Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1"

Transkript

1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1

2 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap ) Dummy variabler for kvalitative egenskaber med flere end to kategorier Interaktionsled med kvantitative variabler Chow-testet Dummyvariabel som afhængig variabel: Lineær sandsynlighedsmodel Økonometri 1: F10 2

3 Eksempel: Interaktionsled med to dummyvariabler Interaktionsled med dummyvariabler er helt analogt til interaktionsled med kvantitative variable og ofte anvendt Eksempel: Lønregression med interaktionseffekt mellem civilstand og køn. log timeløn = β + β uddaar + β erfaring + β kvinde β single + β ( kvinde *single ) + u 4 i 5 i i i i Økonometri 1: F10 3

4 Eksempel: Interaktionsled med to dummyvariabler Effekten af civilstand og køn. Den forventede log timeløn (når vi ser bort fra effekten af uddannelse, erfaring og intercept) Param./est. gift Single Mand Kvinde β β β β β Økonometri 1: F10 4

5 Eksempel: Interaktionsled med dummyvariabler Kan modellen formuleres således log timeløn = γ + γuddaar + γ erfaring + γ ( gift kvinde ) γ (single mand ) + γ (single kvinde ) + u 4 i 5 i i i hvor gift kvinde, single mand, og single kvinde er dummyvariabler? Økonometri 1: F10 5

6 Interaktionsled med dummyvariabler og kvantitative variabler Interaktionsled mellem dummyvariabler og kvantitative variabler kan fortolkes som forskellig effekt (eller afkast) af den kvantitative variabel Grafisk: Forskellige hældninger (se figur 7.2) Eksempel: Lønrelationen - afkastet af erfaring afhænger af køn log timelon = β + βudd + β erfaring + β kvinde + β ( erfaring * kvinde ) + u log timelon = ( β + β kvinde ) + βudd + ( β + β kvinde )* erfaring + u i 0 1 i 2 i 3 i 4 i i i i 0 3 i 1 i 2 4 i i i Samme afkast af erfaring: β 4 = 0 Ingen forskel på kvinder og mænd: β 3 = β4 = 0 Økonometri 1: F10 6

7 Chow test: To grupper Test for om der er forskel mellem to grupper. Modellen kan formuleres ved brug af dummy (d2=0 for gruppe 1, d2=1 for gruppe 2) y = β + β x + β x + + β x + Hypotesen kan formuleres som Modellen kan ækvivalent skrives som y = β + β x + β x + + β x + u hvor g=1,2 (to forskellige grupper) og hypotesen er: H0 : β1,0 = β2,0,, β1, k = β2, k k+1 restriktioner δ d2 + δ ( d2* x ) + δ ( d2* x ) + + δ ( d2* x ) + u g,0 g,1 1 g,2 2 g, k k Relationen mellem parametrene: k k k H0 δ0 δ1 δ k k : = = = = 0 δ j = β2, j β1, j, j = 0,1,..., k Økonometri 1: F10 7

8 Chow test: To grupper (fortsat) Teststørrelsen udregnes ved at lave tre regressioner af y på en konstant og x1, x2,, xk (uden dummyvariabler) SSR størrelsen til hver af de tre regressioner noteres: Regression for gruppe 1 alene -> SSR 1 Regression for gruppe 2 alene -> SSR 2 Regression for både gruppe 1 og 2 -> SSR P Økonometri 1: F10 8

9 Chow test: To grupper (fortsat) Teststørrelsen Hvor n er det samlede antal obs. (både fra gruppe 1 og 2) F = ( SSRP ( SSR1+ SSR2))/( k + 1) ( SSR + SSR )/( n (2( k + 1)) 1 2 k+1 er antal restriktioner Teststørrelsen er F-fordelt med (k+1, n-2(k+1)) frihedsgrader NB: Et klassisk F-test: ( SSRR SSRUR)/ q F = SSR /( antal frihedsgrader ( UR )) UR Økonometri 1: F10 9

10 Chow test: To grupper (fortsat) Eksempel: Lønrelation med udd. og erfaring Grupper: Mænd og kvinder Model log timeloni = βg,0 + βg,1 uddi + βg,2erfaringi + ui Teststørrelse (se SAS-output) ( ( )) / 3 F = = ( ) /(1046 6) F-fordelt med (3,1040) frihedsgrader Økonometri 1: F10 10

11 Chow test: Generelt Generaliserer til m forskellige grupper (perioder, regioner, lande, ) Teststørrelsen F ( SSRP ( SSR SSRm)) /(( m 1)( k + 1)) = ( SSR SSR )/( n ( m( k + 1)) Hvor n er det samlede antal obs. (fra alle m grupper) (m-1)(k+1) er antal restriktioner Teststørrelsen er F-fordelt med ((m-1)(k+1), n-m(k+1)) frihedsgrader 1 m Økonometri 1: F10 11

12 Hvad nu hvis den afhængige variabel er en kvalitativ egenskab (med to kategorier)? Indtil nu har vi betragtet afhængige variabler som er kvantitative (løn, priser, forbrug, indkomst, ) Nu: Diskret afhængig variabel med to værdier Eksempler: Deltager på arbejdsmarkedet eller ej Består et kursus eller ej Har bil eller ej Videregående udd. eller ej Har investeret i aktier eller ej Firma gået konkurs eller ej Økonometri 1: F10 12

13 Lineær sandsynlighedsmodel For en kvalitativ egenskab med to kategorier laver man en dummyvariabel y med to mulige udfald: y=0 eller y=1 Regressionsmodellen er uændret: y = β0 + β1x1+ β2x2 + + βkxk + u Modellen kaldes den lineære sandsynlighedsmodel (linear probability model, LPM) Hvis antagelsen MLR.4 er opfyldt: er den betingede middelværdi af y: For binære variabler gælder generelt at: Altså har vi en model for responssandsynligheden Eu ( x ) = 0 E y x = β + β x + β x + + β x ( ) k k E( y x) = 0*P( y = 0 x) + 1*P( y = 1 x) = P( y = 1 x) p x y x x x x ( ) = P( = 1 ) = β0 + β1 1 + β βk k Økonometri 1: F10 13

14 Lineær sandsynlighedsmodel Sandsynligheden for y=0 (betinget på x) kan så udregnes som Py ( = 0 x) = 1 P( y = 1 x) Fortolkningen af parametrene i LPM: y er en diskret variabel Parameteren β j kan ikke fortolkes som den marginale ændring i y givet en enheds ændring i x j Parameteren angiver ændringen i sandsynligheden for y=1 som følge af, at den forklarende variabel ændres med en enhed: p( x) = P( y = 1 x) = β j xj LPM kan estimeres med OLS yˆ = ˆ β0 + ˆ β1x1+ ˆ β ˆ 2x2 + + βkxk Hvor ŷ skal fortolkes som den predikterede sandsynlighed for y=1. Økonometri 1: F10 14

15 Lineær sandsynlighedsmodel Ulemper ved LPM: Prediktionerne er ikke 0 eller 1, som er de tilladte værdier af den afhængige variabel Predikterede sandsynligheder kan være negative eller overstige 1 Normalt ligger den predikterede sandsynlighed mellem 0 og 1, når man ser på værdier af de forklarende variable der ligger omkring gennemsnittet. Gauss-Markov antagelserne: MLR.1-4 kan godt være opfyldt for LPM LPM opfylder ikke antagelsen MLR.5 (Homoskedasticitet) Økonometri 1: F10 15

16 Lineær sandsynlighedsmodel For en given værdi af x har u to mulige udfald (binær variabel): u = 1 p( x) = 1 ( β + β x β x ) hvis y = u = p( x) = ( β + β x β x ) hvis y = k k k k Variansen for u givet x er derfor: = + 2 Var( u x) p( x)(1 p( x)) (1 1 2 px ( ))( px ( )) = px ( )(1 px ( )) som generelt vil afhænge af x: u er heteroskedastisk. Undtagelsen er tilfældet β = β =... = β = 0. k 2 Økonometri 1: F10 16

17 Lineær sandsynlighedsmodel Egenskaber ved OLS estimatoren i LPM OLS estimaterne er middelrette (givet MLR.1-4) Standardfejlene af estimaterne er ikke middelrette F og t test ikke pålidelige Problemet med heteroskedasticitet kan løses ved at korrigere standardfejlene (dette ser vi på i kap. 8): Sjældent noget alvorligt problem. Problemet med negative ssh. og ssh. over 1 kan kun løses ved at benytte en anden model end LPM. Alternernative modeller introduceres i Økonometri 2. Økonometri 1: F10 17

18 NB er Interaktionsled mellem dummyvariabler og kvantitative variabler giver mulighed for, at effekter kan variere mellem forskellige grupper Formen for Chow-testet er det almindelige F-test ( SSRR SSRUR)/ q F = SSR /( antal frihedsgrader ( UR )) UR Økonometri 1: F10 18

19 Næste gang: Mandag efter efterårsferien Heteroskedasticitet: Kapitel 8 Husk eksamenstilmelding! Husk evalueringsskemaer! God efterårsferie! Økonometri 1: F10 19

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004 Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1

Økonometri 1. Prediktion. Dummyvariabler 9. oktober Økonometri 1: F9 1 Økonometri 1 Prediktion. Dummyvariabler 9. oktober 2006 Økonometri 1: F9 1 Program frem til efterårsferien Om goodness-of-fit, prediktion og residualer (kap. 6.3-4) Kvalitative egenskaber i den multiple

Læs mere

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006 Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvalitative egenskaber og dummyvariabler Kvantitative metoder 2 Dummyvariabler 28. marts 2007 Vi har (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst, )... Men hvad med kvalitative

Læs mere

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006

Økonometri 1. Dagens program. Den simple regressionsmodel 15. september 2006 Dagens program Økonometri Den simple regressionsmodel 5. september 006 Den simple lineære regressionsmodel (Wooldridge kap.4-.6) Eksemplet fortsat: Løn og uddannelse på danske data Funktionel form Statistiske

Læs mere

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program

Økonometri 1. FunktioneI form i den lineære regressionsmodel 19. oktober Dagens program Dagens program Økonometri 1 FunktioneI form i den lineære regressionsmodel 19. oktober 004 Mere om funktionel form (kap 6.) Log transformation Kvadratisk form Interaktionseffekter Goodness of fit (kap.

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 30. april 2007 KM2: F21 1 Program for de to næste forelæsninger Emnet er specifikation og dataproblemer (Wooldridge kap. 9) Fejlleddet kan være korreleret

Læs mere

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet

! Variansen på OLS estimatoren. ! Multikollinaritet. ! Variansen i misspecificerede modeller. ! Estimat af variansen på fejlleddet Dagens program Økonometri Den multiple regressionsmodel 4. februar 003 regressionsmodel Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5)! Opsamling fra sidst

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder Heteroskedasticitet 11. april 007 KM: F18 1 Oversigt: Heteroskedasticitet OLS estimation under heteroskedasticitet (W.8.1-): Konsekvenser af heteroskedasticitet for OLS Gyldige test

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Den multiple regressionsmodel 5. marts 2007 regressionsmodel 1 Dagens program Emnet for denne forelæsning er stadig den multiple regressionsmodel (Wooldridge kap. 3.4-3.5, E.2) Variansen

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Specifikation og dataproblemer 2. maj 2007 KM2: F22 1 Program Specifikation og dataproblemer, fortsat (Wooldridge kap. 9): Betydning af målefejl Dataudvælgelse: Manglende observationer

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data)

! Proxy variable. ! Målefejl. ! Manglende observationer. ! Dataudvælgelse. ! Ekstreme observationer. ! Eksempel: Lønrelation (på US data) Dagens program Økonometri 1 Specifikation, og dataproblemer 10. april 003 Emnet for denne forelæsning er specifikation (Wooldridge kap. 9.-9.4)! Proxy variable! Målefejl! Manglende observationer! Dataudvælgelse!

Læs mere

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I

Økonometri 1. Oversigt. Mere om dataproblemer Gentagne tværsnit og panel data I Oversigt Økonometri 1 Mere om dataproblemer Gentagne tværsnit og panel data I Info om prøveeksamen Mere om proxyvariabler og målefejl fra sidste gang. Selektion og dataproblemer Intro til nyt emne: Observationer

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2

Wooldridge, kapitel 19: Carrying out an Empirical Project. Information og spørgsmål vedr. eksamen. Økonometri 1: Afslutningsforelæsning 2 Økonometri 1 Afslutningsforelæsning 19. maj 2003 Økonometri 1: Afslutningsforelæsning 1 Evalueringer Kun 23 har udfyldt evalueringsskemaerne ud af ca. 120 tilmeldte til eksamen Resultatet kan ses på hjemmesiden

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/33

Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Økonometri: Lektion 2 Multipel Lineær Regression 1/33 Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 +β 1 x +u, hvor fejlledet u,

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2004I, Økonometri 1 Rettevejledning til Økonomisk Kandidateksamen 004I, Økonometri Vurderingsgrundlaget er selve opgavebesvarelsen og bilaget. Programmer og data som er afleveret på diskette/cd bedømmes som sådan ikke, men

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007

Økonometri 1. Dagens program: Afslutningsforelæsning 23. maj 2007 Dagens program: Økonometri 1 Afslutningsforelæsning 23. maj 2007 6-trins procedure til IV estimation. Afrunding af IV: Rygning og fødselsvægt. Afrunding og perspektivering af Kvant 2. Opfølgning af introduktionsforelæsningen.

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag: Kvantitative metoder Beskrivende statistik og analyse af kvalitatitive data 1. februar 007 Test i multinomialfordelingen: Q-testet (BL.13.1-) Opsamling fra sidste gang To eksempler To-dimensionale

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling

Læs mere

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif).

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif). Vi vil formulere en model for et kvalitativ variabel y i med to udfald, at bestå og ikke at bestå første årsprøve. Derefter modeller vi respons-sandsynligheden: Specifikation af sandsynligheden for at

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II.

Økonometri 1. Gentagne tværsnit (W ): Opsamling. Gentagne tværsnit og paneldata. Gentagne Tværsnit og Paneldata II. Gentagne tværsnit (W 13.1-): Opsamling. Økonometri 1 Gentagne Tværsnit og Paneldata II Kombinerer tværsnit indsamlet på forskellige tidspunkter. Partial pooling: Tillader koefficienterne til nogle af variablerne

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

W.2 Simpel lineær regression: Egenskaber ved OLS: Forudsagte værdier og residualer: Et residual:

W.2 Simpel lineær regression: Egenskaber ved OLS: Forudsagte værdier og residualer: Et residual: W.2 Simpel lineær regression: Forudsagte værdier og residualer: Et residual: For residualerne (baseret på en OLS estimation med konstantled) gælder følgende sammenhænge mekanisk: Egenskaber ved OLS: Den

Læs mere

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig.

ELISA. ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. ELISA ELISA (enzyme-linked immunosorbent assay) forsøg bruges til at detektere og kvantificere stoffer såsom proteiner, peptider, antistoffer o.lig. Teknikken er ganske snedig, og muliggør at man inddirekte

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen 1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad

Læs mere

Økonomisk Kandidateksamen 2006II Økonometri 1. Afkastet af uddannelse for britiske tvillingepar

Økonomisk Kandidateksamen 2006II Økonometri 1. Afkastet af uddannelse for britiske tvillingepar Økonomisk Kandidateksamen 2006II Økonometri 1 Afkastet af uddannelse for britiske tvillingepar Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig, at du kan få

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen

Rettevejledning til Økonomisk Kandidateksamen 2007II. Kvantitative Metoder 2: Tag-hjem eksamen Rettevejledning til Økonomisk Kandidateksamen 2007II Kvantitative Metoder 2: Tag-hjem eksamen Der skal for hver studerende foretages en samlet bedømmelse af tag-hjem gruppeopgaven og den individuelle 2-timers

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Gentagne tværsnit og paneldata Kvantitative metoder 2 Gentagne tværsnit og panel data II 9. maj 2007 I dag: To-periode panel data: Følger de samme individer over to perioder (13.3-4) Unobserved effects

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

Økonomisk Kandidateksamen 2003II Økonometri 1. Værdisætning af skov

Økonomisk Kandidateksamen 2003II Økonometri 1. Værdisætning af skov Økonomisk Kandidateksamen 2003II Økonometri 1 Værdisætning af skov Praktiske anvisninger til individuel tag-hjem eksamen i Økonometri 1: Start med at sikre dig at du kan få adgang til data, opgavetekst

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Estimation: Kapitel 9.1-9.3 Estimation Estimationsfejlen Bias Eksempler Bestemmelse af stikprøvens størrelse Konsistens De nitioner påkonsistens Eksempler på konsistente og middelrette estimatorer

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen

Et firma tuner biler. Antallet af en bils cylindere er givet ved den stokastiske variabel X med massetæthedsfunktionen STATISTIK Skriftlig evaluering, 3. semester, mandag den 6. januar 004 kl. 9.00-13.00. Alle hjælpemidler er tilladt. Opgaveløsningen forsynes med navn og CPR-nr. OPGAVE 1 Et firma tuner biler. Antallet

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata

1. Intoduktion. Undervisningsnoter til Øvelse i Paneldata 1 Intoduktion Før man springer ud i en øvelse om paneldata og panelmodeller, kan det selvfølgelig være rart at have en fornemmelse af, hvorfor de er så vigtige i moderne mikro-økonometri, og hvorfor de

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere