Matematisk formelsamling. Hf C-niveau

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Matematisk formelsamling. Hf C-niveau"

Transkript

1 Mtemtisk fomelsmling Hf C-niveu

2 Denne udgve f Mtemtisk fomelsmling Hf C-niveu e udgivet f Undevisningsministeiet og gjot tilgængelig på uvm.dk. Fomelsmlingen e udejdet i et smejde mellem Mtemtiklæefoeningen og Undevisningsministeiet, Styelsen fo Undevisning og Kvlitet, septeme 07 Kopieing til ndet end pesonlig ug må kun ske efte ftle med Copy-Dn. ISBN: Fofttee: Get Schomcke, Jespe Bng-Jensen, Bodil Buun og Jøgen Dejgd

3 Food: Mtemtisk fomelsmling HF C e udejdet til ug fo eksminndene ved den skiftlige pøve og i undevisningen på hf i mtemtik på C-niveu. Fomelsmlingen indeholde de emne, de foekomme i læeplnen fo mtemtik på C-niveu på hf indenfo åde kenestof og suppleende stof. Fo ovelikkets skyld e medtget fomle fo el og umfng f en ække elementægeometiske figue. Endvidee indeholde fomelsmlingen en liste ove mtemtiske stnddsymole. Hensigten hemed e dels t give elevene et hutigt ovelik, dels t idge til, t undevisee og fofttee f undevisningsmteile kn nvende enstet nottion, symolspog og teminologi. Listen ove mtemtiske stnddsymole gå defo ud ove kenestoffet, men holde sig dog inden fo det mtemtiske unives i gymnsiet og på hf. En ække f fomlene i fomelsmlingen e kun nvendelige unde visse foudsætninge (f t nævneen i en øk e foskellig f 0). Sådnne foudsætninge e f hensyn til oveskueligheden ikke eksplicit nævnt. Figuene e medtget som illusttion til fomlene, og den enkelte figu nskueliggø ofte ét lndt flee mulige tilfælde. Betydningen f de støelse, de indgå i fomlene, e ikke ltid foklet, men vil dog væe det i tilfælde, hvo etydningen ikke følge umiddelt f skik og ug i den mtemtiske littetu. Undevisningsministeiet, Styelsen fo Undevisning og Kvlitet, Konto fo Pøve, Eksmen og Test Septeme 07 Rsmus Vnggd Knudsen 3

4 Indhold Pocent- og entesegning 5 Indekstl 5 Popotionlitet 6 Bøkegle 6 Kvdtsætninge 7 Potensegneegle 7 Ensvinklede teknte 8 Retvinklet teknt 8 Vilkålig teknt 9 Lineæ funktion 0 Andengdspolynomie 0 Logitmefunktione Eksponentielt voksende funktion Eksponentielt ftgende funktion 3 Potenssmmenhæng 4 Guppeede osevtione 5 Uguppeede osevtione 6 Lineæ egession 8 Komintoik 9 Sndsynlighedsegning 0 Pscls teknt Multipliktionstel Ael og omkeds, umfng og oveflde 3 Mtemtiske stnddsymole 4 Stikodsegiste 8 4

5 Pocent- og entesegning Begyndelsesvædi B Slutvædi S () S = B ( + ) Vækstte () = S B Pocentvis ænding p (3) p% = 00% Kpitlfomel Sttkpitl K 0 Rente p % p. temin Kpitl K efte n temine (4) K K0 ( ) n, hvo p = 00 Annuitetsopsping Teminsindetling Rentefod Antl indetlinge n Kpitl A efte sidste indetling (5) n ( ) A Annuitetslån Hovedstol G Rentefod Antl teminsydelse n Teminsydelse y (6) y G ( ) n Indekstl Vædi B S Indekstl I B I S S (7) IS = I IS B S = B B I B 5

6 Popotionlitet () og y e popotionle Popotionlitetsfkto k () y = k () (8) y k y k y = k (9) y k y k og y e omvendt popotionle () Bøkegle (0) c c () c c () (3) (4) c c d c d c c c d d 6

7 Kvdtsætninge (5) (6) (7) ( ) ( ) ( )( ) Potensegneegle s s (8) (9) s = s (0) ( ) s s () ( ) () = 0 (3) = (4) (5) (6) (7) s = = = s (8) (9) (30) 7

8 Ensvinklede teknte B c A C B c (3) = = = k c A c C (3) = k = k c = k c Retvinklet teknt B c A C Pythgos sætning (33) c = + Cosinus (34) cos( A) = c Sinus (35) sin( A) = c Tngens (36) tn( A) = 8

9 Vilkålig teknt h B A g C Tekntens vinkelsum (37) A B C 80 Tekntens el T (38) T = h g B c A C Cosinuseltion (39) Sinuseltion (40) c = + C cos( ) c sin( A) sin( B) sin( C) Tekntens el T (4) T sin( C) 9

10 Lineæ funktion () Føstegdspolynomium, lineæ funktion f () (4) f( ) = + () f y y () Hældningskoefficienten (stigningstllet) ud f punkte på gfen (, y ) og (, y ) y y (43) = Skæing med y-ksen (44) y Andengdspolynomie Andengdspolynomium p (45) p ( ) = + + c Andengdspolynomiets gf e en pel (46) () p () 0

11 Logitmefunktione Den ntulige logitmefunktion (47) f( ) ln( ) Gfen fo den ntulige logitmefunktion (48) () ln ( ) e () Logitmefunktionen med gundtl 0 (49) f( ) log( ) Gfen fo logitmefunktionen med gundtl 0 (50) () 0 log( ) ()

12 Eksponentielt voksende funktione () f () Gfen fo en eksponentielt voksende funktion f vækstten 0, k 0 (5) f( ) = = ( + ) k = e, hvo k = ln( ) (5) f( ) fo Femskivningsfktoen ud f punkte på gfen (, y ) og (, y ) (53) f( ) 0 fo y y (54) = = y y Skæing med y-ksen (55) y = () y y = y T () Fodolingskonstnten T (56) T log() ln() ln() (57) T log( ) ln( ) k

13 Eksponentielt ftgende funktione () () Gfen fo en eksponentielt ftgende funktion f 0 vækstten, 0 k 0 (58) f( ) = = ( + ) k = e, hvo k = ln( ) (59) f( ) 0 fo Femskivningsfktoen ud f punkte på gfen (, y ) og (, y ) (60) f( ) fo y y (6) = = y y Skæing med y-ksen (6) y = () y y T y = () Hlveingskonstnten T (63) T (64) 3 T ( ) = log ln( ) ln( ) log( ) = ln( ) = k

14 Potensfunktione Potensfunktion (65) f( ) = () > = 0 < < < 0 Gfe fo f( ) = () Bestemmelse f tllet ud f to punkte på gfen (, y ) og (, y ) log( y ) log( y ) ln( y ) ln( y ) = = log( ) log( ) ln( ) ln( ) (66) (67) y Nå gnges med tllet +, så gnges f( ) med tllet + Nå gnges med tllet k, så gnges f( ) med tllet k y (68) ( ) y (69) f( k ) k f( ) 4

15 Guppeede osevtione 0% Histogm (70) Aelet f en lok sve til intevllets fekvens % Histogm med ens intevllængde (7) Højden f en lok sve til intevllets fekvens % Kumuleet fekvens Q m Q 3 Sumkuve (7) Q : nede kvtil, 5% -fktilen m : medin, 50% -fktilen Q 3 : øve kvtil, 75% -fktilen % Kumuleet fekvens p : p% -fktilen p p 5

16 Uguppeede osevtione Pikdigm (73) Osevtionene fst på en tllinje min (74) min : mindste osevtion m (75) m : støste osevtion Vitionsedde (76) m min Q m Q 3 (77) m : medin (midteste osevtion, nå ntllet f osevtione e ulige, elles tllet midt mellem de to midteste osevtione) (78) Q : nede kvtil (medinen fo den nedeste hlvdel f osevtionene) (79) Q 3 : øve kvtil (medinen fo den øveste hlvdel f osevtionene) Kvtiledde (80) Q3 Q min Q m Q 3 m (8) Boksplot, kssedigm (oksens højde e uden etydning) Kvtilsæt (8) ( Q, mq, 3) Udvidet kvtilsæt (83) ( min, Q, m, Q3, m ) 6

17 Outlie (84) Osevtione, de ligge mee end hlvnden kvtiledde unde nede kvtil elle mee end hlvnden kvtiledde ove øve kvtil Middeltl fo osevtionssættet,,..., n n (85) = n Vensteskæv fodeling (86) Middeltl minde end medinen m Ikke-skæv fodeling (87) Middeltl lig med medinen m Højeskæv fodeling (88) Middeltl støe end medinen m 7

18 Lineæ egession Tel med oseveede dt (89) 3 n y y y y 3 y n Regessionslinje (90) Bedste ette linje, gf fo f ( ) Punktplot og edste ette linje (9) () f () oseveede dtpunkte modelpunkte Residul (9) Foskel mellem oseveet y-vædi og tilsvende y-vædi i model Residultel (93) 3 n Residul y f( ) y f( ) 3 y3 f( 3) n yn f( n) Residulplot (94) () 3 n 3 n () 8

19 Komintoik Multipliktionspincip Antl mulige måde t vælge åde ét element f N og et element f M, hvo N estå f n elemente og M estå f m elemente Additionspincip Antl mulige måde t vælge enten ét element f N elle ét element f M, hvo N estå f n elemente og M estå f n elemente (95) n m (96) n m Fkultet (97) n! n ( n ) ( n ) Pemuttione Antl mulighede fo udvælgelse f elemente lndt n elemente, nå ækkefølgen h etydning (98) n! Pn (, ) ( n )! Komintione Antl mulighede fo udvælgelse f elemente lndt n elemente, nå ækkefølgen ikke h etydning (99) n! Kn (, )!( n )! 9

20 Sndsynlighedsegning Sndsynlighedsfelt med udfldsum U og sndsynlighede p Udfldsum U med n udfld Summen f lle sndsynlighede (00) ( U, p ) (0) Mængden f lle udfld { u, u,..., u } (0) p p p3... p n n Sndsynlighedstel (03) Udfld u u u 3 Sndsynlighed p p p 3 u n p n Hændelse A med k udfld f U Sndsynlighed fo hændelse A Symmetisk sndsynlighedsfelt Alle sndsynlighede e lige stoe Sndsynlighed fo udvælgelse f et element f A (04) Mængde f k udfld f U (05) Summen f de k udflds sndsynlighede (06) p p p3... pn n k Antl gunstige (07) pa ( ) n Antl mulige 0

21 Pscls teknt (08) K(0,0) K(,0) K(,) K(,0) K(,) K(,) K(3,0) K(3,) K(3,) K(3,3) K(4,0) K(4,) K(4,) K(4,3) K(4,4) K(5,0) K(5,) K(5,) K(5,3) K(5,4) K(5,5) K(6,0) K(6,) K(6,) K(6,3) K(6,4) K(6,5) K(6,6) K(7,0) K(7,) K(7,) K(7,3) K(7,4) K(7,5) K(7,6) K(7,7) K(8,0) K(8,) K(8,) K(8,3) K(8,4) K(8,5) K(8,6) K(8,7) K(8,8)

22 Multipliktionstel (09) Røde tl: Kvdttl

23 Ael og omkeds, umfng og oveflde f geometiske figue Teknt h højde g gundlinje A el A = hg Pllelogm h højde h g gundlinje A el A = hg Tpez Cikel B h A g C g h h højde, pllelle side A el A= h ( + ) dius A el A= π O omkeds O= π Kugle O V dius oveflde umfng O= 4π V = 4 3 π 3 Cylinde h h højde gundfldedius O kum oveflde O = π h V umfng V= π h Kegle h s h højde s sidelinje gundfldedius O kum oveflde O = π s V umfng V= 3 π h 3

24 Mtemtiske stnddsymole Symol Betydning Eksemple, emækninge m.v. {.,.,.,.} mængde på listefom { 5,0,3,0},{,4,6,... } mængden f ntulige tl = {,,3,... } mængden f hele tl = {...,,,0,,,... } mængden f tionle tl mængden f eelle tl tilhøe / e element i tl, de kn skives p q, p, q [ ; ] lukket intevl [ ;3 ] = { 3} ] ; ] hlvåent intevl ] ;3 ] = { < 3} [ ; [ hlvåent intevl [ ;3 [ = { < 3} ] ; [ åent intevl ] ;3 [ = { < < 3} og i etydningen åde og (konjunktion) elle i etydningen og/elle (disjunktion) medføe, hvis så (impliktion) ensetydende, hvis og kun hvis (iimpliktion) < y = 5 < > 5 4 = = = 4 = = n! f( ) n fkultet, n udåstegn funktionsvædi f ved funktionen f n! =... n fo n 0! = f( ) = +, så e f (4) = 3. Dm( f ) definitionsmængden fo f Vm( f ) vædimængden fo f 4

25 Symol Betydning Eksemple, emækninge m.v. log( ) ln( ) e sin( ) cos( ) tn( ) sin ( y) cos ( y) tn ( y) AB AB AB AB logitmefunktionen med gundtl 0 den ntulige logitmefunktion den ntulige eksponentilfunktion eksponentilfunktionen med gundtl, > 0 potensfunktion numeisk (solut) vædi f sinus cosinus tngens omvendt funktion til sinus omvendt funktion til cosinus omvendt funktion til tngens linjestykket AB længden f linjestykket AB cikeluen AB længden f cikeluen AB 5 y = log( ) = 0 y y = ln( ) = e y e etegnes også ep() eksponentilfunktion elle en eksponentiel udvikling kldes undetiden fo en potensfunktion elle en potensudvikling kldes undetiden fo en 3 = 3, 7 = 7 etegnes også s() sin( ) tn( ) = cos( ) sin ( ) sin( ) y = = y sin (0,5) = 30 sin etegnes også Acsin cos ( y) = cos( ) = y cos (0,5) = 60 cos etegnes også Accos tn ( y) = tn( ) = y tn () = 45 tn etegnes også Actn

26 Symol Betydning Eksemple, emækninge m.v. e pllel med e vinkelet på l m læses også l og m e otogonle A vinkel A A = 0 elle A = 0 ABD vinkel B i teknt ABD B C A D etvinklet teknt hypotenuse v hosliggende ktete til v modstående ktete til v midtnomlen n fo linjestykket AB A n B B h højden f B på siden elle dens folængelse c h A C B m medinen f B på siden c m A C 6

27 Symol Betydning Eksemple, emækninge m.v. B v B vinkelhlveingslinjen fo vinkel B c v B A C B teknt ABC s omskevne cikel A C B teknt ABC s indskevne cikel v C A C 7

28 Stikodsegiste A dditionspincip 9 M medin (teknt) 6 ndengdspolynomium 0 medin (sttistik) 6, 7 nnuitetslån 5 middeltl 7 nnuitetsopsping 5 midtnoml 6 el f teknt 9, 3 multipliktionspincip 9 B oksplot 6 N nede kvtil 5, 6 økegle 6 O omvendt popotionlitet 6 C cikel 3 outlie 7 cosinus 8, 5 P pllelogm 3 cylinde 3 Pscls teknt E eksponentilfunktione p-fktil 5 - ftgende 3 potensfunktion 4 - voksende potensegneegle 7 ensvinklede teknte 8 pikdigm 6 F fkultet 9 pocentegning 5 fodolingskonstnt popotionlitet 6 femskivningsfkto, 3 Pythgos sætning 8 G guppeede osevtione 5 R entesegning 5 H hlveingskonstnt 3 etvinklet teknt 8, 6 histogm 5 S sndsynlighed 0 hældningskoefficient 0 sinus 8, 5 hændelse 0 stigningstl 0 højde 3 sumkuve 5 højeskæv 7 symmetisk sndsynlighedsfelt 0 I indekstl 5 T tngens 8, 5 ikke-skæv 7 tpez 3 K kpitlfomel 5 teknt 8, 9, 6, 7 kegle 3 U udfld 0 komintione 9 uguppeede osevtione 6 kugle 3 V vensteskæv 7 kvdtsætninge 7 vinkelhlveingslinje 7 L lineæ funktion 0 vinkelsum i teknt 9 lineæ egession 8 vinkle 6 logitmefunktione vækstte 5,, 3 Ø øve kvtil 5, 6 8

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1

Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1 Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8

Læs mere

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c

Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole

Læs mere

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse 4-4 eometi Fiu ikelin Ellipse t Fomle O π ( t m π ( m π ( t, e diene, t e tykkelsen o m e middelomkeds. O π π e den le stokse o den le lillekse. Pelstykke Tpez ektnel O 6 4 ln 8 e øjden på pelstykket o

Læs mere

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º).

1,0. sin(60º) 1,0 cos(60º) I stedet for cosinus til 60º og sinus til 60º skriver man cos(60º) og sin(60º). Mtemtik på VU Eksempler til niveu F, E og D Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus ved først t tegne vinklen i et koordint-system som vist til venstre. Derefter

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...

Læs mere

Formelsamling Matematik C Indhold

Formelsamling Matematik C Indhold Formelsmling Mtemtik C Indhold Eksempler på besvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 0 Funktioner og modeller... 3 Lineær funktion... 3 Procentregning...

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningseskrivelse Stmoplysninger til rug ved prøver til gymnsile uddnnelser Termin Juni 2016 Institution Uddnnelse Fg og niveu Lærere Hold Fvrskov Gymnsium Stx Mtemtik A Peter Lundøer (Lu) 3k Mtemtik

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K.

, idet der jo af ovenstående udregninger (hvor vi har regnet ensbetydende, dvs vi kan slutte begge veje) følger at > K. Hvd e mtemtik? A ISBN 978-87-766-497-4 Pojekte: Kpitel 2. Pojekt 2.4 Støelsesoden fo funktione Pojekt 2.4. Støelsesoden fo funktionene Intoduktion, og ln( ) I dette foløb vil vi dels få et edskb til t

Læs mere

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri

Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014

Kompendium. Matematik HF C niveau. Frederiksberg HF Kursus. Lars Bronée 2014 Kompendium Mtemtik HF C niveu π Frederiksberg HF Kursus Lrs Bronée 04 Mil: post@lrsbronee.dk Web: www.lrsbronee.dk Indholdsfortegnelse: Forord Det grundlæggende Ligningsløsning 8 Procentregning Rentesregning

Læs mere

Eksamensopgave august 2009

Eksamensopgave august 2009 Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er

Læs mere

Geometri, (E-opgaver 9d)

Geometri, (E-opgaver 9d) Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige

Læs mere

Formelsamling Mat. C & B

Formelsamling Mat. C & B Formelsmling Mt. C & B Indhold FORMELSAMLING MAT. C & B... 1 BRØER... PARENTESER... 3 PROCENT... 4 RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter...

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1

Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1 Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt

Læs mere

Eksponentielle Sammenhænge

Eksponentielle Sammenhænge Kort om Eksponentielle Smmenhænge 011 Krsten Juul Dette hæfte indeholder pensum i eksponentielle smmenhænge for gymnsiet og hf. Indhold 1. Procenter på en ny måde... 1. Hvd er en eksponentiel smmenhæng?....

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til A-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup Mtemtisk formelsmling til A-niveu GUX Grønlnd FORORD

Læs mere

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11

Formelsamling Mat. C LINEÆR VÆKST... 11 EKSPONENTIEL VÆKST... 11 POTENS-VÆKST... 11 Formelsmling Mt. C BRØER... LIGNINGER... PARENTESER... RENTE... 5 INDES... 6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... VILÅRLIG TREANT... Sinusreltionerne:... Cosinusreltionerne:...

Læs mere

Trigonometri at beregne Trekanter

Trigonometri at beregne Trekanter Trigonometri at beregne Trekanter Pythagoras, en stor matematiker fandt ud af, at der i en retvinklet trekant summen af kvadraterne på kateterne er lig med kvadratet på hypotenusen. ( a 2 + b 2 = c 2 )

Læs mere

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)

TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport) Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Geometri, (E-opgaver 9b & 9c)

Geometri, (E-opgaver 9b & 9c) Geometri, (E-opgaver 9b & 9c) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER...

Læs mere

gudmandsen.net Geometri C & B

gudmandsen.net Geometri C & B gudmndsen.net Geometri C & B Indholdsfortegnelse 1 Geometri & trigonometri...2 1.1 Område...2 2 Ensvinklede treknter...3 2.1.1 Skleringsfktoren...4 3 Retvinklede treknter...5 3.1 Pythgors lærersætning...5

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Overgangsbetingelser for D- og E-felt

Overgangsbetingelser for D- og E-felt lektomgnetisme 5 Side f 9 lektosttisk enegi Ovegngsetingse fo D- og -ft I det flg. undesøges, hvd de ske med D- og -ftvektoene ved ovegngen mlem to diektik: D-ft: Den Gussiske flde S e en cylinde med lille

Læs mere

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave

Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne

Læs mere

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler

Mat. B (Sådan huskes fomlerne) Formler, som skal kunnes til prøven uden hjælpemidler Mt. B (Sån huskes fomlerne) Formler, som skl kunnes til prøven uen hjælpemiler Inhol Her er tilføjet emærkninger til nogle f formlerne BRØKER... PARENTESER... EKSPONENTER... LOGARITMER... GEOMETRI... Arel

Læs mere

MATEMATISK FORMELSAMLING

MATEMATISK FORMELSAMLING MATEMATISK FORMELSAMLING GUX Grøld Mtemtisk formelsmlig til C-iveu, GUX Grøld Deprtemetet for uddelse 05 Redktio: Rsmus Aderse, Jes Thostrup MtemtiskformelsmligtilC-iveu GUX Grøld FORORD Dee formelsmlig

Læs mere

Trigonometri. Matematik A niveau

Trigonometri. Matematik A niveau Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri

Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-juni, 2013 Institution VUC Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C HUNI 2HF TmaCK13j

Læs mere

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri

K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN. Matematik F Geometri K TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKNIK TEKN Mtemtik F Geometri www.if.dk Mtemtik F Geometri Forord Redktør Hgen Jørgensen År 2004 est. nr. Erhvervsskolernes Forlg Munkehtten 28 5220 Odense

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. FORELØBIGE eksamensspørgsmål mac7100 og mac710 dec 01 og maj/juni 013. Spørgsmål 1: Ligninger Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Giv eksempler

Læs mere

3. Vilkårlige trekanter

3. Vilkårlige trekanter 3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke

Læs mere

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner

... ... ... ... ... ... ... b > 0 og x > 0, vil vi kalde en potensfunktion. 492 10. Potensfunktioner POTENSFUNKTIONER 0 49 0. Potensfunktioner POTENSFUNKTIONER DEFINITION En funktion med forskriften f( )= b hvor b > 0 og > 0 vil vi klde en potensfunktion. I MAT C kpitel så vi t hvis skl være et vilkårligt

Læs mere

1 Geometri & trigonometri

1 Geometri & trigonometri 1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Projekt Beholderkonstruktion. Matematik - A

Projekt Beholderkonstruktion. Matematik - A Projekt Beholderkonstruktion Matematik - A [Skriv et resume af dokumentet her. Resumeet er normalt en kort beskrivelse af dokumentets indhold. Skriv et resume af dokumentet her. Resumeet er normalt en

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Krydsprodukt. En introduktion Karsten Juul

Krydsprodukt. En introduktion Karsten Juul Kydspodut En ntoduton 5 Ksten Juul Bugsnvsnng Du sl se de fuldt optune mme fo t fnde defntone og sætnnge De e st punteet mme om esemple og evse Indhold Rmme Sde Defnton f ydspodut Esempel på ug f defntonen

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks

Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks Formelsmling for mtemtik niveu B og A på højere hndelseksmen Appendiks April Mtemtik B Procentregning Procentvis vækst Værdien f en given vriel x liver ændret fr x til x 1. Den %-vise vækst eregnes ved:

Læs mere

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til

Formelsamling i Matematik på C og B og A niveau Dette er en formelsamling der er under konstant udvikling Så hvis du har ønsker til denne så sig til Niels Junges formelsmling Formelsmling i Mtemtik på C og B og A niveu Dette er en formelsmling der er under konstnt udvikling Så hvis du hr ønsker til denne så sig til Indhold Tble of Contents Specielle

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Lektion 7s Funktioner - supplerende eksempler

Lektion 7s Funktioner - supplerende eksempler Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side

Læs mere

At score mål på hjørnespark

At score mål på hjørnespark At scoe ål på hjønespk Ole Witt Hnsen, lekto eeitus undevisningens udvikling i gnsiet Indtil 988 hvilede fsikundevisningen i gnsiet på det teoetiske, so n søgte t bekæfte genne deonsttionsfosøg elle fsikøvelse,

Læs mere

Elementær Matematik. Vektorer i planen

Elementær Matematik. Vektorer i planen Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning

Læs mere

Undervisningsbeskrivelse for 1ama

Undervisningsbeskrivelse for 1ama Undervisningsbeskrivelse for 2016-2017 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2017 Institution Uddannelse Fag og niveau Lærer(e) Hold Horsens HF og VUC HF2 Matematik

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom

Læs mere

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner

Elementær Matematik. Algebra Analytisk geometri Trigonometri Funktioner Elementær Mtemtik Alger Anlytisk geometri Trigonometri Funktioner Ole Witt-Hnsen Køge Gymnsium 0 Indhold Indhold... Kp. Tl og regning med tl.... De nturlige tl.... Regneregler for nturlige tl.... Kvdrtsætningerne.....

Læs mere

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet Rentesregning 1 Forklar begrebet fremskrivningsfaktor. Forklar kapitalfremskrivningsformlen (renteformlen), og opstil/omskriv denne så du kan bestemme 1 af størrelserne, ud fra de 3 andre. Giv eksempler,

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål i ma til 1p sommeren 2009 (revideret) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Løsningsforslag MatB Juni 2012

Løsningsforslag MatB Juni 2012 Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6

k(k 1)(k 2)... (k n + 1) = = 12 2 = 6 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Binomilformlen Binomilkoefficienter Binomilrækken Tylor polynomier Vurdering f Tylor s restled Eksponentilrækken konvereger mod eksponentilfunktionen Clculus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....

Læs mere

Integralregning. 2. del. 2006 Karsten Juul

Integralregning. 2. del. 2006 Karsten Juul Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Najib Faizi

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Pointen med Integration

Pointen med Integration Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Thomas Pedersen

Læs mere

Gymnasie-Matematik. Søren Toftegaard Olsen

Gymnasie-Matematik. Søren Toftegaard Olsen Gmnsie-Mtemtik Søren Toftegrd Olsen Søren Toftegrd Olsen Skovvænget 6-B 7080 Børkop Gmnsie-Mtemtik. udgve, revision 0 ISBN 978-87-99996-0-0 VIGTIGT: Denne og må ikke sælges eller ændres; men kn frit kopieres.

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet

Læs mere

Elektrostatisk energi

Elektrostatisk energi Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Rukiye

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 8 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π og

Læs mere

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y GEOMETRI Generelt om inkler Nottion for inkler: u, A, BAC Topinkler er lige store, x y Komplementinkler er inkler, der tilsmmen er 90 u + 90 Supplementinkler er inkler, der tilsmmen er 180 (I stedet for

Læs mere

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0

INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0 INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til

Læs mere

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 1. Procent og rente Forklar hvordan man udregner procentvis ændringer i forskellige tidsrum og giv et konkret eksempel herpå. Forklar gerne med et eksempel,

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Bogstavregning. for gymnasiet og hf Karsten Juul. a a

Bogstavregning. for gymnasiet og hf Karsten Juul. a a Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med

Læs mere

Matematik B-A. Trigonometri og Geometri. Niels Junge

Matematik B-A. Trigonometri og Geometri. Niels Junge Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke

Læs mere