Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Størrelse: px
Starte visningen fra side:

Download "Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion"

Transkript

1 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar 2006, opgave 4 Gram-Schmidt Calculus Uge Komplement Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement X = {v R n v u = 0, u X} Fra regnereglerne for skalarproduktet følger straks, at dette er et underrum. Calculus Uge Komplement Bemærkning 13.2 Nogle nyttige observationer: 1. Der gælder 0 = R n og (R n ) = X (X ). 3. X X Hvis U er et underrum, så er U U = 0. Calculus Uge Planen Eksempel 13.4 For to egentlige vektorer u, v i R 2 som er ortogonale u v er det ortogonale komplement u = {w w u = 0} underrummet Span(v). Span(v) ORTOGONAL KOMPLEMENT u Calculus Uge

2 Bestem komplement Eksempel 13.5 For u = (3, 1) R 2 er det ortogonale komplement {v v u = 0} bestemt ved ligningen, v = (v 1, v 2 ), 3v 1 + v 2 = 0 Løsning Skrives ( v 1 v 2 ) ( ) ( 1 = v 3 2 = v 2 v Span(u) = Span(( 1 3, 1)) ) Calculus Uge Bestem komplement Eksempel figur Span(u) y ( 1 3, 1) 1 u = (3, 1) Calculus Uge Tømrerprincippet Sætning 13.6 For en delmængde af vektorer X R n som udspænder et underrum U R n er det ortogonale komplement X = U Altså gælder w U w, X Calculus Uge Beregn komplement Eksempel 13.7 For U = Span((1, 1, 1), (2, 3, 4)) R 3 er det ortogonale komplement U = {v v u = 0, u U} bestemt ved ligningssystemet, v = (v 1, v 2, v 3 ), v 1 + v 2 + v 3 = 0 2v 1 + 3v 2 + 4v 3 = 0 Calculus Uge

3 Beregn komplement Eksempel fortsat Det rækkereducerede system er v 1 + v 3 = 0 v 2 + 2v 3 = 0 Løsningerne kan skrives v 3 1 = 2v 3 = v v 1 v 2 v 3 v 3 Dermed er U = Span((1, 2, 1)) Calculus Uge Beregn komplement Eksempel figur Dermed er U = Span((1, 2, 1)) (1, 2, 1) z U = Span((1, 1, 1), (2, 3, 4)) y Calculus Uge Komplement som nulrum Sætning 13.8 For en m n-matri er nulrummet det ortogonale komplement til rækkerummet N A = Span(a 1,..., a m ) Bevis Produktet A = 0 betyder netop at a i for i = 1,..., m. Calculus Uge Underrum og komplement Sætning 13.9 Lad U være et underrum i R n. Så har enhver vektor R n en entydig fremstilling = v + w, v U, w U Calculus Uge

4 Underrum og komplement Sætning fortsat Bevis Lad u 1,..., u m være en basis for U. Det følger, at U er nulrummet for m n-matricen med basen for U som rækker. Rangformlen giver, at dim U = n m. Vælg en basis for U u m+1,..., u n. En fremstilling j a ju j = 0 giver m a j u j = j=1 n j=m+1 a j u j U U Det følger, at sættet u 1,..., u n er lineært uafhængigt og dermed en basis for R n. En opskrivning = j a ju j giver resultatet. Calculus Uge Vektor og komplement Eksempel For U = Span((1, 1, 1)) er det ortogonale komplement U bestemt ved ligningen v 1 v 2 v 3 = 0 Løsningerne kan skrives v 1 v 2 + v v 2 = v 2 = v v v 3 v 3 Calculus Uge Vektor og komplement Eksempel fortsat Dermed er U = Span((1, 1, 0), (1, 0, 1)) Vektoren (3, 0, 0) kan skrives (3, 0, 0) = (1, 1, 1) + (1, 1, 0) + (1, 0, 1) og dermed (3, 0, 0) = (1, 1, 1) + (2, 1, 1) hvor (1, 1, 1) U, (2, 1, 1) U. Calculus Uge Ortogonal projektion Definition Situationen relateres til følgende figur w = v U v ORTOGONAL PROJEKTION PÅ UNDERRUM U Calculus Uge

5 Ortogonal projektion Definition fortsat For et underrum U R n er den ortogonale projektion af en vektor på U den vektor v U, som opfylder Der gælder = v + w, v = w U Den ortogonale projektion betegnes Vektoren kaldes restvektoren. v U, w U proj U () = v w = v = proj U () Calculus Uge Projektion på 1 vektor Sætning For et underrum U = Span(u) R n udspændt af netop én vektor u 0 er den ortogonale projektion af en vektor på U givet ved v = u Det skrives proj u () = u Bevis Eftervis ( u ) u altså ( u ) u = u u u = 0 Calculus Uge Projektion på 1 vektor Sætning figur w = v U v = au U = Span(u) ORTOGONAL PROJEKTION v = proj u (), a = u u u Calculus Uge Beregn projektion Eksempel For et underrum U = Span(u) R 3 udspændt af vektoren u = (1, 1, 1) er den ortogonale projektion af en vektor = ( 1, 2, 3 ) på U givet ved proj u () = u = (1, 1, 1) Calculus Uge

6 Beregn projektion Eksempel Tegn en figur for overblik 2 = (1, 18) proj u () = (9, 12) u = (3, 4) 1 ORTOGONAL PROJEKTION proj u () på Span(u) 1 Calculus Uge Beregn projektion Eksempel fortsat For et underrum U = Span(u) R 2 udspændt af vektoren u = (3, 4) er den ortogonale projektion af en vektor = (1, 18) på U givet ved proj u () = u = (3, 4) = 3(3, 4) = (9, 12) Calculus Uge Projektion på basis Sætning Lad u 1,..., u k R n være indbyrdes ortogonale egentlige vektorer. Antag at de udspænder underrummet U. Så gælder 1. Sættet u 1,..., u k er en basis for U. 2. Den ortogonale projektion af en vektor R n på U er givet ved k proj U () = proj uj () j=1 3. Det er en opskrivning af projektionen i basen u 1,..., u k proj U () = k j=1 u j u j u j u j Calculus Uge Beregn projektion Eksempel Lad u 1 = (1, 1, 1), u 2 = (1, 2, 1) R 3 være indbyrdes ortogonale vektorer der udspænder underrummet U. Så er den ortogonale projektion proj U () = proj u1 () + proj u2 () = u 1 u 1 u 1 u 1 + u 2 u 2 u 2 u 2 = = ( (1, 1, 1) , 2, ) 2 (1, 2, 1) Calculus Uge

7 Beregn projektion Eksempel figur proj U proj u1 proj u2 u 1 u 2 Calculus Uge Mindste afstand Sætning Lad U R n være et underrum. Antag at vektoren har ortogonal projektion v = proj U () på U. Så gælder: 1. Projektionen v er den vektor i U, der har kortest afstand til. 2. Normen af restvektoren v den korteste afstand. Bevis For en vektor v v U gælder (v v ) 2 = ( v) + v 2 ifølge Pythagoras, da ( v) v. = v 2 + v 2 Calculus Uge Mindste afstand Sætning figur v (v v ) v v MINDSTE AFSTAND TIL UNDERRUM U Calculus Uge Afstand til linje Eksempel For en linje U = Span(u) R 3 udspændt af vektoren u = (1, 1, 1) er den vektor i U med kortest afstand til en vektor = ( 1, 2, 3 ) givet ved Kvadratafstanden er proj u () = u = (1, 1, 1) proj u () 2 = ( 1 m) 2 + ( 2 m) 2 + ( 3 m) 2 hvor m = Calculus Uge

8 Opgave Matematik Alfa 1, August 2002 Opgave 6 Betragt det lineære underrum U R 4, der er udspændt af vektorer u 1 = (1, 1, 1, 1) og u 2 = (0, 1, 1, 0). Angiv den vektor u i U, der har kortest afstand til vektoren v = (1, 2, 3, 4). Løsning Vektoren u er den ortogonale projektion af v på U. Den korteste afstand er v u Calculus Uge Opgave Matematik Alfa 1, August 2002 Opgave 6 - fortsat Vektorerne u 1 = (1, 1, 1, 1) og u 2 = (0, 1, 1, 0) har u 1 u 2 = ( 1) 1 + ( 1) 0 = 0 Projektionen af v = (1, 2, 3, 4) er u = proj U (v) = proj u1 (v) + proj u2 (v) = v u 1 u 1 + v u 2 u 2 u 1 u 1 u 2 u 2 = 4 4 (1, 1, 1, 1) + 5 (0, 1, 1, 0) 2 = ( 1, 3, 7, 1) 2 2 Calculus Uge Opgave Matematik Alfa 1, August 2002 Opgave 6 - ekstra Restvektoren v u = (1, 2, 3, 4) ( 1, 3 2, 7 2, 1) = (2, 1 2, 1 2, 3) har længde, som angiver den mindste afstand fra v til U v u = (2, 1, 1, 3) = 2 = Calculus Uge Tømrermester Bemærkning To vektorer kan rettes op w = v proj u (v) v proj u (v) TO VEKTORER RETTET OP u Calculus Uge

9 Tømrermester Bemærkning fortsat Lad u, v være ikke-parallelle vektorer der udspænder underrummet U. Sæt w = v proj u (v) = v v u Så er u, w ortogonale og udspænder U. Den ortogonale projektion af vektoren på U er da proj U () = proj u () + proj w () = u + w w w w Calculus Uge Tømrermester arbejder Eksempel Lad u = (1, 1, 1), v = (1, 2, 3) være vektorer der udspænder underrummet U. Sæt w = v proj u (v) = v v u = (1, 2, 3) 2(1, 1, 1) = ( 1, 0, 1) Den ortogonale projektion af vektoren = (3, 3.6, 6) på U er da proj U () = proj u () + proj w () = u + w w w w = (1, 1, 1) + 3 ( 1, 0, 1) 2 = (2.7, 4.2, 5.7) Calculus Uge Tømrermester arbejder Calculus 2 Januar 2006 Opgave 4 - let modificeret Betragt følgende vektorer i R 4 u 1 = (1, 0, 1, 0), u 2 = (2, 1, 0, 0) og lad U betegne underrummet U = Span(u 1, u 2 ). 1) Opret vektorerne ovenfor til et ortogonalt sæt u 1, u 3 som udspænder U. 2) Lad v betegne vektoren v = (5, 4, 3, 3). Angiv den ortogonale projektion proj U (v) af vektoren v på U. 3) Beregn den korteste afstand fra v til U. Calculus Uge Tømrermester arbejder Calculus 2 Januar 2006 Løsning 1) Vektoren u 3 er givet ved opretning u 3 = u 2 proj u1 (u 2 ) = u 2 u 2 u 1 u 1 u 1 u 1 = (2, 1, 0, 0) (1, 0, 1, 0) = (1, 1, 1, 0) 2) Bemærk, at u 3 U og u 2 = u 1 + u 3 Span(u 1, u 3 ), så U = Span(u 1, u 3 ) er udspændt af to ortogonale vektorer. Projektionen af v på underrummet U er proj U (v) = proj u1 (v) + proj u3 (v) = v u 1 u 1 u 1 u 1 + v u 3 u 3 u 3 u 3. Calculus Uge

10 Tømrermester arbejder Calculus 2 Januar 2006 Løsning - fortsat u 1 = (1, 0, 1, 0), u 3 = (1, 1, 1, 0), v = (5, 4, 3, 3): u 1 u 1 = (1, 0, 1, 0) (1, 0, 1, 0) = = 2 u 1 v = (1, 0, 1, 0) (5, 4, 3, 3) = = 8 u 3 u 3 = (1, 1, 1, 0) (1, 1, 1, 0) = = 3 u 3 v = (1, 1, 1, 0) (5, 4, 3, 3) = = 6 proj U (v) = v u 1 u 1 u 1 u 1 + v u 3 u 3 u 3 u 3 = 8 2 (1, 0, 1, 0) + 6 (1, 1, 1, 0) 3 = (4, 0, 4, 0) + (2, 2, 2, 0) = (6, 2, 2, 0) Calculus Uge Tømrermester arbejder Calculus 2 Januar 2006 Løsning - fortsat 3) Problemstillingen er vist på figuren v v proj U (v) proj U (v) U Længden af restvektoren er v proj U (v) er den korteste afstand fra v til U. Calculus Uge Tømrermester arbejder Calculus 2 Januar 2006 Løsning - fortsat 3) v = (5, 4, 3, 3), proj U (v) = (6, 2, 2, 0). Længden af restvektoren er v proj U (v) er den korteste afstand fra v til U. Restvektoren udregnes v proj U (v) = (5, 4, 3, 3) (6, 2, 2, 0) = ( 1, 2, 1, 3) og den korteste afstand beregnes ( 1, 2, 1, 3) = = 15. Calculus Uge Gram-Schmidt Sætning Et sæt vektorer v 1,..., v m R n som udspænder et underrum U kan oprettes til en basis u 1,..., u k for U bestående af indbyrdes ortogonale vektorer. Bevis Tag vektorer 0 fra følgende procedure u = v j+1 proj Span(v1,...,v j)(v j+1 ) Calculus Uge

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2

Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2 Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50.

Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Underrum - generaliserede linjer og planer

Underrum - generaliserede linjer og planer 1 Om miniprojekt 2 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer. Systematisk information om grafer/netværk (som i Dagens anvendelse kursusgang 9): Flyforbindelser. Skemalægning.

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Lidt alment om vektorrum et papir som grundlag for diskussion

Lidt alment om vektorrum et papir som grundlag for diskussion Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet 6. januar,

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 8 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder

Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder Oersigt [LA],, Prikprodkt Nøgleord og begreber Ortogonlitet Ortogonlt komplement Tømrerprincippet Ortogonl projektion Pthgors formel Kortest fstnd Agst 00, opge 6 Cch-Schwrz lighed For ektorer =,..., n,

Læs mere

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1

Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1 Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den 9. februar, 4. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable E6 efterår 999 Notat 8 Jørgen Larsen 22. november 999 Lineære normale modeller ) udkast Ved hjælp af lineær algebra kan man formulere og analysere de såkaldte lineære normale modeller meget overskueligt

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Torsdag den 8. august, 2. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Symmetriske matricer. enote Skalarprodukt

Symmetriske matricer. enote Skalarprodukt enote 19 1 enote 19 Symmetriske matricer I denne enote vil vi beskæftige os med et af de mest benyttede resultater fra lineær algebra den såkaldte spektralsætning for symmetriske matricer. Den siger kort

Læs mere

MA TEMA TIK 1 LA, GAMMEL T PENSUM

MA TEMA TIK 1 LA, GAMMEL T PENSUM Københavns Universitet Det naturvidenskabelige Fakultet Eksamensterminen vinteren 1994-95 MA TEMA TIK 1 LA, GAMMEL T PENSUM Opgaver til besvarelse i 3 timer. Ingen hjælpemidler (ud over skriveredskaber)

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum:

Forslag til hjemmeopgaver, som forbereder arbejdet med de nye emner den pågældende kursusgang, men primært er baseret på gymnasiepensum: Forslag til hjemmeopgaver, som forbereder arbejdet med de ne emner den pågældende kursusgang, men primært er baseret på gmnasiepensum: Ordinær kursusgang : Introduktion til vektorer og matricer. Regning

Læs mere

DesignMat Uge 11 Lineære afbildninger

DesignMat Uge 11 Lineære afbildninger DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen

Læs mere

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Vektorrum. enote Generalisering af begrebet vektor

Vektorrum. enote Generalisering af begrebet vektor enote 7 1 enote 7 Vektorrum I denne enote opstilles en generel teori for mængder, for hvilke der er defineret addition og multiplikation med skalar, og som opfylder de samme regneregler som geometriske

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 8 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,...,

Læs mere

To ligninger i to ubekendte

To ligninger i to ubekendte Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

LiA 5 Side 0. Lineær algebra Kursusgang 5

LiA 5 Side 0. Lineær algebra Kursusgang 5 LiA 5 Side 0 Lineær algebra Kursusgang 5 LiA 5 Side 1 Ved bestemmelse af mindste kvadraters løsning til (store) ligningssystemer vil man gerne anvende en metode der opfylder to krav: antallet af regneoperationer

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers matrix Matrix potens Lineære ligningssystemer Løsningsmængdens

Læs mere

DesignMat Uge 11. Vektorrum

DesignMat Uge 11. Vektorrum DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en

Læs mere

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 LinAlg 2013 Q3 Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 1 Lineær algebra Dispositioner - Dispo 0 2013 Contents 1 Løsninger, og MKL, af lineære ligningssystemer 3 2 Vektorrum

Læs mere

Lineær algebra 4. kursusgang

Lineær algebra 4. kursusgang Lineær algebra 4. kursusgang Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte) Ax = b. Ligningssystemet antages at være inkonsistent (ingen løsninger) fordi tallene er fremkommet

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA M. ANV. 4. oktober 2017 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne de små opgaver i afsnittene 1 5 i løbet af de første 4 halve dage. Dernæst tilføjes

Læs mere

Eksempel på 2-timersprøve 2 Løsninger

Eksempel på 2-timersprøve 2 Løsninger Eksempel på -timersprøve Løsninger Preben lsholm Februar 4 Opgave Maplekommandoerne expand( (z-*exp(i*pi/))*(z-*exp(-i*pi/))*(z-exp(i*pi/))*(z-exp(-i*pi/))): sort(%); resulterer i polynomiet z 4 z + z

Læs mere

LiA 2 Side 0. Lineær algebra 3. kursusgang

LiA 2 Side 0. Lineær algebra 3. kursusgang LiA 2 Side 0 Lineær algebra 3. kursusgang LiA 2 Side 1 Højdeforskelle. D C 0.7 0.7 0.8 E LiA 2 Side 2 Vi har tre punkter C, D og E. Højderne er h C, h D, h E. (I det følgende benævnes disse også x, y,

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

1.1. n u i v i, (u, v) = i=1

1.1. n u i v i, (u, v) = i=1 1.1 1. Hilbert rum 1.1. Hilbert rum og deres geometri. Definition 1.1. Et komplekst vektor rum V kaldes et indre produkt rum (eller præ-hilbert rum), når det er forsynet med en funktion (, ): V V C, som

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en

Læs mere

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement

Uge 11 Lille Dag. Opgaver til OPGAVER 1. Det ortogonale komplement OPGAVER 1 Opgaver til Uge 11 Lille Dag Opgave 1 Det ortogonale komplement a) I R 2 er der givet vektoren (3, 7). Angiv en basis for det ortogonale komplement. b) Find i R 3 en basis for det ortogonale

Læs mere