler: Linear algebra done right, 2nd ed., Springer. [AB] K. G. Andersson og L.-C. Böiers:

Læs mere

LinAlg Skriftlig prøve 20. januar 2009, 9 12 Vejledende besvarelse

LinAlg Skriftlig prøve 20. januar 2009, 9 12 Vejledende besvarelse LinAlg Skriftlig prøve. januar 9, 9 Vejledende besvarelse Dette eksamenssæt løber over 5 sider, denne side inklusive. Sættet stilles til løsning over 3 timer med alle sædvanlige hjælpemidler, bortset fra

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Lineære Modeller. Metodesamling. Forfatter Thomas Woergaard Kjær

Lineære Modeller. Metodesamling. Forfatter Thomas Woergaard Kjær Lineære Modeller Metodesamling Forfatter Thomas Woergaard Kjær Indhold Huskeliste Første undervisningsuge Vektorer og vektorrum........................................... Lineær (u)afhængighed........................................

Læs mere

DesignMat Egenværdier og Egenvektorer

DesignMat Egenværdier og Egenvektorer DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).

Læs mere

Noter til An0 DIFFERENTIALLIGNINGER MED KONSTANTE KOEFFICIENTER

Noter til An0 DIFFERENTIALLIGNINGER MED KONSTANTE KOEFFICIENTER UDKAST 7122009 Noter til An0 Inst f Matematiske Fag Gerd Grubb December 2009 DIFFERENTIALLIGNINGER MED KONSTANTE KOEFFICIENTER 1 Generelle resultater 11 Introduktion I tidligere kurser er der gennemgået

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen

2. gang. Det bliver den 18. februar, idet jeg er på ferie den 11/2. Med venlig hilsen Jon Johnsen LINEÆR ALGEBRA 31. januar 2003 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003. Udtrykt meget groft gennemgås kapitel 1 3. Som regel

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 29. august 2017 Oversigt nr. 1

MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 29. august 2017 Oversigt nr. 1 LINEÆR ALGEBRA M. ANV. 9. august 017 Oversigt nr. 1 Lærebøgerne for kurset er [SA] Sheldon Axler, Linear algebra done right, 3. udgave, Springer 015. [AJ] Matrix factorizations, af Arne Jensen, Aalborg

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1 I PE-kurset i skal vi bruge [A] Sheldon Axler: Linear algebra done right, 2nd ed., Springer. [P] Lawrence Perko: Differential equations

Læs mere

Kompendium til Lineær Algebra Politstudiet, matematik, 1. årsprøve Af Erik Bennike

Kompendium til Lineær Algebra Politstudiet, matematik, 1. årsprøve Af Erik Bennike Kompendium til Lineær Algebra Politstudiet matematik. årsprøve Indholdsfortegnelse : Elementær vektorregning... Matricer... 5 Lineære ligningssystemer... 8 Operationsmatricer... Basis og dimension... Lineære

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 8 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,...,

Læs mere