Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10, 2008"

Transkript

1 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm3: More about recurrences - October 10,

2 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms(rlo) 2. Recursive algorithms and recurrences (RLO) 3. More about recurrences (RLO) 4. Greedy algorithms, backtracking and more recurrences(rlo) 5. Counting, probabilities and randomized algorithms (RLO) 6. More sorting algorithms: Heap sort and quick sort (RLO) 7. A little bit more about sorting - and more times for exercises (RLO) 8. Hash tables, Hashing and binary search trees (RLO) 9. Binary search trees, red-black trees (JJE) 10. Red-black trees continued + string matching (JJE) 2

3 Dagsorden Lige lidt om linked lists og arrays først Rekursionstræer (fortsat) Eksempler Kompleksiteter med rekursionstræer Master metoden Anvendelse Bevisførelse Opgaver 3

4 Linked lists Hvorfor linked lister? Tillader at vi kan gemme data strukturer spredt over hele vores data hukommelse Bruges ofte i forhold til Stacks Køer Associative data strukturer Single linked lists Hvis jeg nu vil indsætte/slette et element

5 Linked lists Double linked lists Cirkulære linked lists

6 Linked lists versus arrays Hvad er forskellen mellem linked lists og arrays? Arrays tillader tilfældig adgang i elementer Linked lists tillader kun sekventiel adgang til data elementer Linked lists er bedre end arrays til at holde dynamisk varierende data elementer Array Indeksering O(1) O(n) Linked list Indsæt/slet ved ender O(1) O(1)/O(n) Indsæt/slet i midten O(n) O(1) Persistent No Yes Lokalitet Fixed Dynamic For rekursive algoritmer er vi typisk interesseret i tilfældig indekserring af data elementer, for effektiv opdeling af opgaver... 6

7 Dagsorden Lige lidt om linked lists og arrays først Rekursionstræer (fortsat) Eksempler Kompleksiteter med rekursionstræer Master metoden Anvendelse Bevisførelse Opgaver 7

8 Generel opgaveløsning med rekursive algoritmer Initialisering af algoritmen: typisk har rekursive algoritmer behov for en statsværdi. Dette opnåes enten ved parameteroverførsel til funktionen, eller benytte en gateway funktion der ikke er rekursiv til at sætte initialværdier. Kontroller at den nuværende værdi(er) der bliver processeret passer til basis tilfældet. I det tilfælde, så processer og returner resultatet. Hvis ikke, så Omdefiner opgaven til mindre eller simplere delproblemer Kald algoritmen igen med del problemet Kombiner delresultaterne i forhold til det format svaret skal angives i Returner svaret 8

9 Rekursionstræer I et rekursionstræ representerer en enkelt knude, prisen for et enkelt delproblem Den totale pris for en algoritme er skabt ved summering af de enkelte niveauer og krydssummen af disse over hele træet Træerne egner sig godt til divide-and-conquer algoritmer og kan, som vi har set, danne basis for gode gæt ved bestemmelse af algoritme kompleksitet Hvis vi er omhyggelige, kan vi endog bruge rekursionstræer som endelig bevis på kompleksitetsalgoritme 9

10 Rekurens træ for merge sort algoritme cn cn cn/2 cn/2 cn cn/4 cn/4 cn/4 cn/4 cn Log 2 (n) c c c c c c c c cn n 10

11 Et andet eksempel Den rekursive funktion T(n)=3T(n/4) + Θ(n 2 ) Antager at afrundinger ikke betyder noget... cn 2 T(n/4) T(n/4) T(n/4) cn 2 c(n/4) 2 c(n/4) 2 c(n/4) 2 T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) T(n/16) 11

12 Og endelig det helt store træ cn 2 cn 2 c(n/4) 2 c(n/4) 2 c(n/4) 2 (3/16)cn 2 Log 4 (n) c(n/16) 2 c(n/16) 2 c(n/16) 2 c(n/16) 2 c(n/16) 2 c(n/16) 2 c(n/16) 2 c(n/16) 2 c(n/16) 2 (3/16) 2 cn 2 T(1) T(1) T(1) T(1) Θ(n Log3(4) ) n Log4(3) Og dermed bliver den her O(n 2 ) 12

13 Et lidt mere kompliceret eksempel Antag T(n) = T(n/3) + T(2n/3) + O(n) cn cn c(n/3) c(2n/3) cn Log 3/2 (n) c(n/9) c(2n/9) c(2n/9) c(4n/9) cn T(1) T(1) T(1) n Log4(3) Hvorfor bliver det ikke cnlog 3/2 (n)?! cnlog 3/2 (n) O(nLog 3/2 (n)) 13

14 Et lidt mere kompliceret eksempel #2 For store værdier af n, vil der uden tvivl forsvinde nogle grene i træet undervejs c(n/3) Tværsummen gennem hele forløbet er altså ikke cn, men mindskes... c(n/9) c(2n/9) T(1) c(2n/27) T(2n/27) T(4n/27) Men vi kan vise at T(n) < = dnlog 2 (n) for et godt valg af d Konklusion: Så længe d opfylder kravet d>=c/(log 2 (3)-(2/3)) 14

15 Dagsorden Lige lidt om linked lists og arrays først Rekursionstræer (fortsat) Eksempler Kompleksiteter med rekursionstræer Master metoden Anvendelse Bevisførelse Opgaver 15

16 Master metoden Vi går lige tilbage til den her: T ( n) = at ( n / b) + f ( n) Så gælder flg. teorem (Master teoremet) 1. Hvis f(n) = O(n Logb(a-ε) ), hvor ε>0, så er T(n) = Θ(n Logb(a) ) 2. Hvis f(n) = Θ(n Logb(a) ), så er T(n) = Θ(n Logb(a) Log 2 (n)) 3. Hvis f(n) = Ω(n Logb(a+ε) ), hvor ε>0, samt af(n/b)<=cf(n) for c>1 og n er et stort tal, så er T(n) = Θ(f(n)) Teoremet kan anvendes som en kogebogsopskrift til løsning af kompleksiteter af rekursive algoritmer på (næsten) samme måde som tidligere set I det følgende undersøger vi dette teorem og den praktiske anvendelse af den 16

17 Master metoden - hvad betyder den? I alle tilfælde sammenligner vi f(n) med n Logb(a)!! Der er dog ikke blot tale om en simpel sammenligning. For ε!= 0 skal forholdet mellem f(n) og n Logb(a) ikke bare være større/mindre, men være præcis polynomisk større/mindre!! Det betyder f.eks. i 1. at f(n) skal være asymptotisk mindre med en faktor n ε og for 3. at f(n) skal være asymptotisk større med en faktor n ε udover de andre krav. Hvis disse krav ikke overholdes, så kan Master metoden ikke anvendes! I det følgende ser vi på hvad det betyder for os i praksis 17

18 Et par eksempler med master metoden Betragt T(n) = 9T(n/3) + n Vi ser at a = 9, b = 3 og f(n) = n Dermed har vi at n Logb(a) = n log3(9) = Θ(n 2 ) Vi prøver med flg. f(n) = O(n Log3(9) - ε ) kan ε sættes til 1, hvilket giver f(n) = O(n) = n Dermed er T(n) ifølge Master metode #1 givet ved T(n) = Θ(n Logb(a) ) = Θ(n 2 ) 18

19 Et par eksempler med master metoden #2 Betragt nu T(n) = T(2n/3) +1 Her er a = 1, b = 3/2, f(n) = 1 Vi ser at n Logb(a) = n Log3/2(1) = n 0 = 1 Vi prøver med f(n) = Θ(n Logb(a) ) = Θ(n Log3/2(1) ) = Θ(n 0 ) = Θ(1) Dermed ser det ud til at algoritmen falder under Master metoden #2, og kompleksiteten bliver dermed T(n) = Θ(n Logb(a) log 2 (n)) = Θ(log 2 (n)) 19

20 Et par eksempler med master metoden #3 Betragt T(n) = 3T(n/4) + nlog 2 (n) Her er a=3, b=4 og f(n) = nlog 2 (n) Vi ser at n Logb(a) = n Log4(3) = O(n ) Vi prøver nu med f(n) = Ω(n Log4(3)+ε ), og med e 0.2, får vi f(n) = Ω(n Log4(3)+ε ) = Ω(n) Bemærk at vi ikke kan opnå noget med O(n Log4(3)-ε ) eller Θ(n Log4(3)-ε ) i forhold til f(n) = nlog 2 (n)!! (n 0.75-ε er praktisk talt noget rod ) Nu mangler vi bare at bevise af(n/b) cf(n) 20

21 Et par eksempler med master metoden #4 Og endelig den sidste, hvad med T(n) = 2T(n/2) + nlog 2 (n) a = 2, b = 2, f(n) = nlog 2 (n) n Logb(a) = n Log2(2) = O(n) Vi får igen med samme argument som sidst f(n) = Ω(n Log4(3)+ε ), og med e 0.2, får vi f(n) = Ω(n Log4(3)+ε ) = Ω(n) Nu mangler vi bare at bevise af(n/b) cf(n) Konklusion: Blot fordi den ligner en kendt, er det ikke sikker vi kender kompleksiteten af algoritmen!! 21

22 Bevis for Master metoden Beviset tager udgangspunkt i den funktion vi har set før: Θ(1) T ( n) = 2T ( n / 2) + Θ( n) Beviset baserer sig på to trin 1. Analyse af metoden under antagelse af n = 1, b, b 2, b 3, Generalisering af analysen til alle positive heltal af n Første del af beviset foregår over tre lemmaer ; n ; n = 1 > 1 22

23 Bevis for Master metoden #1 Første lemma Lad a >= 1 og b > 1, og lad f(n) være en positiv funktion med input n = b k Så vil den rekursive funktion T ( n) Θ(1) = 2T ( n / 2) + Θ( n) ; n ; n = 1 > 1 kunne opskrives som T ( n) = Θ( n log ( a) logb ( n) 1 j a j= 0 Beviset har vi egentlig set før, men lad os lige se det grafisk vha. et rekursionstræ b ) + f ( n / b j ) 23

24 Rekurens træ over vores generelle funktion f(n) f(n) f(n/b) f(n/b) f(n/b) af(n/b) Log b (n) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) f(n/b 2 ) a 2 f(n/b 2 ) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(n logb(a) ) n Logb(a) Total: Θ( n log b ( a) ) + logb ( n) 1 j a j= 0 f ( n / b j ) 24

25 Andet lemma Lad a >= 1 og b > 1, og lad f(n) være en positiv funktion med input n = b k Betragt funktionen g(n) g( n) logb ( n) 1 j a j= 0 så kan vi sige 1. Hvis f(n) = O(n Logb(a-ε) ), hvor ε>0, så er g(n) = O(n Logb(a) ) 2. Hvis f(n) = Θ(n Logb(a) ), så er g(n) = Θ(n Logb(a) Log 2 (n)) 3. Hvis af(n/b)<=cf(n) for c<1 og for alle n>=b, så er g(n) = Θ(f(n)) = f ( n / b j ) 25

26 Trejde lemma Lad a >= 1 og b > 1, og lad f(n) være en positiv funktion med input n = b k Betragt igen den rekursive funktion T ( n) Θ(1) at ( n / b) + Θ( n) ; n = 1 ; n = b = i Så kan vi med grænsedefinitionerne på hhv. O, Θ og Ω bevise at 1. Hvis f(n) = O(n Logb(a-ε) ), hvor ε>0, så er T(n) = Θ(n Logb(a) ) 2. Hvis f(n) = Θ(n Logb(a) ), så er T(n) = Θ(n Logb(a) Log 2 (n)) 3. Hvis f(n) = Ω(n Logb(a+ε) ), hvor ε>0, samt af(n/b)<=cf(n) for c>1 og n er et stort tal, så er T(n) = Θ(f(n)) 26

27 Bevis for Master metoden #2 Vi skal nu fokusere på øvre og nedre grænser af T ( n) = at ( n / b) + f ( n) T ( n) = at ( n / b) + f ( n) 27

28 Rekurens træ over vores generelle funktion f(n) f(n) f(n 1 ) f(n 1 ) f(n 1 ) af(n 1 ) Log b (n) f(n 2 ) f(n 2 ) f(n 2 ) f(n 2 ) f(n 2 ) f(n 2 ) f(n 2 ) f(n 2 ) f(n 2 ) a 2 f(n 2 ) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(1) Θ(n logb(a) ) n Logb(a) n = n n ; j = 0 > j 1 / b ; j 0 Total: Θ( n log b ( a) ) + logb ( n) 1 j a j= 0 f ( n j ) 28

29 Andet lemma (gentaget, og dog) Lad a >= 1 og b > 1, og lad f(n) være en positiv funktion med input n = b k Betragt funktionen g(n) g( n) = logb ( n) 1 j a j= 0 f ( n så kan vi sige 1. Hvis f(n) = O(n Logb(a-ε) ), hvor ε>0, så er g(n) = O(n Logb(a) ) 2. Hvis f(n) = Θ(n Logb(a) ), så er g(n) = Θ(n Logb(a) Log 2 (n)) 3. Hvis af(n/b)<=cf(n) for c<1 og for alle n>=b, så er g(n) = Θ(f(n)) j ) 29

30 Opsummering af dagens lektion Vi kiggede på arrays og linked lister og deres egenskaber Hvilke egenskaber de forskellige data strukturer har Fordele, ulemper og anvendelsesområder Vi kiggede lidt mere på rekursive algoritmer Træstrukturer som analyse af algoritme kompleksitet Master metoden Anvendelse Bevisførelse 30

31 Og et sidste dagens lille hik Recursion See "Recursion". eller med indbygget terminering Recursion If you still don't get it, See: "Recursion". 31

32 Opgaver Opgave 4.2-1, 4.2-2, Opgaver 4-1, 4-4,

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm2: Rekursive algoritmer og rekurrens - October 10, 2008 1 Algorithms and Architectures II 1. Introduction to analysis

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm2: Rekursive algoritmer og rekurrens - October 12, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms

Læs mere

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008

Mm6: More sorting algorithms: Heap sort and quick sort - October 29, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm6: More sorting algorithms: Heap sort and quick sort - October 9, 008 Algorithms and Architectures II. Introduction

Læs mere

Mm8: Hash tables, Hashing and binary search trees - November 7, 2008

Mm8: Hash tables, Hashing and binary search trees - November 7, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm8: Hash tables, Hashing and binary search trees - November 7, 2008 1 Algorithms and Architectures II 1. Introduction

Læs mere

Mm4: Greedy algorithms, backtracking and more recurrences - October 21, 2008

Mm4: Greedy algorithms, backtracking and more recurrences - October 21, 2008 Algorithms and Architectures I Rasmus Løvenstein lsen (RL), Jimmy Jessen Nielsen (JJE) Mm4: Greedy algorithms, backtracking and more recurrences - ctober 21, 2008 Algorithms and Architectures II 1. Introduction

Læs mere

Mm1: Introduction to analysis and design of algorithms - October 7, 2008

Mm1: Introduction to analysis and design of algorithms - October 7, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm1: Introduction to analysis and design of algorithms - October 7, 2008 Algorithms and Architectures II 1. Introduction

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 23, 2009 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm4: Sorting algorithms - October 3, 009 Algorithms and Architectures II. Introduction to analysis and design of

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

DM02 Kogt ned. Kokken. Januar 2006

DM02 Kogt ned. Kokken. Januar 2006 DM02 Kogt ned Kokken Januar 2006 1 INDHOLD Indhold 1 Asymptotisk notation 2 2 Algoritme analyse 2 3 Sorterings algoritmer 2 4 Basale datastrukturer 3 5 Grafer 5 6 Letteste udspændende træer 7 7 Disjunkte

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm1: Introduction to analysis and design of algorithms - October 11, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and

Læs mere

Algorithms & Architectures I 2. lektion

Algorithms & Architectures I 2. lektion Algorithms & Architectures I 2. lektion Design-teknikker: Divide-and-conquer Rekursive algoritmer (Recurrences) Dynamisk programmering Greedy algorithms Backtracking Dagens lektion Case eksempel: Triple

Læs mere

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010

Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO) Mm8: Hash tables og Hashing - November 10, 2010 1 Algorithms and Architectures II 1. Introduction to analysis and design of algorithms (RLO

Læs mere

Mm5: Counting, probabilities and randomized algorithms - Oktober 24, 2008

Mm5: Counting, probabilities and randomized algorithms - Oktober 24, 2008 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jimmy Jessen Nielsen (JJE) Mm5: Counting, probabilities and randomized algorithms - Oktober 24, 2008 1 Algorithms and Architectures II 1. Introduction

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler. Vægtning af opgaverne:

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Optimeringsproblem: man ønsker at finde bedste den kombinatoriske struktur blandt mange mulige. Dynamisk programmering Optimeringsproblem: man ønsker at finde

Læs mere

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille

Søgning og Sortering. Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering. Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering Flettesortering Philip Bille Søgning og Sortering Søgning Linæer søgning Binær søgning Sortering Indsættelsessortering

Læs mere

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012

Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012. May 15, 2012 Algoritmer og datastrukturer Course No. 02105 Cheat Sheet 2012 May 15, 2012 1 CONTENTS 2012 CONTENTS Contents 1 Kompleksitet 3 1.1 Køretid................................................ 3 1.2 Asymptotisk

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 02105, F14 side 1 af 14 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 2014. Kursusnavn: Algoritmer og datastrukturer 1 Kursusnummer: 02105 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer

Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Skriftlig Eksamen DM507 Algoritmer og Datastrukturer Institut for Matematik og Datalogi Syddansk Universitet, Odense Tirsdag den 24. juni 2014, kl. 10:00 14:00 Besvarelsen skal afleveres elektronisk. Se

Læs mere

Analyse af algoritmer

Analyse af algoritmer Analyse af algoritmer Analyse af algoritmer Køretid Pladsforbrug Asymptotisk notation O, Θ og Ω-notation. Eksperimentiel analyse af algoritmer Philip Bille Analyse af algoritmer Analyse af algoritmer Køretid

Læs mere

DM507 - Algoritmer og datastrukturer

DM507 - Algoritmer og datastrukturer - Algoritmer og datastrukturer Køretid g(n) Udtryk Beskrivelse lim n f(n) o(f) Vokser langsommere end f = 0 O(f) Vokser højst så hurtigt som f < Θ(f) Vokser som f = c(c > 0) Ω(f) Vokser mindst så hurtigt

Læs mere

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning

Søgning og Sortering. Søgning og Sortering. Søgning. Linæer søgning Søgning og Sortering Søgning og Sortering Philip Bille Søgning. Givet en sorteret tabel A og et tal x, afgør om der findes indgang i, så A[i] = x. Sorteret tabel. En tabel A[0..n-1] er sorteret hvis A[0]

Læs mere

Divide-and-Conquer algoritmer

Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. Divide-and-Conquer algoritmer Det samme som rekursive algoritmer. 1. Opdel problem i mindre delproblemer

Læs mere

Sortering i lineær tid

Sortering i lineær tid Sortering i lineær tid Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel. Nedre grænse for sammenligningsbaseret sortering Nedre grænser kræver en præcis beregningsmodel.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F0 side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 00. Kursusnavn Algoritmik og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 005, F side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed:

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Dynamisk programmering

Dynamisk programmering Dynamisk programmering Dynamisk programmering Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Har en hvis lighed med divide-and-conquer: Begge opbygger løsninger til større problemer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den. maj 00. Kursusnavn Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne: Opgave

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: Algoritmer og datastrukturer I Kursus nr. 005. Varighed: timer Tilladte hjælpemidler: Alle skriftlige hjælpemidler.

Læs mere

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Læs mere

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer.

Grådige algoritmer. Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for

Læs mere

Mm1: Introduction to analysis and design of algorithms - October 6, 2009

Mm1: Introduction to analysis and design of algorithms - October 6, 2009 Algorithms and Architectures I Rasmus Løvenstein Olsen (RLO), Jens Myrup Pedersen (JMP) Mm1: Introduction to analysis and design of algorithms - October 6, 2009 Algorithms and Architectures I 1. Introduction

Læs mere

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt.

Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Merging og hashing Mål Målet for disse slides er at beskrive nogle algoritmer og datastrukturer relateret til at gemme og hente data effektivt. Dette emne er et uddrag af kurset DM507 Algoritmer og datastrukturer

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider Danmarks Tekniske Universitet Skriftlig prøve, den 2. maj 200. Kursusnavn Algoritmer og datastrukturer Kursus nr. 02326. Tilladte hjælpemidler: Alle hjælpemidler. Vægtning af opgaverne:

Læs mere

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507)

Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Skriftlig Eksamen Algoritmer og Datastrukturer (DM507) Institut for Matematik og Datalogi Syddansk Universitet, Odense Onsdag den 0. juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater, osv.)

Læs mere

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid

Analyse af algoritmer. Analyse af algoritmer. Analyse af algoritmer. Køretid Philip Bille Mål. At bestemme og forudsige resourceforbrug og korrekthed af algoritmer Eks. Virker min algoritme til at beregne korteste veje i grafer? Hvor hurtigt kører min algoritme til at søge efter

Læs mere

Søgning og Sortering. Philip Bille

Søgning og Sortering. Philip Bille Søgning og Sortering Philip Bille Plan Søgning Linæer søgning Binær søgning Sortering Indsættelsesortering Flettesortering Søgning Søgning 1 4 7 12 16 18 25 28 31 33 36 42 45 47 50 1 2 3 4 5 6 7 8 9 10

Læs mere

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel:

Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Grådige algoritmer Grådige algoritmer Et generelt algoritme-konstruktionsprincip ( paradigme ) for optimeringsproblemer. Ideen er simpel: Opbyg løsningen skridt for skridt ved hele tiden af vælge lige

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z},

Læs mere

Dynamisk programmering. Flere eksempler

Dynamisk programmering. Flere eksempler Dynamisk programmering Flere eksempler Eksempel 1: Længste fælles delstreng Alfabet = mængde af tegn: {a,b,c,...,z}, {A,C,G,T}, {,1} Streng = sekvens x 1 x 2 x 3... x n af tegn fra et alfabet: helloworld

Læs mere

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille

Prioritetskøer. Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering. Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer på hobe Hobkonstruktion Hobsortering Philip Bille Prioritetskøer Prioritetskøer Træer og hobe Repræsentation af hobe Algoritmer

Læs mere

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer.

Tilgang til data. To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. Merging og Hashing Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang (API =

Læs mere

Sortering ved fletning (merge-sort)

Sortering ved fletning (merge-sort) Sortering 1 Sortering ved fletning (merge-sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 2 Del-og-hersk Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data S i to disjunkte

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 34 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Reeksamen i Diskret Matematik

Reeksamen i Diskret Matematik Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 21. august 2015 Nærværende eksamenssæt består af 10 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer:

Sortering. De n tal i sorteret orden. Eksempel: Kommentarer: Sortering Sortering Input: Output: n tal De n tal i sorteret orden Eksempel: Kommentarer: 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Sorteret orden kan være stigende eller faldende. Vi vil i dette kursus

Læs mere

Algoritmisk geometri

Algoritmisk geometri Algoritmisk geometri 1 Intervalsøgning 2 Motivation for intervaltræer Lad der være givet en database over ansatte i en virksomhed Ansat Alder Løn Ansættelsesdato post i databasen Antag, at vi ønsker at

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Aarhus Universitet Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Aarhus Universitet Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer

Læs mere

Sortering. Eksempel: De n tal i sorteret orden

Sortering. Eksempel: De n tal i sorteret orden Sortering 1 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 2 / 32 Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden

Læs mere

Sortering af information er en fundamental og central opgave.

Sortering af information er en fundamental og central opgave. Sortering Sortering Input: Output: Eksempel: n tal De n tal i sorteret orden 6, 2, 9, 4, 5, 1, 4, 3 1, 2, 3, 4, 4, 5, 9 Mange opgaver er hurtigere i sorteret information (tænk på ordbøger, telefonbøger,

Læs mere

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )?

Opgave 1 (10%) I det følgende angiver log n 2-tals-logaritmen af n. Ja Nej. n+3n er O(2n)? n 6 er O(n 5 )? nlogn er O(n 2 /logn)? 4n 3 er O(3n 4 )? Eksamen juni Algoritmer og Datastrukturer (-ordning) Side af sider Opgave (%) I det følgende angiver log n -tals-logaritmen af n. n+n er O(n)? n 6 er O(n )? nlogn er O(n /logn)? n er O(n )? n er O(n )?

Læs mere

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer

1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer 1. Redegør for Lister, stakke og køer mht struktur og komplexitet af de relevante operationer på disse. Typer af lister: Array Enkelt linket liste Dobbelt linket Cirkulære lister Typer af køer: FILO FIFO

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer som model for sekventielle

Læs mere

BRP Sortering og søgning. Hægtede lister

BRP Sortering og søgning. Hægtede lister BRP 18.10.2006 Sortering og søgning. Hægtede lister 1. Opgaver 2. Selection sort (udvælgelsessortering) 3. Kompleksitetsanalyse 4. Merge sort (flettesortering) 5. Binær søgning 6. Hægtede lister 7. Øvelser:

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af sider Danmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. Kursusnavn: Algoritmer og datastrukturer Kursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer Vægtning

Læs mere

Prioritetskøer og hobe. Philip Bille

Prioritetskøer og hobe. Philip Bille Prioritetskøer og hobe Philip Bille Plan Prioritetskøer Træer Hobe Repræsentation Prioritetskøoperationer Konstruktion af hob Hobsortering Prioritetskøer Prioritetskø Vedligehold en dynamisk mængde S af

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal

Algoritmer og Datastrukturer 1. Gerth Stølting Brodal Algoritmer og Datastrukturer 1 Gerth Stølting Brodal Kursusbeskrivelsen Kursusbeskrivelsen: Algoritmer og datastrukturer 1 Formål Deltagerne vil efter kurset have indsigt i algoritmer som model for sekventielle

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, F side af sider anmarks Tekniske Universitet Skriftlig prøve, den 9. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

Merging og Hashing (del I)

Merging og Hashing (del I) Merging og Hashing (del I) Tilgang til data To udbredte metoder for at tilgå data: Sekventiel tilgang Random access: tilgang via ID (også kaldet key, nøgle) for dataelementer. API for sekventiel tilgang

Læs mere

Sammenhængskomponenter i grafer

Sammenhængskomponenter i grafer Sammenhængskomponenter i grafer Ækvivalensrelationer Repetition: En relation R på en mængde S er en delmængde af S S. Når (x, y) R siges x at stå i relation til y. Ofte skrives x y, og relationen selv

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal

Introduktion. Introduktion. Algoritmer og datastrukturer. Eksempel: Maksimalt tal Philip Bille Algoritmer og datastrukturer Algoritmisk problem. Præcist defineret relation mellem input og output. Algoritme. Metode til at løse et algoritmisk problem. Beskrevet i diskrete og entydige

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Eksamen 0205, Forår 205 side af 5 Danmarks Tekniske Universitet Skriftlig prøve, den 22. maj 205. Kursusnavn: Algoritmer og datastrukturer Kursusnummer: 0205 Hjælpemidler: Skriftlige hjælpemidler. Det

Læs mere

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille

Introduktion. Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3. Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Philip Bille Introduktion Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer

Læs mere

Introduktion. Philip Bille

Introduktion. Philip Bille Introduktion Philip Bille Plan Algoritmer og datastrukturer Toppunkter Algoritme 1 Algoritme 2 Algoritme 3 Algoritmer og datastrukturer Hvad er det? Algoritmisk problem: præcist defineret relation mellem

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

Rolf Fagerberg. Forår 2013

Rolf Fagerberg. Forår 2013 Forår 2013 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM536 og DM537 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM536 og DM537 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort

Sortering. Sortering ved fletning (merge-sort) Del-og-hersk. Merge-sort Sortering Sortering ved fletning (merge-sort) 7 2 9 4! 2 4 7 9 7 2! 2 7 9 4! 4 9 7! 7 2! 2 9! 9 4! 4 1 2 Del-og-hersk Merge-sort Del-og-hersk er et generelt paradigme til algoritmedesign Del: opdel input-data

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 06, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 6. maj 0. ursusnavn: lgoritmer og datastrukturer ursus nr. 06. Tilladte hjælpemidler: Skriftlige hjælpemidler. Varighed: timer

Læs mere

Rekursion og dynamisk programmering

Rekursion og dynamisk programmering Rekursion og dynamisk programmering Datastrukturer & Algoritmer, Dat C Forelæsning 12/10-2004 Henning Christiansen Rekursion: at en procedure kalder sig selv eller et antal metoder kalder hinanden gensidigt.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 3 sider anmarks Tekniske Universitet Skriftlig prøve, den 29. maj 203. ursusnavn: lgoritmer og datastrukturer ursus nr. 02326. jælpemidler: Skriftlige hjælpemidler. et er ikke tilladt at medbringe

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: n 2 n (log n) 2. 3 n /n 2 n + (log n) 4 Eksamen. kvarter 00 Side 1 af sider Opgave 1 ( %) Ja Nej n log n er O(n / )? n 1/ er O(log n)? n + n er O(n )? n( n + log n) er O(n / )? n er Ω(n )? Opgave ( %) Opskriv følgende funktioner efter stigende

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 5. 5n 2 5 logn. 2 logn

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: (logn) 5. 5n 2 5 logn. 2 logn Eksamen august 0 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) n +n er O(n )? Ja Nej n er O(n )? n+n er O(n. )? n+n er O(8n)? n logn er O(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet side af 2 sider anmarks Tekniske Universitet Skriftlig prøve, den 23. maj 20. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 02326. Varighed: 4 timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2010 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 24. april, 2010 (let justeret 10. maj og 21. maj 2010) Dette projekt udleveres i tre

Læs mere

Sommeren 2001, opgave 1

Sommeren 2001, opgave 1 Sommeren 2001, opgave 1 Vi antager at k 3, da det ellers er uklart hvordan trekanterne kan sættes sammen i en kreds. Vi ser nu at for hver trekant er der en knude i kredsen, og en spids. Derfor er n =

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n

Opskriv følgende funktioner efter stigende orden med hensyn til O-notationen: 23n log n. 4 n (log n) log n Eksamen. kvarter 00 Algoritmer og Datastrukturer (00-ordning) Side af sider Opgave (%) Ja Nej n er O(n )? n er O(n )? n er O(n + 0 n)? n + n er O(n )? n log n er Ω(n )? Opgave (%) Opskriv følgende funktioner

Læs mere

DM02 opgaver ugeseddel 2

DM02 opgaver ugeseddel 2 DM0 opgaver ugeseddel af Fiona Nielsen 16. september 003 Øvelsesopgaver 9/9, 10/9 og 11/9 1. Vis, at 1 3 + 3 3 + 5 3 +... + (n 1) 3 = n 4 n. Omskriver til summationsformel: (i 1) 3 = n 4 n Bevis ved induktion

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet ksamen 036, side af sider anmarks Tekniske Universitet Skriftlig prøve, den 3. maj 0. Kursusnavn: lgoritmer og datastrukturer Kursus nr. 036. Varighed: timer Tilladte hjælpemidler: lle skriftlige hjælpemidler.

Læs mere

Datastrukturer (recap)

Datastrukturer (recap) Dictionaries Datastrukturer (recap) Data: Datastruktur = data + operationer herpå En ID (nøgle) + associeret data. Operationer: Datastrukturens egenskaber udgøres af de tilbudte operationer (API for adgang

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille er. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle x.key og satellitdata x.data. operationer. PREDECESSOR(k): returner element x med største nøgle k. SUCCESSOR(k):

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del II Institut for matematik og datalogi Syddansk Universitet 15. marts, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign

28 Algoritmedesign. Noter. PS1 -- Algoritmedesign 28 Algoritmedesign. Algoritmeskabelon for Del og Hersk. Eksempler på Del og Hersk algoritmer. Binær søgning i et ordnet array. Sortering ved fletning og Quicksort. Maksimal delsums problem. Tætteste par

Læs mere

Introduktion Til Konkurrenceprogrammering

Introduktion Til Konkurrenceprogrammering Introduktion Til Konkurrenceprogrammering Søren Dahlgaard og Mathias Bæk Tejs Knudsen {soerend,knudsen}@di.ku.dk Version 0.1 Indhold Indhold i Introduktion 1 1 Palindromer 3 1.1 Introduktion til Python...............

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering

Hashing. Hashing. Ordbøger. Ordbøger. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Ordbøger. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[x] fra et univers af nøgler U og satellitdata data[x]. Ordbogsoperationer. SEARCH(k): afgør om element

Læs mere

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer

Introduktion til datastrukturer. Introduktion til datastrukturer. Introduktion til datastrukturer. Datastrukturer Introduktion til datastrukturer Introduktion til datastrukturer Philip Bille Datastrukturer Datastruktur. Metode til at organise data så det kan søges i/tilgås/manipuleres effektivt. Mål. Hurtig Kompakt

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Grafer og graf-gennemløb

Grafer og graf-gennemløb Grafer og graf-gennemløb Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges). Dvs. ordnede par af knuder. Grafer En mængde V af knuder (vertices). En mængde E V V af kanter (edges).

Læs mere

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille

Hashing. Ordbøger Hægtet hashing Hashfunktioner Lineær probering. Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Philip Bille Hashing Ordbøger Hægtet hashing Hashfunktioner Lineær probering Ordbøger Ordbøger. Vedligehold en dynamisk mængde S af elementer.

Læs mere

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi

DATALOGISK INSTITUT, AARHUS UNIVERSITET. Det Naturvidenskabelige Fakultet EKSAMEN. Grundkurser i Datalogi DATALOGISK INSTITUT, AARHUS UNIVERSITET Det Naturvidenskabelige Fakultet EKSAMEN Grundkurser i Datalogi Antal sider i opgavesættet (incl. forsiden): 1 (tretten) Eksamensdag: Tirsdag den 8. april 2008,

Læs mere

DM507 Algoritmer og datastrukturer

DM507 Algoritmer og datastrukturer DM507 Algoritmer og datastrukturer Forår 2012 Projekt, del III Institut for matematik og datalogi Syddansk Universitet 29. april, 2012 Dette projekt udleveres i tre dele. Hver del har sin deadline, således

Læs mere

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo

Binære søgetræer. Binære søgetræer. Nærmeste naboer. Nærmeste nabo Philip Bille Nærmeste naboer. Vedligehold en dynamisk mængde S af elementer. Hvert element har en nøgle key[] og satellitdata data[]. operationer. PREDECESSOR(k): returner element med største nøgle k.

Læs mere

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion

Mindste udspændende træ. Mindste udspændende træ. Introduktion. Introduktion Philip Bille Introduktion (MST). Udspændende træ af minimal samlet vægt. Introduktion (MST). Udspændende træ af minimal samlet vægt. 0 0 Graf G Ikke sammenhængende Introduktion (MST). Udspændende træ af

Læs mere