Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Størrelse: px
Starte visningen fra side:

Download "Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs."

Transkript

1 Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0, %=1,25 Ved omskivig fa decimaltal til pocet flyttes kommaet to pladse mod høje 23 0,234=23,4% = 0, 4035 = 40, 35% 57 Pocet af... Pocet gage... 2% af 25 = (2% 25 = ) = 0.5 som pocet af... divideet med... (omeget til %) a som pocet af b: x% af b = a x% b = a x% = a b 45 Hvo mage % e 45 af 65? Sva: 45 udgø 65 = 69.2% af 65 FREMSKRIVNING Vokse med...% Gage med (1+...%) :=...% Fø vokse med...% og blive til Efte, dvs. Efte = Fø +...% Fø = Fø + Fø = Fø(1 + ) Aftage med...% Gage med (1...%) :=...% Fø aftage med...% og blive til Efte, dvs. Efte = Fø -...%Fø = Fø + Fø = Fø(1 + ) Vækstate e vækstpocete omeget til decimalbøk og eget med foteg alt efte, om de e tale om tab () elle tilvækst (+) Femskivigs- a = 1 + = 1 ±...% fakto a e de støelse, de skal gages på de opidelige støelse fo at få støelse icl. vækst/tab (ofte buges F i stedet fo a som betegelse). Efte = a Fø elle Slut = a Stat

2 Jaua2003/ AM Retesegig - LÅN & OPSPARING 2/8 Akkumuleede pocetvise foøgelse Flee på hiade følgede femskivige etes ete - %-vis tillæg af tillæg Nå de ske flee på hiade %-vise tillæg, beeges disse jo også af tidligee tillæg, dvs. hve femskivig foetages af de umiddelbat foegåede vædi. Det svae til, at ma lade et idsat beløb stå i bake ude at hæve etee. Stat a Slut 1 = astat a Slut 2 = a 2 Stat a Slut 3 = a 3 Stat a... a Slut = a Stat Fo hve gag, de øges samme vækstate, gages med femskivigsfaktoe a = 1+, og efte på hiade følgede foøgelse med samme vækstate e de femskevet med faktoe a gage, altså i alt e fakto a a = 1+ & Slut = a Stat, hvo e atal %-vise tillæg og e vækstate Bestemmelse af ukedte støelse: 1. Stat, og atal tilskivige kedt - Slut ukedt a. Idsæt de kedte støelse i fomle b. Beeg Slut 2. Slut, og atal tilskivige kedt - Stat ukedt a. Dividé med a på begge side i fomle b. Idsæt de kedte støelse c. Beeg Stat 3. Stat, Slut, og atal tilskivige kedt - ukedt a. Dividé med Stat på begge side i fomle b. Tag de te od på begge side c. Idsæt de kedte støelse d. Beeg Slut 4. Stat, Slut, og kedt - atal tilskivige ukedt a. Dividé med Stat på begge side i fomle b. Tag log på begge side c. Bug log-egle fo potese (log a = log a d. Dividé med log a på begge side e. Idsæt de kedte støelse f. Beeg Fid paktiske eksemple, fo alle fie tilfælde (tæk fx på opspaig til jees studietu) Hyppighed af etetilskivige Nå bakee udbyde dees opspaigs-/låeodige agive de ete po ao, dvs p å, fx 6% p.a., me det e e sadhed med modifikatioe. De dele emlig de ålige pocetsats ligeligt ud på atal temie. Hvis de e mdl.. etetilskivige altså 12 temie åligt og e etesats på 6% p.a., ege de med e mdl. ete på ½%, og det lyde jo umiddelbat tilfoladeligt, me... Resultatet efte 1 å e med dee mdl. etetilskivig e Resultatet efte 1 å e med é ålig etetilskivig e Slut 12 = Stat =... Stat Slut 12 = 1.06 Stat =... Stat De eelle ålige ete e altså ikke altid de samme som de opgive omielle ålige ete.

3 Jaua2003/ AM Retesegig - LÅN & OPSPARING 3/8 Fo hvem Spae/Låe e bakees beegigsmetode e fodel? Pøv at udesøge, hvoda etetilskivigee e på opspaig/lå i foskellige bake. Udesøg etetilskivige i foskellige bake - hvo ka I få mest ud af e opspaig? Geemsitlig ete Ved de geemsitlige ete fostås de faste ete, ma skulle have haft hve temi, fo at få samme udbytte som ved vaieede ete. Da etesatsee ikke bae lægges samme temi efte temi, me de i stedet gages med 1+ hve gag, ka ma altså ikke bae lægge dem alle samme og dividee med atallet. De geemsitlige ete kaldes g og de geemsitlige femskivigsfakto a g = 1+ g Hvis de e es geemsits-etetilskivige med g svae det til e femskivig i alt med a g Hvis vi deimod tage det skidt fo skidt, svae det også til at femskive føst med a 1 = (1+ 1 ) føste gag, a 2 = (1+ 2 ) ade gag etc. og a = (1+ ) te (og sidste) gag. Dvs., at i alt e de femskevet med a 1 a 2... a. Da de to metode skulle give samme esultat, må de gælde, at a g = a 1 a 2... a. og demed også at a = a a... a 1+ = a a... a = a a... a 1 g 1 2 g 1 2 g 1 2 De e sommetide ogle smate tilbud, med vaieede ete. Pøv, om I ka støve et sådat op, og gå det igeem. OPSPARING De fides to stadadfome fo opspaig. Disse to fome ka selvfølgelig kombiees i paksis. I Alm. Femskivig De e idbetales et idskud é gag. Dette idskud stå uøt til fast ete, til hele saldoe ka hæves på é gag. He e tale om e femskivig, da foige temis saldo skal femskives med e fast fakto a = 1 +. Saldo = Idskud (1+) Hvo e temisetefod og e atal temie, hvo kapitale stå og samle ete II Auitetsopspaig De idbetales et fast idskud hve temi i temie - etefode på kotoe e fast. Saldoe vokse altså ikke bae med ete, me også med det ye idskud. Saldoe A umiddelbat efte te idskud e givet ved Saldo = Idskud (1+ ) -1

4 Jaua2003/ AM Retesegig - LÅN & OPSPARING 4/8 Bevis I: Betagt to foskellige pesoe A og B, som geemføe de samme auitetsopspaig, botset fa, at A state opspaige é temi seee ed B. Sammelig de to pesoes saldoe på det tidspukt, hvo A etop ha foetaget si sidste idbetalig 1. Giv svaet på de to? ovefo Fid to foskellige udtyk fo diffeese mellem de to saldoe, dels ved at betagte slutsaldoee efte te temi, dels ved at sammelige foskellee på saldo-bidagee temi fo temi. 2 Saldo B Saldo A = 3. Opstil de deaf følgede ligig og løs de med hesy til A. 3 1? = A, idet de te idbetali etop e idbetalt? A = A (1+ ), idet saldoe ha tukket ete é temi side sidste idbetalig B 2 3

5 Jaua2003/ AM Retesegig - LÅN & OPSPARING 5/8 Bevis II 1. Udfyld edeståede skema. N. idbetalig Idbetalt beløb... Atal etetemie... Bidag til saldoe Bestem totale af de ekelte bidag. 4 Saldo A = 3. Sæt b ude fo e paetes og aved hjælpesætige edefo på udtykket ide i paetese (a:= 1 + ) Reducé og sammelig esultatet med de øskede fomel. 6 Hjælpesætig E potesække med a som basis ha summe s = 1+ a + a a 1 a 1 = a 1 Bevis: Summe af potesække kaldes s (I) s = 1 + a + a a -2 + a Gag på begge side af = med a. 7 (II) as = 2. Tæk (I) fa (II). 8 as - s = 3. Sæt s ude fo paetes og bestem s. 9 s = 4 A = b + b(1 + ) + b(1 + ) b(1+) A = b[1 + (1 + ) + (1 + ) (1+) - 1 = b[ 1 + a + a a - 1 ] A = b a 1 a 1 6 a 1 (1 + ) A = b = b = a (1 + ) 7 as = a + a a -1 + a 8 as - s = a s(a - 1) = a - 1 s = a 1 a 1

6 Jaua2003/ AM Retesegig - LÅN & OPSPARING 6/8 LÅN De fides ligeledes to stadadpicippe fo lå, emlig emlig lå med I tilbagebetalig på é gag elle II tilbagebetalig med faste egle. I det sidste tilfælde fides de ige to stadade - a) fast ydelse elle b) fast afdag. De foudsættes fast temisete I IIa. Hvis gælde skal betales tilbage på é gag, skal såvel det låte beløb som de påløbe ete (med etes ete) tilbagebetales - det svae til e femskivig af det låte beløb (Hovedstole G) Gæld = G (1+ ) Auitetslå med fast ydelse (afdag + ete) e de absolut mest avedte låefom. Dee tilbagebetaligsfom ka betagtes som låees auitetsopspaig hos kedito. (1 + ) 1 Tilbagebetaligsauitet = y Nå låetide e udløbet skal kedito have fået sie pege (icl. ete), uaset tilbagebetaligsfom. Defo skal de opspaede auitet have samme vædi som de femskeve gæld. Altså skal ydelse tilpasse så (1 + ) 1 G(1 + ) = y (1 + ) 1 G = y (1 + ) 1 (1 + ) G = y elle y = G 1 (1 + ) Dee låefom dække også almidelige afbetaligskøb og slige gode tilbud. Det e desude de mest beyttede tilbagebetaligsfom ved bak- og keditfoeigslå. Eftehåde som gælde edbiges pga. afdagee, blive ete også mide, da det e e fast del af gælde. Da ydelse e kostat, blive afdagsdele støe. Det ha betydig ved stoe gældsposte, da etee e fadagsbeettigede til laveste skattepocet og defo qua de spaede skat delvist blive fiacieet af det offetlige, mes det ikke e tilfældet med afdagee. Reelt stige ettoydelse altså ved et sådat lå eftehåde som det afdages. I fobidelse med afbetaligskøb e det e god idé at holde sig fo øje, at gebye ikke e fadagsbeettigede (jvf. divese ete fie lå fx fa Electoic Wold). II b) Seielå med fast afdag A Da hele gælde skal afdages med faste beløb ove det aftalte atal temie, må de deles ligeligt ud på dem. Dvs. A = G Eftehåde som gælde edbiges, og etee defo midskes, blive ydelse mide. Som e kombiatio af de to tilbagebetaligsfome va det såkaldte mix-lå meget populæ i e peiode. Det va e kombiatio af de to tilbagebetaligsfome - typisk 60%auitetslå og 40% seielå. Fiduse ved dette mixlå va, at de økoomiske belastig, å skattefadag af ete va ideget, va meget tæt på at væe kostat.

7 Jaua2003/ AM Retesegig - LÅN & OPSPARING 7/8 Glose og ade yttig vide fa fiasvedee: Po ao p.a. p. å. Nomiel ete De ete, som opgives som p.a.-ete Retefod Temisete omeget til decimaltal Retefod = Nomiel ete/atal temie Auitet Egl. ålig me beyttesgeeelt, hvo de e fast idskud/ydelse p temi Temi De del af et å, hvo ete beeges. Dag, måed, kvatal, halvå elle helå Hovedstol Det låte beløb - statgælde G Rete Retebeløbet R R = Restgæld Afdag A Det beløb, gælde edbiges med Ny Restgæld = Retsgæld - A og A = y - R Ydelse y Det beløb, de betales hve temi y = A + R = A + Restgæld Restæld De del af det låte beløb, de edu ikke e afdaget Ny Restgæld = Retsgæld - A Nettoete Retebeløbet med idegig af skattefodel (ca 40%) af etefafadaget Effektiv ete Retefod omeget til eel ålig ete. Med ålig temi e omiel og effektiv ete es. Auitetslå Lå med fast ydelse og etefod y = G 1 (1 + ) Seielå Lå med fast afdag og etefod A = G Patebev Specielt auitetslå, hvo ydelse e e fast %-sats - dvs. de sidste ydelse e ikke så sto som de ade, da de bae skal dække det sidste skyldige. Et patebev fx. idebæe, at ete e 9% og ydelse e (3 + 9)% altså 12% om ået. Afbetalig Køb af fobugsgode ved fiacieig efte auitetslåspicippe Udbetalig Beløb som skal falde kotat ved køb. Restbeløbet ka så fiaciees med lå/afbetalig

8 Jaua2003/ AM Retesegig - LÅN & OPSPARING 8/8 Pocetegig og femskivig OVERSIGT pocet % p/100 = p% = = vækstate (etefod) % af p% af = p% = %-vis tillæg + p% = (1+ p%) = (1+) a:= 1+ femskivigsfakto femskivige Slut = a Stat gs. %-vis vækst = (1 + ) 1 + )... (1 + ) 1 g 1 2 (1 + mdl ) 12 = (1 + kvatal ) 4 = (1 + halvå ) 2 = 1 + å Opspaig Femskivig Egagsidskud til fast etesats Saldo = Idskud (1+) : temisetefod, : atal temie Auitetsopspaig Fast idskud b hve temi, som stå uøt til fast etesats Saldo umiddelbat efte te idskud (1+ ) -1 A = b Lå Begebe G, y, G est,, A, R = G y = A + R Auitetslå Fast ydelse y = G 1 (1 + ) Seielå Fast afdag A = G

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Praksis om miljøvurdering

Praksis om miljøvurdering Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012

Læs mere

Dimittendundersøgelse, 2009 Dato: 3. juni 2009

Dimittendundersøgelse, 2009 Dato: 3. juni 2009 Dimittendundesøgelse 2008-2009 Afspændingspædagoguddannelsen Dimittendundesøgelse, 2009 Dato: 3. juni 2009 Opsummeing af undesøgelse foetaget blandt dimittende fa Afspændingspædagoguddannelsen Datagundlag

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi

Matematikkens mysterier - på et obligatorisk niveau. 6. Matematik og økonomi Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 6. Matematik og økoomi 20% 40% 60% 40% Hvor udbredt er vaskepulveret af type A? 6. Matematik og økoomi Idhold 6.1 Procettal 2 6.2 Vejet geemsit

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Sandsynlighedsregning i biologi

Sandsynlighedsregning i biologi Om begrebet sadsylighed Sadsylighedsregig i biologi Hvis vi kaster e almidelig, symmetrisk terig, er det klart for de fleste af os, hvad vi meer, år vi siger, at sadsylighede for at få e femmer er 1/6.

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007

Atom og kernefysik Ingrid Jespersens Gymnasieskole 2007 Atom og kerefysik Igrid Jesperses Gymasieskole 2007 Baggrudsstrålig Mål baggrudsstrålige i 5 miutter. Udreg atallet af impulser i 10 sekuder. Alfa-strålig α Mål atallet af impulser fra e alfa-kilde ude

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Sprednings problemer. David Pisinger

Sprednings problemer. David Pisinger Spredigs problemer David Pisiger 2001 Idledig Jukfood A/S er e amerikask kæde af familierestaurater der etop er ved at etablere sig i Damark. E massiv reklamekampage med de to slogas vores fritter er de

Læs mere

Kort om. Potenssammenhænge. 2011 Karsten Juul

Kort om. Potenssammenhænge. 2011 Karsten Juul Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...

Læs mere

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog

Hverdagsliv før og nu. fortalt gennem Børnenes Arbejdermuseum. Arbejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Abejdsbog Hvedagsliv fø og nu fotalt gennem Bønenes Abejdemuseum Denne bog tilhøe Navn: Klasse: 1 Hvedagsliv fø og nu fotalt gennem Abejdemuseets

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj

Læs mere

Viden Om Vind oftere, stop i tide

Viden Om Vind oftere, stop i tide Vide Om Vid oftere, stop i tide Spørgsmål og svar Idhold Risici og relevas 2 Steffe Aderse Sadsyligheder 5 Per Hedegård Spørgsmål til eksperte 7 Thomas Aderse Til 8 Rasmus Østergaard Pederse E sikker strategi

Læs mere

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros

Branchevejledning. ulykker indenfor. lager. området. Branchearbejdsmiljørådet for transport og engros Brachevejledig ulykker idefor lager området Brachearbejdsmiljørådet for trasport og egros Baggrud Udersøgelser på lager- og trasportområdet har vist, at beskrivelse af hædelsesforløbet ved udfyldelse

Læs mere

p o drama vesterdal idræt musik kunst design

p o drama vesterdal idræt musik kunst design musik dama kunst design filmedie idæt pojektpocespobieenpos itpoblempovokationpodu kt p on to p ot estpobablypogessivpodu ktionpovinspomotionp otesepologpoevefipofil Vestedal Efteskole // Gl. Assensvej

Læs mere

EGA Vejledning om EGA og monotont arbejde

EGA Vejledning om EGA og monotont arbejde EGA og mootot arbejde 04/09/02 14:27 Side 1 Orgaisatioer repræseteret i Idustries Brachearbejdsmiljøråd: Arbejdstagerside: Arbejdsgiverside: Dask Metal Specialarbejderforbudet Kvideligt Arbejderforbud

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Ønskekøbing Kommune - netværksanalyse i den administrative organisation

Ønskekøbing Kommune - netværksanalyse i den administrative organisation Ønskekøbing Kommune - netvæksanalyse i den administative oganisation Hvodan vike det i paksis? Elektonisk spøgeskemaundesøgelse Svaene fa undesøgelsen kombinees med alleede eksisteende stamdata i minde

Læs mere

Impressivo. Installationsprodukter. Sæt liv i kontakterne. Få en optimal motorløsning side 28

Impressivo. Installationsprodukter. Sæt liv i kontakterne. Få en optimal motorløsning side 28 N. 6 Decembe 2009 pædede yssætig ide 8 Fuldautomatisk ESD-system øge sikkehede i sommeladet side 0 Impessivo. Istallatiospodukte. Sæt liv i kotaktee. Få e optimal motoløsig side 28 Hoses vad side 4 Kotakt

Læs mere

2014 efterår / vinter - 20140814 2 living a

2014 efterår / vinter - 20140814 2 living a 2014 efteå / vite LANERNER, galvaiseede - Vi ka ikke give evhedsgaati på at de ald uste, me de holde lagt lægee ed geemsittet... - Hægsle, itte og hak i ustfit stål. - Magetluk. quado Mico latee Galvaized

Læs mere

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1

Duo HOME Duo OFFICE. Programmeringsmanual DK 65.044.50-1 Duo HOME Duo OFFICE Programmerigsmaual DK 65.044.50-1 INDHOLD Tekiske data Side 2 Systemiformatio, brugere Side 3-4 Ligge til og slette brugere Side 5-7 Ædrig af sikkerhedsiveau Side 8 Programmere: Nødkode

Læs mere

Den Store Sekretærdag

Den Store Sekretærdag De Store Sekretærdag Tilmeld dig ide 1. oktober og få 300 kr. i rabat! De 25. ovember 2008 Tekologisk Istitut Taastrup De 8. december 2008 Mukebjerg Hotel Vejle Nia Siegefeldt, chefsekretær Camilla Miehe-Reard,

Læs mere

diagnostik Skulder fysioterapeuten nr. 05 marts 2009

diagnostik Skulder fysioterapeuten nr. 05 marts 2009 side 08 fysioteapeuten n. 05 mats 2009 diagnostik Skulde Mogens Dam e oplægsholde på fagfestivalen d. 26.-28. mats 2009. Fysioteapeut Mogens Dam ha udvalgt en ække gængse diagnostiske test fo skuldepobleme.

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning)

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning) Fagstudieodning fo tilvalgsuddannelsen i Ehvevsøkonomi (2012-odning) 1 Indledning Til denne uddannelsesspecifikke fagstudieodning knytte sig også Rammestudieodning fo Det Samfundsvidenskabelige Fakultet,

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

2. Hverdagen på danske arbejdspladser

2. Hverdagen på danske arbejdspladser 2. Hverage på aske arbejsplaser 2.1 Sammefatig 69 2.2 Daske mearbejere veres mest tilfrese 71 2.3 Daske virksomheer ivesterer i mearbejere 77 2.4 De ekeltes valg og rammere for arbejet 8 2.1 Sammefatig

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

Cisgene bygplanter. planteforskning.dk Bioteknologi

Cisgene bygplanter. planteforskning.dk Bioteknologi plantefoskning.dk Cisgene bygplante Nyttige egenskabe kan tilføes til femtidens afgøde ved hjælp af genetisk modifikation uden indsættelse af atsfemmede gene. Den nye stategi anvendes bl.a. til udvikling

Læs mere

Tredimensional grafik

Tredimensional grafik Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge

Læs mere

MuligHeden. www.ikast-brande.dk. Vær med!

MuligHeden. www.ikast-brande.dk. Vær med! www.ikast-bande.dk Væ med! Vi vil godt væe med I te månede ha bogee i Nøe Snede taget skald og skidt i eg hånd. Det e histoi om by, de også e ved at tage ejeskab fo at tage sig godt ud. Skald på bys offtlige

Læs mere

Grundlæggende Lederuddannelse

Grundlæggende Lederuddannelse Grudlæggede Lederuddaelse Grudlæggede Lederuddaelse God ledelse er vigtig for både dig og di virksomhed. Det er vigtigt for di ege persolige udviklig, for die medarbejderes motivatio og dermed i sidste

Læs mere

2012 NYE TIDER, NYE IDÉER OG NYE MÅDER 2 DIN STØTTE BETYDER ALVERDEN... 4 50% DÆMON OG 50% ENGEL 6 INSPIRATION TIL SOCIALMINISTEREN

2012 NYE TIDER, NYE IDÉER OG NYE MÅDER 2 DIN STØTTE BETYDER ALVERDEN... 4 50% DÆMON OG 50% ENGEL 6 INSPIRATION TIL SOCIALMINISTEREN Decebe 2012 NYE TIDER, NYE IDÉER OG NYE MÅDER side 2 DIN STØTTE BETYDER ALVERDEN side 4 50% DÆMON OG 50% ENGEL side 6 INSPIRATION TIL SOCIALMINISTEREN side 9 NYE tide, NYE idée og NYE åde! Hve dag kan

Læs mere

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden

Danmarks Tekniske Museum. Det kunstige øje - om mikroskopet og dets verden Danmaks Tekniske Museum O P T I K & L Det kunstige øje - om mikoskopet og dets veden Y S Til læeen At bille både e fysik og kultuhistoie, e fo mange bøn en velbevaet hemmelighed. Dette til tods fo at alle

Læs mere

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger.

Du skal redegøre for løsning af ligninger og herunder behandle omformningsreglerne for ligninger. Eksamesspørgsmål mac7100 maj/jui 013. Spørgsmål 1: Ligiger Du skal redegøre for løsig af ligiger og heruder behadle omformigsreglere for ligiger. Giv eksempler på hvorda forskellige ligigstyper (lieære,

Læs mere

14. Fagligt samarbejde matematik og samfundsfag

14. Fagligt samarbejde matematik og samfundsfag ISBN 978-87-766-494-3 4. Fagligt samarbejde matematik og samfudsfag Idholdsfortegelse Idledig Samfudsfag sat på formler II... 2 Tema : Multiplikatorvirkige... 3. Hvad er e multiplikatoreffekt?... 3 2.

Læs mere

Hvad vi gør for jer og hvordan vi gør det

Hvad vi gør for jer og hvordan vi gør det Hvad vi gør for jer og hvorda vi gør det Vi skaber resultater der er sylige på di budliie... Strategi Orgaisatio Produktio Økoomi [ Ide du læser videre ] [ Om FastResults ] [ Hvorfor os? ] I foråret 2009

Læs mere

Kommunens styringssystemer og offentlige leders krydspres eller

Kommunens styringssystemer og offentlige leders krydspres eller Kommues styrigssystemer og offetlige leders krydspres eller hvorda får du forebyggelse sat på kommues dagsorde 1 Dispositio: Præsetatio og itroduktio til emet Ledergruppes styrigsmæssige dagsorde Begreber

Læs mere

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale

Om Gear fra Technoingranaggi Riduttori Tilføjelser til TR s katalogmateriale ...when motos must be contolled Om Gea fa Technoinganaggi Riduttoi Tilføjelse til TR s katalogmateiale ISO 9 cetificeing: Technoinganaggi Riduttoi følge ISO 9 pincippene i dees kvalitetsstying. Alle dele

Læs mere

Kap 1. Procent og Rentesregning

Kap 1. Procent og Rentesregning Idhold Kp. Procet og Retesregig.... Regig med proceter.... Reteformle.... Geemsitlig retefod (vækstrte)... Kp Opsprigs- og gældsuiteter...5. Auiteter...5. Sumformel for e kvotietrække...5. Opsprigsuitet...6.

Læs mere

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit!

Vanebryderdagen 2009 Vanens magt eller magt over vanen? Valget er dit! Vaebryderdage 2009 Vaes magt eller magt over vae? Valget er dit! Osdag de 4. marts 2009 taastr u p Vaebrydere Torbe Wiese Meditatiosgurue Heig Davere Hjereforskere Milea Pekowa COACHEN Chris MacDoald Ulrik

Læs mere

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q

Situationen er illustreret på figuren nedenfor. Her er også afsat nogle eksempler: Punktet på α giver anledning til punktet Q 3, 45926535 8979323846 2643383279 50288497 693993750 5820974944 592307864 0628620899 8628034825 34270679 82480865 3282306647 0938446095 505822372 535940828 4874502 84027093 85205559 6446229489 549303896

Læs mere

Differentiation af potensfunktioner

Differentiation af potensfunktioner Hvd er mtemti? B, i-bog ISBN 978 87 766 494 3 Hjemmesideevisig: Differetitio f potesfutioer, Kpitel 4, side 76 Differetitio f potesfutioer. Pscls tret og biomilformle Vi strter med t mide om t poteser

Læs mere

Den servicemindede økonomi- og regnskabsmedarbejder

Den servicemindede økonomi- og regnskabsmedarbejder De servicemidede økoomi- og regskabsmedarbejder 25. og 26. marts 2009 Tekologisk Istitut Taastrup 16. og 17. april 2009 Tekologisk Istitut Århus Få idsigt og redskaber, der styrker service og rådgivig

Læs mere

elevblad Tommerup Efterskole Hvad bruger man en orlov til? Lærer Mark Bradford har været et år i UK sammen med hele familien.

elevblad Tommerup Efterskole Hvad bruger man en orlov til? Lærer Mark Bradford har været et år i UK sammen med hele familien. Toeup Efteskole www.th-te.dk Udgivet af elevfoeningen N. 3 septebe 2013 106. ågang elevblad Hvad buge an en olov til? Læe Mak Badfod ha væet et å i UK saen ed hele failien. NY igen So 2. åselev pøve an

Læs mere

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d

Bogstavregning - supplerende eksempler. Reduktion... 54 b Ligninger... 54 d Mtetik på AVU Eksepler til iveu F, E og D Bogstvregig - supplerede eksepler Reduktio... Ligiger... d Bogstvregig Side Mtetik på AVU Eksepler til iveu F, E og D Reduktio M gger to preteser ed hide ved -

Læs mere

Oplevelser for alle! Bowl n Fun Horsens Strandkærvej 87 8700 Horsens Tlf. 75 64 56 55 Vi har online booking - læs mere på www.bowlnfun.

Oplevelser for alle! Bowl n Fun Horsens Strandkærvej 87 8700 Horsens Tlf. 75 64 56 55 Vi har online booking - læs mere på www.bowlnfun. Oplevelse fo alle! Bowl n Fun Hosens Standkævej 87 8700 Hosens Tlf. 75 64 56 55 Vi ha online ooking - læs mee på www.owlnfun.dk 2 Familieuffet & Bowling Søndag fa kl. 17.00 Bøn unde 12 å ½ pis TILBUD Hve

Læs mere

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De

Her svigtes de ældre mest. Fokus. Dokumentation: Ældre patienter behandles meget forskelligt alt efter, hvor i landet de bor. De 50+ sygdomme Nyhedsmagasi om forebyggelse og behadlig magasiet Overaktiv blære er e tabubelagt sygdom Side 8 Geidlæggelser for dehydrerig Regio Hovedstade 26,2% Nyt middel mod forhøjet blodtryk Omkrig

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Plejebrochure. Gør dit bassin til det bedste

Plejebrochure. Gør dit bassin til det bedste Plejebrochure Gør dit bassi til det bedste Er du god til at vedligeholde dit svømmebassi? Hvis ikke, så lad os hjælpe dig. Med dee brochure vil du hurtigt blive e ekspert. Ethvert svømmebassi ka opå krystalklart

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

SUNDHEDSHUS TOLDBODEN, VIBORG

SUNDHEDSHUS TOLDBODEN, VIBORG SUNDHEDSHUS TOLDODEN, VIORG [Et modene flebugehus med suveæn placeing] OK GROUP OFFIEPRK TOLDODEN SPRRE GDE Inde ingvej Tog busstation Toldbodgade Regionshospital, Vibog E47 Udendøs ophold foan kantinen

Læs mere

Rentesregning. Dine drømme er kun et klik væk... Lån op til 25.000 kr. nu

Rentesregning. Dine drømme er kun et klik væk... Lån op til 25.000 kr. nu Rentesregning Vi skal kigge på hvordan en lille rente kan have stor betydning på den samlede gæld. Vi skal kigge på lånetyper og opsparings samt gældsformlerne. Version 2.1 Sct. Knud Henrik S. Hansen Dine

Læs mere

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej VORDINGBORG KOMMUNE N Fægegådsvej Bogøvej Kalvøvej LOKALPLAN NR. B-24.2 Boligomåde ved Kalvøvej Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt til at

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER med avedelse af TI 89 og Excel 8 5 9 6 3 0 Histogram for ph 6,9 7, 7,3 7,5 7,7 7,9 ph. udgave 0 FORORD Der er i dee bog søgt at give letlæst og askuelig

Læs mere

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n))

Et træ med x blade.. h lg(x) DVS. decision-træet vil en maks højde på lg n! blade. lg(n!) >= n*lg(n) -1.5n = Ө(n*lg(n)) DM19 1. Iformatio-theoretic lower bouds kap. 8 + oter. Ma ka begræse de teoretiske græse for atallet af sammeligiger der er påkrævet for at sortere e liste af tal. Dette gøres ved at repræsetere sorterig-algoritme

Læs mere

bioteket Om aftenen er Bioteket et iøjenfaldende fyrtårn for Smag på Århus med frisk mynte til din Moijito.

bioteket Om aftenen er Bioteket et iøjenfaldende fyrtårn for Smag på Århus med frisk mynte til din Moijito. bteet I Natue fdes de e le le elle sape æse. I ødet ed eeset blev atue tlpasset dyet sle æe. Bteet fdle dette øde, ed et atets udty de ved hjælp af le le plate æe, sabe et løst dffust u. E vea fe f e æse.

Læs mere

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit

Grundlæggende matematiske begreber del 1 Mængdelære Talmængder Tal og regneregler Potensregneregler Numerisk værdi Gennemsnit Grudlæggede mtemtiske begreber del 1 Mægdelære Tlmægder Tl og regeregler Potesregeregler Numerisk værdi Geemsit x-klssere Gmmel Hellerup Gymsium 1 Idholdsfortegelse MÆNGDELÆRE... 3 TAL... 9 De turlige

Læs mere

Kvalitetsmål til On-line algoritmer

Kvalitetsmål til On-line algoritmer Istitut for Matematik og Datalogi Bachelorprojekt Kvalitetsmål til O-lie algoritmer Forfatter: Christia Kuahl Vejleer: Joa Boyar Jauary 1, 2011 Cotets 1 Ileig 3 2 Problemet 3 3 Algoritmer og variater 4

Læs mere

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter:

Vi ser altså, at der er situationer, hvor vi ikke kan afgøre, om vi befinder os i et tyngdefelt eller langt ude i rummet fjernt fra alle kræfter: 5 Tyngdekaften Nu hvo vi (fohåbentlig) ha fået et begeb om ummets og tidens sammenflettede natu, skal vi vende tilbage til en ting, som vi ganske kot blev konfonteet med i begyndelsen af foige kapitel.

Læs mere

MATAS A/S CLUB MATAS TELIA AT RYSTE TRÆET OG SAMTIDIG GRIBE ALLE DE OVERMODNE FRUGTER! TDC TDC KUNDESLØJFE MÅLBAR EFFEKT MED ENKLE MIDLER

MATAS A/S CLUB MATAS TELIA AT RYSTE TRÆET OG SAMTIDIG GRIBE ALLE DE OVERMODNE FRUGTER! TDC TDC KUNDESLØJFE MÅLBAR EFFEKT MED ENKLE MIDLER RELATIONSSKABEREN Relatiosskabde aktivitet so del af salet CRM-stategi ed fokus på at fastholde og udbygge lagvaige elatio til istitutios og viksoheds kud, itesst ell edabejde. D typisk tale o gtage påvikig

Læs mere

AUGUST v. Margit Ingtoft, María Muniz Auken,

AUGUST v. Margit Ingtoft, María Muniz Auken, SOMMER-, WEEKEND- & EFTERÅRSKURSER 2007 SOMMERKURSER AUGUST v. Margit Igtoft, María Muiz Auke, JUNI og / eller Sommer 2007 Jui (A) + August (B) Dato: 5/6 28/6 og eller 7/8 30/8: MUY BARATO: Pris pr. hold

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE NÆSTVEDVEJ N ALGADE MARIENBERGVEJ LOKALPLAN NR. C-2.2 Banegådsomådet, Vodingbog By Vodingbog august 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt

Læs mere

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer

Program. 08:30 Indtjekning med kaffe, te og morgenbrød 09:00 Indledning ved dirigenten. 09.10 It-organisationens udfordringer Program 08:30 Idtjekig med kaffe, te og morgebrød 09:00 Idledig ved dirigete Peter Høygaard, parter Devoteam Cosultig A/S 09.10 It-orgaisatioes udfordriger 2009 få mere for midre og spar de rigtige steder

Læs mere

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier

FUNKTIONER del 2 Rentesregning Eksponentielle udviklinger Trigonometriske funktioner Potensfunktioner Polynomier FUNKTIONER del Retesregig Ekspoetielle udvikliger Trigoometriske fuktioer Potesfuktioer Polyomier -klssere Gmmel Hellerup Gymsium Idhold RENTESREGNING... 3 Kotiuert rete... EKSPONENTIELLE UDVIKLINGER...

Læs mere