Fagets IT Introduktion til MATLAB

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Fagets IT Introduktion til MATLAB"

Transkript

1 Fagets IT Introduktion til MATLAB Mads G. Christensen Afdeling for Kommunikationsteknologi, Aalborg Universitet. MATLAB 2002 p.1/28

2 Kursusoversigt 1. Introduktion, matrix-indeksering, -operationer og -manupulation. 2. Plot, eksportering og formattering af plot, hente og gemme data. 3. Programmering i MATLAB, script, funktioner. 4. Løsning af standardproblemer vha. MATLAB. Kurset holdes på et praktisk niveau med et minimum af teori, og der gives masser af eksempler. Forelæsningerne vil være forholdsvis korte, så I kan få god tid til opgaverne. MATLAB 2002 p.2/28

3 Om kurset MATLAB-kurset er et PE-kursus og støtter som sådan op om jeres projektarbejde og vil blive evalueret igennem projektet. Det forventes således, at I anvender MATLAB i situationer, hvor det måtte være relevant i projektet. Dette kan være til at udføre simuleringer på en model (f.eks. kredsløbsmodel) i jeres projekt. Eller til dataanalyse hvor data opsamles eller genereres og visualiseres (dvs. til at lave figurer til rapport). Tal endelig med lærer/hjælpelærer under opgaveløsningen om mulige applikationer af MATLAB i jeres projekt. MATLAB bruges på overbygningen for elektronik og datateknik, og I vil få stor nytte af det hele vejen igennem studiet. MATLAB 2002 p.3/28

4 Emner mm1 af 4: Hva MATLAB er Hjælp og litteratur Matematiske udtryk i MATLAB Matrix-indeksering, -operationer og -manipulation MATLAB 2002 p.4/28

5 Hva MATLAB er MATLAB er et program til numeriske, tekniske beregninger. Det kan bruges til Forskning og udvikling Avanceret lommeregner Simuleringer Dataanalyse (visualisering, f.eks. figurer til rapport) Prototyping (nem implementation) Eksempler på toolboxes: Digital Signal Processing Image Processing Control, etc. MATLAB 2002 p.5/28

6 Hælp og litteratur Hjælp i/til MATLAB: demo help <funktion> lookfor <ord> info <funktion> Litteratur (gratis): help/pdf_doc/matlab/getstart.pdf help/techdoc/matlab.shtml MATLAB 2002 p.6/28

7 Udtryk i MATLAB MATLAB er opbygget omkring matematiske udtryk. I modsætning til de fleste programmeringssprog kan disse indholde hele matricer. Udtryk opbygges af: Eksempel: Variable (a=5) Tal (1, 1.1, -99, e23m j) Operatorer (+, -, *, /) Funktioner (sqrt(), sin()) >> a=(1+sqrt(5))/2 a = MATLAB 2002 p.7/28

8 Operatorer Operatorer og præcedensregler: + Addition Subtraktion Multiplikation / Division ˆ Potens Kompleks konjugering () Specifikation af evalueringsrækkefølge MATLAB 2002 p.8/28

9 Udtryk i MATLAB Flere funktioner kan angives en linie. Disse separeres vha., eller ; alt efter om output skal vises. Eks.: >> sin(0);cos(0); >> sin(0),cos(0); 0 >> sin(0),cos(0) 0 1 Hvis et udtryk fortsættes på næste linie angives dette med... MATLAB 2002 p.9/28

10 Matricer Den basale datastruktur i MATLAB er en matrix, og MATLAB er bygget op om lineær algebra, heraf navnet. En matrix er en 2-dimensional array (tabel) indeholdende elementer a ij : a 11 a a 1N a 21 a a 2N A = (1)... a M1 a M2... a MN Dette kaldes en M N matrix, hvor M er antal rækker og N antal søjler. MATLAB 2002 p.10/28

11 Matricer En matrix genereres i MATLAB ved: >> A=[1 2 3; 4 5 6] A = Dvs. elementerne i en række separeres vha. space og i søjler med ;. Størrelsen af en matrix kan findes ved: >> size(a) 2 3 Som I kan se, er en vektor en M 1 eller 1 M matrix, og en skalar er en 1 1 matrix. MATLAB 2002 p.11/28

12 a M1 x 1 + a M2 x 2... a MN x N = b M (2) Matricer En matrix er en kompakt repræsentation af en række lineære udtryk, hvor vi ønsker at finde de ubekendte x 1... x M : a 11 x 1 + a 12 x 2... a 1N x N = b 1 a 21 x 1 + a 22 x 2... a 2N x N = b 2. =. Ved at skrive de ukendte parametre som en søjlevektor x og b 1... b M som b fås: Ax = b MATLAB 2002 p.12/28

13 Mactricer Altså: a 11 a a 1N a 21 a a 2N x 1 x 2.. = b 1 b 2.. (4) a M1 a M2... a MN x N b M hvor b i = N a ij x j (5) j=1 MATLAB 2002 p.13/28

14 Indeksering Elementet i række i, søjle j af matrix A angives i MATLAB A(i, j): >> A=[1 2 3;4 5 6]; >> A(2,3) 6 >> A(1:2,3) 3 6 >> A(1,:) Indices i MATLAB er positive heltal og starter med 1 (træls)! MATLAB 2002 p.14/28

15 Kolon-operatoren Kolon-operatoren kan bruges til at generere vektorer: >> 3: >> -1:-2: >> 1:0.1: MATLAB 2002 p.15/28

16 Søjle- og rækkevektorer En søjlevektor laves om til en rækkevektor ved transponering: >> A=[1 2 3] A = >> A Bemærk: A er en hermitisk transponering, dvs. den kompleks-konjugerer også! fliplr() eller flipud bruges til at reversere rækkefølgen af elementerne i en matrix i vertikal eller horizontal retning. MATLAB 2002 p.16/28

17 Matricer (specialtilfælde) Tom matrix angives med []. Denne kan bruges til at slette søjler/rækker: >> A=[1 2 3; 4 5 6]; >> A(:,2)=[] A = Det sidste indeks i et indekseringsudtryk kan findes med end(): >> A(end,end) 6 MATLAB 2002 p.17/28

18 Array-operatorer Array-operationer (elementvis): >> A=[1 2 3]; A.^ >> A.^[0 1 2] >> A./[2 1 2] >> A.*[2 1 2] MATLAB 2002 p.18/28

19 Matrix/skalar-operationer Addition af matrix og skalar: >> [1 2; 3 4] Skalering af matrix med skalar: >> [1 2; 3 4]* MATLAB 2002 p.19/28

20 Matrix-operationer Addition/subtraktion af matricer: >> [1 2; 3 4]-[1 2 3]??? Error using ==> - Matrix dimensions must agree. >> [1 2; 3 4]-[1 0; 0 1] Addition/subtraktion af matricer er kun defineret for matricer af samme størrelse. De fleste (begynder-)problemer i MATLAB er relateret til indeksering og størrelser på matricerne! MATLAB 2002 p.20/28

21 Matrix-multiplikation Matrix-multiplikation: AB = C Elementerne i matricen C er givet ved: c ij = n a ik b kj k=1 a i1 a i1... a i5 b 1j b 2j. b 5j = c ij MATLAB 2002 p.21/28

22 Matrix-multiplikation Heraf følger at antal søjler i A skal svare til antal rækker i B: Eksempel: m rækker n søjler >> A=[1 2 3;4 5 6]; >> B=[1 2;1 2;1 2]; >> A*B n rækker p søjler = m rækker p søjler MATLAB 2002 p.22/28

23 Præcision og format MATLAB benytter double precision IEEE floating point (64 bit). Hertil hører et par specialtilfælde NaN og Inf: >> 1/0 Inf >> 0/0 NaN Hvordan output skal vises styres med format. Se help format. MATLAB 2002 p.23/28

24 Komplekse tal Komplekse tal (i- og j-operatorerne): >> sqrt(-1) i >> j^2-1 Omskrivning til polær repræsentation af komplekse tal gøres vha. abs() og angle(). MATLAB 2002 p.24/28

25 Operatorer Matrix-operationer: + Addition [1 2 3]+[4 5 6]=[5 7 9] Subtraktion [1 2 3]-[4 5 6]=[ ] Multiplikation [1 2 3]*[4; 5; 6]=32 ˆ Potens [1 2; 3 4]^2=[7 10; 15 22] Array-operationer (elementvise):.ˆ Potens [1 2 3].^[0 2 1]=[1 4 3]./ Division [1 2 3]./[2 1 3]=[ ]. Multiplikation [1 2 3].*[2 1 2]=[2 2 6] MATLAB 2002 p.25/28

26 Matrix-manipulation Der findes en række funktioner til at manipulere med matricer. repmat() er en af dem. Denne gentager matricer et antal gange: >> A=[1 2;3 4]; >> repmat(a,2,2) Dvs. hvis A er M N og vi kalder repmat(a,k,l), så får vi en matrix ud med dimensionerne MK NL. MATLAB 2002 p.26/28

27 Matrix-manipulation En anden nyttig funktion er reshape(). reshape(a,m,n) returneres en M N matrix. Eks. >> A=[1 2;3 4;5 6] A = >> reshape(a,2,3) Elementerne tages søjlevis fra A (den skal have MN elementer i alt). MATLAB 2002 p.27/28

28 Introduktion til MATLAB MATLAB kan kun læres på en måde: Just do it! Opgaver, slides og senere også opgavebesvarelser kan findes på mgc/teaching/matlab/ MATLAB 2002 p.28/28

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Matlab-kommandoer. Robert Jacobsen. 9. august 2010

Matlab-kommandoer. Robert Jacobsen. 9. august 2010 Matlab-kommandoer Robert Jacobsen 9. august 2010 1 Kommandoer til Matlabs funktionaliteter Ønsker man at køre Matlab fra terminalen, ses de mulige options med matlab -help. For at starte Matlab uden det

Læs mere

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com

Matrix Algebra med Excel Forelæsningsnoter til FR86. Jesper Lund mail@jesperlund.com http://www.jesperlund.com Matrix Algebra med Excel Forelæsningsnoter til FR86 Jesper Lund mail@jesperlund.com http://www.jesperlund.com 28. august 2002 1 Indledning Matrix algebra er et uundværligt redskab til økonometri, herunder

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Lineær Algebra, 2015 1. kursusgang

Lineær Algebra, 2015 1. kursusgang Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Introduktion Indtastning Funktioner Scripts Optimering. Matlab

Introduktion Indtastning Funktioner Scripts Optimering. Matlab - robert@math.aau.dk http://www.math.aau.dk/ robert/teaching/2010/matlab 9. august 2010 1/39 Disposition 1. Lidt om. 2. Basiskursus. 3. Opgaver. 4. Mere til basiskursus. 5. Opgaver. 2/39 MATLAB = MATrix

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Matricer og Matrixalgebra

Matricer og Matrixalgebra enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Program for de næste 3 1/4 dobbeltlektion

Program for de næste 3 1/4 dobbeltlektion Matricer Program for de næste 3 1/4 dobbeltlektion Tirsdag 3. september 11.00 12.00: Afsnit 8.1, 8.2, 8.3 og 8.5 Torsdag 5. september 12.30 16.15 12.30 14.15: Opgaveregning lokale 261/409 14.30: Vi mødes

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004

DATALOGI 1E. Skriftlig eksamen torsdag den 3. juni 2004 Københavns Universitet Naturvidenskabelig Embedseksamen DATALOGI 1E Skriftlig eksamen torsdag den 3. juni 2004 Opgaverne vægtes i forhold til tidsangivelsen herunder, og hver opgaves besvarelse bedømmes

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 1 Eventuelle besvarelser laves i grupper af - 3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version

Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller

Læs mere

Computerstøttet beregning

Computerstøttet beregning CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist qvist@math.aau.dk Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/

Læs mere

Teoretiske Øvelsesopgaver:

Teoretiske Øvelsesopgaver: Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Aflevering 4: Mindste kvadraters metode

Aflevering 4: Mindste kvadraters metode Aflevering 4: Mindste kvadraters metode Daniel Østergaard Andreasen December 2, 2011 Abstract Da meget få havde løst afleveringsopgave 4, giver jeg har en mulig (men meget udførlig) løsning af opgaven.

Læs mere

Bits, bit operationer, integers og floating point

Bits, bit operationer, integers og floating point Denne guide er oprindeligt udgivet på Eksperten.dk Bits, bit operationer, integers og floating point Denne artikel beskriver hvordan data gemmes som bits og hvordan man kan manipulere med bits. Den forudsætter

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Oversigt [LA] 6, 7, 8

Oversigt [LA] 6, 7, 8 Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Guide til det basale i MATLAB

Guide til det basale i MATLAB Indledning Guide til det basale i MATLAB Jens E. Wilhjelm Ørsted DTU, Ørsteds Plads, Bygning 349 Danmarks tekniske universitet 2800 Kgs. Lyngby Forord (Ver. 1.1 3/9/07) 2005-2006 by J. E. Wilhjelm Denne

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

MATLAB. Introduktion til. anden udgave. Udarbejdet af Johnny Ottesen & Thomas Frommelt

MATLAB. Introduktion til. anden udgave. Udarbejdet af Johnny Ottesen & Thomas Frommelt Introduktion til MATLAB anden udgave Udarbejdet af Johnny Ottesen & Thomas Frommelt IMFUFA, RUC, Juni 2000 ii Indhold Forord v 1 Opstart af MATLAB 1 1.1 Opstart................................ 1 1.2 Kommandolinie...........................

Læs mere

Kort introduktion til MATLAB

Kort introduktion til MATLAB BILAG H Kort introduktion til MATLAB Matlab er et interaktivt programmeringssprog udviklet til manipulering af vektorer og matricer, og er baseret på LINPACK og EISPACK bibliotekerne. På grund af den lette

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2016 Københavns

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Noter til C# Programmering Selektion

Noter til C# Programmering Selektion Noter til C# Programmering Selektion Sætninger Alle sætninger i C# slutter med et semikolon. En sætning kontrollerer sekvensen i programafviklingen, evaluerer et udtryk eller gør ingenting Blanktegn Mellemrum,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 5. 6. semester efterår 2015-forår 2016 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e)

Læs mere

Komplekse tal og Kaos

Komplekse tal og Kaos Komplekse tal og Kaos Jon Sporring Datalogisk Institut ved Københavns Universitet Universitetsparken 1, 2100 København Ø August, 2006 1 Forord Denne opgave er tiltænkt gymnasiestuderende med matematik

Læs mere

Hvis du har vinduer abne fra en tidligere session, sa luk dem ned { vi vil have

Hvis du har vinduer abne fra en tidligere session, sa luk dem ned { vi vil have Forberedelse: Matlab for absolutte fodgngere Kort introduktion til G-databaren. St dig ved en ledig maskine og gennemfr loginprocessen. Hvis du har vinduer abne fra en tidligere session, sa luk dem ned

Læs mere

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem

Eksamensopgaver datalogi, dlc 2011 side 1/5. 1. Lodtrækningssystem Eksamensopgaver datalogi, dlc 2011 side 1/5 1. Lodtrækningssystem Der skal fremstilles et program, som kan foretage en lodtrækning. Programmet skal kunne udtrække en eller flere personer (eller andet)

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2011 HTX

Læs mere

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal

Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Oplæg og øvelser, herunder frugt og vand Gerth Stølting Brodal Datalogisk Institut Aarhus Universitet MasterClass Matematik, Mærsk Mc-Kinney Møller Videncenter, Sorø, 29-31. oktober 2009 Algoritmer: Matricer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Juni 2016 Københavns

Læs mere

Introduktion til MatLab

Introduktion til MatLab Introduktion til MatLab Kasper Bjering Jensen, Tinne Hoff Kjeldsen, RUC, september 2010 MatLab forkortelse for Matrix Laboratorium Gå sammen to og to og arbejd jer igennem side 1-3. Ca. kl. 14 springer

Læs mere

PHP 3 UGERS FORLØB PHP, MYSQL & SQL

PHP 3 UGERS FORLØB PHP, MYSQL & SQL PHP 3 UGERS FORLØB PHP, MYSQL & SQL Uge 1 & 2 Det basale: Det primære mål efter uge 1 og 2, er at få forståelse for hvordan AMP miljøet fungerer i praksis, og hvordan man bruger PHP kodesproget til at

Læs mere

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3

Talregning. Aktivitet Emne Klassetrin Side. Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 VisiRegn ideer 1 Talregning Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Indledning til VisiRegn ideer 1-7 2 Oversigt over VisiRegn ideer 1-7 3 Vejledning til Talregning

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag den. januar,. Kl. 9-3. Nærværende eksamenssæt består af 8 nummererede

Læs mere

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling

Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages

Læs mere

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12

En uægte brøk er en brøk der stadig kan forkortes ned til et blandet tal og som er større end 1. 17 Eksempel: Uægte brøk: 12 7.,. og 9. klasse Regler for brøker Ægte og uægte brøker En ægte brøk er en brøk mellem 0 og. Ægte brøk Ægte brøk til mindste forkortelse (reduktion) 9 En uægte brøk er en brøk der stadig kan forkortes

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Tirsdag den 27. maj 2003, kl. 9.00 3.00 Opgave (25%) For konstanten π = 3.4592... gælder identiteten π 2 6 =

Læs mere

Eksempel: Skat i år 2000

Eksempel: Skat i år 2000 Kursus 02199: Programmering afsnit 2.1-2.7 Anne Haxthausen IMM, DTU 1. Værdier og typer (bl.a. char, boolean, int, double) (afsnit 2.4) 2. Variable og konstanter (afsnit 2.3) 3. Sætninger (bl.a. assignments)

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Chapter 7: Transport-, assignment- & transshipmentproblemer

Chapter 7: Transport-, assignment- & transshipmentproblemer Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

Programmering i C. Kursusintroduktion. Lektion september Målgruppe 2 Indhold 3 Form 4 Materiale. Målgruppe Indhold Form Materiale

Programmering i C. Kursusintroduktion. Lektion september Målgruppe 2 Indhold 3 Form 4 Materiale. Målgruppe Indhold Form Materiale Programmering i C Lektion 1 16. september 2008 Målgruppe Indhold Form Materiale Kursusintroduktion 1 Målgruppe 2 Indhold 3 Form 4 Materiale 2 / 21 Målgruppe Indhold Form Materiale Folk der har styr på

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (dads)

Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Skriftlig Eksamen Algoritmer og Datastrukturer (dads) Datalogisk Institut Aarhus Universitet Onsdag den. august 200, kl. 9.00.00 Opgave (25%) Lad A = A[] A[n] være et array af heltal. Længden af det længste

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Programmering i C Intro og grundlæggende C 5. marts 2007

Programmering i C Intro og grundlæggende C 5. marts 2007 Programmering i C Intro og grundlæggende C 5. marts 2007 Mads Pedersen, OZ6HR mads@oz6hr.dk Plan for kurset Ma. 5/3: Ma. 19/3: Ma. 2/4: To. 12/4: Formål, intro, grundlæggende Videre, sprogkonstruktioner

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Grundlæggende køretidsanalyse af algoritmer

Grundlæggende køretidsanalyse af algoritmer Grundlæggende køretidsanalyse af algoritmer Algoritmers effektivitet Størrelse af inddata Forskellige mål for køretid Store -notationen Klassiske effektivitetsklasser Martin Zachariasen DIKU 1 Algoritmers

Læs mere

M2CAL2 Calculus og Indledende Lineær algebra

M2CAL2 Calculus og Indledende Lineær algebra M2CAL2 Calculus og Indledende Lineær algebra Agenda Velkommen Præsentation mig Præsentation af M2CAL2 Kursusbeskrivelse, herunder læringsmål Eksamen Lærebøger Skema/Blackboard Kalender Fildeling En typisk

Læs mere

Programmering og Problemløsning, 2017

Programmering og Problemløsning, 2017 Programmering og Problemløsning, 2017 Programmering med Lister og Arrays Martin Elsman Department of Computer Science University of Copenhagen DIKU October 3, 2017 Martin Elsman (DIKU) Programmering og

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z},

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

M A S T E R I M AT E M AT I K

M A S T E R I M AT E M AT I K MASTER I MATEMATIK 2-årig masteruddannelse evu.aau.dk Master i Matematik Matematik er de naturvidenskabelige og tekniske videnskabers sprog, ligesom matematik spiller en stor rolle i økonomi og samfundsvidenskaber

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

1 Start og afslutning. Help.

1 Start og afslutning. Help. Afdeling for Teoretisk Statistik STATISTIK 2 Institut for Matematiske Fag Jørgen Granfeldt Aarhus Universitet 24. september 2003 Hermed en udvidet udgave af Jens Ledet Jensens introduktion til R. 1 Start

Læs mere

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence) Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed

Læs mere

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer

BRP Tal. Om computer-repræsentation og -manipulation. Logaritmer BRP 13.9.2006 Tal. Om computer-repræsentation og -manipulation. Logaritmer 1. Opgaverne til i dag dækker det meste af stoffet 2. Resten af stoffet logaritmer binære træer 3. Øvelse ny programmeringsopgave

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Vektorregning. Vektorer som lister

Vektorregning. Vektorer som lister 10 Vektorregning Vektorer som lister En vektor laves nemmest som en liste på TI-89 Titanium / Voyage 200. I nedenstående skærmbillede ser du, hvordan man definerer vektorer og laver en simpel udregning

Læs mere

DesignMat Egenværdier og Egenvektorer

DesignMat Egenværdier og Egenvektorer DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

Programmering i C. Lektion 4. 5. december 2008

Programmering i C. Lektion 4. 5. december 2008 Programmering i C Lektion 4 5. december 2008 Funktioner Eksempel Fra sidst 1 Funktioner 2 Eksempel Funktioner Eksempel Eksempel: 1 / f u n k t i o n s p r o t o t y p e r / i n t i n d l a e s ( void )

Læs mere