Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen

Størrelse: px
Starte visningen fra side:

Download "Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen"

Transkript

1 Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte? Såfemt de ønskes et bestemt fobug i femtiden, hvo meget (hvo lang tid) skal de da spaes op? Hvo meget skal de betales i femtiden, hvis de ønskes et bestemt fobug i dag? Hvilke centale paamete indgå i sådanne beegninge? Hvad e en annuitet, og hvoledes beegnes vædien af denne? Heefte kan vi analysee poblemstillinge som Vudeing af eal investeinges fodelagtighed Beegning af afkast på finansielle investeinge Opgøelse af finansieingsomkostninge fo lån Kan vi f.eks. finde et simpelt mål fo omkostningen ved et lån? 2 / 49

2 Ovesigt / 49 Håndteing af betalingstidspunkte Håndteing af betalingstidspunkte Renten Gundfoudsætninge Betalinge høende til økonomiske dispositione fofalde ofte på foskellige tidspunkte Ønske: Opgøelse af vædi til et givent tidspunkt af betalinge på foskellige tidspunkte Opdel tiden i ækvidistante tidsintevalle: temine Opdel således at betalingene fofalde på tidspunkte, de adskille teminene. F.eks. å, månede, sekunde Tidspunkt n - 1 n Tid Temins n n 6 / 49

3 Renten Håndteing af betalingstidspunkte Renten Gundfoudsætninge Renten e en betaling fo at kunne disponee ove en kapitel i en given peiode Nomees ofte, således at den udtykkes p. kone i en temin: entesats, betegnes. Rentesats: Betaling fo at kunne disponee ove en enhed i en temin Omegnes ofte i pocentstøelse Altså e enten (entebeløbet) det beløb, de betales p. temin, og den kan bestemmes som det foentede beløb (kapitalen) multipliceet med entesatsen Test: Bestem enten på et lån med en entesats på = 5% (p.a. opgjot med ålig entetilskivning) og hovedstol H = k. 8 / 49 Håndteing af betalingstidspunkte Renten Gundfoudsætninge Man tale ofte om foskellige entesatse Nominel ente: Rentesats udtykt i nominelle teme (dvs. i løbende pise) Realente: Rentesats udtykt i eale teme (dvs. i købekaft enhede) Effektiv ente: Rentesats, hvo entes-ente effekte e medegnet Nulkuponente: Rentesats mellem nu og et femtidigt tidspunkt Fowadente: Rentesats mellem to femtidige tidspunkte Faktoe, de påvike entens støelse Inflationstakten Fishe elationen Reale økonomiske fohold høj/lav konjunktu Intenationale påvikninge lille åben økonomi med fast valutakus Skattemæssige fohold efte-skat betalinge Risikomæssige fohold kedit isiko og pecautionay savings 9 / 49

4 Gundfoudsætninge Notation notation n A 0 A n Håndteing af betalingstidspunkte Renten Gundfoudsætninge beskivelse teminslig entesats antal temine nutidigt beløb femtidigt beløb Antagelse 1 entesatsen e konstant ove tid 2 tidsintevallet e et helt antal temine 3 enten tilskives kapitalen ved slutningen af hve temin (udbetales ikke løbende) 4 den opindelige kapital samt tilskevne ente foentes med den foudsatte entesats. De føste to antagelse vil blive slækket siden hen. 11 / 49 Femdiskonteet vædi Tilbagediskonteet vædi : Centale finansielle poblemstillinge i fobindelse med en betaling Eksempel: Hvilket altenativ foetækkes? k. i dag k. om et å Hvis jeg foetage en betaling i dag, hvad e så vædien af denne betaling på et givet femtidigt tidspunkt? Femdiskonteet vædi Hvo meget skal jeg betale i dag, såfemt jeg ønske et givent beløb på et givent tidspunkt i femtiden? Tilbagediskonteet vædi Renten høende til betalingen e væsentlig Hvad e den koekte entesats i sådanne udegninge? 14 / 49

5 Femdiskonteet vædi Femdiskonteet vædi Tilbagediskonteet vædi A n A 0 Tid Tidspunkt n - 1 n Fomål: Bestem femtidig vædi af nutidigt beløb Nutidigt beløb og entebetaling give efte n temine femtidigt beløb A 0 + R = A n Rentetilskivning : entesats p. temin n: antal temine Hvoledes bestemme vi entebetalingen? Afhænge af foentningsfaktoen (1 + ) n A n = A n 1 +A n 1 = A n 1 (1+) = A n 2 (1+) 2 =... = A 0 (1+) n Demed R = A n A 0 = [ (1 + ) n 1 ] A 0 Tavleeksempel 16 / 49 Foentningsfakto Femdiskonteet vædi Tilbagediskonteet vædi Femdiskonteet vædi 8,00 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00 Foentningsfakto Temine = 1% = 5% = 10% 17 / 49

6 Ydeligee aspekte Femdiskonteet vædi Tilbagediskonteet vædi Gennemgåes på tavlen: Vaieende entesatse: eksempel på tavlen Antal temine Hvo mange temine skal A 0 foentes (givet ) fo at blive til A n? Vi vise n = ln(an/a 0) ln(1 + ) Vælg heltallet støe end det netop beegnede. Rentesats Hvilken entesats bevike, at A 0 foentes til A n i løbet af n temine? Vi vise ( ) 1 An n = 1 A 0 18 / 49 Patielle effekte Femdiskonteet vædi Tilbagediskonteet vædi Gennemgåes på tavlen: Effekt på A n af maginal ænding i en af paametene A 0,, n kaldes patielle effekte Geneelt kan en maginal ænding fo en funktion f (x) vudees ved en såkaldt 1. odens Tayloudvikling f (x 0 ) f (x 0 ) x Vi ha f (x) = A n (A 0,, n) = A 0 (1 + ) n. Ænding i initialt beløb: A n = (1 + ) n A 0 Ænding i entesats: A n A 0 n(1 + ) n 1 Ænding i antal temine: A n A 0 (1 + ) n ln(1 + ) n E fotegnene på ændingene fonuftige? 19 / 49

7 Tilbagediskonteet vædi Femdiskonteet vædi Tilbagediskonteet vædi Ønske at bestemme vædien i dag af et femtidigt beløb nutidsvædien Vi ha at så A n = (1 + ) n A 0 A 0 = (1 + ) n A n (1 + ) n benævnes diskonteingsfaktoen cental byggesten ikke mindst ved investeingskalkule og ande finansielle beslutninge Give vædien i dag af at modtage 1 k. (enhed) om n temine, hvis enten e 21 / 49 Diskonteingsfakto Femdiskonteet vædi Tilbagediskonteet vædi Diskonteingsfakto Tilbagediskonteet vædi 1,20 1,00 0,80 0,60 0,40 0,20 0, Temine = 1% = 5% = 10% 22 / 49

8 Femdiskonteet vædi Tilbagediskonteet vædi Effekt af paamete på diskonteingsfaktoen Rentesatsens effekt på diskonteinsfaktoen Patiel ænding i : Fo fås: (1 + ) n 0 Fo 0 fås: (1 + ) n 1 (1 + ) n = n(1 + ) (n+1) < 0 Antal temines effekt på diskonteingsfaktoen: Patial ænding i n n (1 + ) n = ln(1 + )(1 + ) n < 0 Fo n fås: (1 + ) n 0 Fo n 0 fås: (1 + ) n 1 23 / 49 Centale spøgsmål geneelt Hvoledes kan vi håndtee en situation, hvo vi ha en ække af sammenhøende betalinge betalingsække? Optæde ofte ved såvel eal- som finansielle investeinge E visse betalingsække ofte foekommende? Hvodan bestemme vi f.eks. nutidsvædien af en sådan betalingsække? 26 / 49

9 Nutidsvædi af en betalingsække geneelt b n (1 + ) -n b t (1 + ) -t b 3 (1 + ) -3 b 2 (1 + ) -2 b 1 (1 + ) -1 b 2 b t b n b 1 b 3 Tidspunkt t n Tid 28 / 49 geneelt Betalingsække: Et sæt af sammenhøende enkeltbetalinge b t, de fofalde i tidspunktene t {1, 2,..., n}. Akkumuleet vædi af betalingsækken på tidspunkt n: S n = b t (1 + ) n t t=1 Nutidsvædien af betalingsækken: S 0 = b t (1 + ) t t=1 Vædi af betalingsækken på henføelsestidspunktet τ: S τ = S 0 (1 + ) τ = b t (1 + ) t (1 + ) τ = b t (1 + ) τ t Eksempel i Excel t=1 t=1 29 / 49

10 geneelt - sædeles vigtigt specialtilfælde! Antagelse: 1 alle betalinge e lige stoe: b 1 = b 2 =... = b n = b 2 ækvidistante temine Akkumuleet vædi af annuitet (kvotientække med kvotienten (1 + )): hvo S n = t=1 ( ) b (1 + ) n t = b (1 + ) n t t=1 ] = b [1 + (1 + ) + (1 + ) (1 + ) n 1 = b s s = (1 + )n 1 Opspaingsfakto 31 / 49 Opspaingsfaktoen geneelt Akkumuleet vædi af annuitet 70,00 60,00 50,00 40,00 30,00 20,00 10,00 0,00 Opspaingsfakto Temine = 1% = 5% = 10% 32 / 49

11 Ydeligee aspekte Antal temine: geneelt Hvo mange temine skal de opspaes fo at få et bestemt S n? Vi ved Det følge, at S n = b s n = = b (1 + )n 1 ln(1 + Sn b ) ln(1 + ), hvo n opundes til næmeste heltal. Rentesats Kan vi bestemme den entesats, de fo en givet fast betaling b og antal temine n give et bestemt disponibelt beløb S n? En sådan entesats kaldes fo den intene ente ( afsnit 6) Kan ofte ikke løses analytisk, men kun numeisk (Goal Seek i Excel). 33 / 49 geneelt Nutidsvædi En annuitets nutidsvædi kan bestemmes som: den tilbagediskonteede vædi af annuitetens enkeltbetalinge, S 0 = b(1 + ) t = b (1 + ) t t=1 t=1 den tilbagediskonteede akkumuleede vædi S 0 = (1 + ) n S n = b(1 + ) n s I begge tilfælde fås at nutidsvædien e givet ved = b(1 + ) n (1 + )n 1 α S 0 = b kaldes fo annuitetsfaktoen 1 (1 + ) n = b α nutidsvædien af en annuitet med en konstant betaling på 1 k. summen af diskonteingsfaktoe med samme (diskonteings-)ente 34 / 49

12 sfaktoen geneelt sfakto annuitet20,00 Nutidsvædi af annuitet 18,00 16,00 14,00 12,00 10,00 8,00 6,00 4,00 2,00 0, Temine = 1% = 5% = 10% 35 / 49 geneelt Gænsevædie fo annuitetsfaktoen Fo 0 kan det vises at (bug l Hospitals egel) n > 0 : α = 1 (1 + ) n n Fo kan det vises at n > 0 : α = 1 (1 + ) n 0 Fo n kan det vises at > 0 : α = 1 (1 + ) n 1 kapitaliseingsfaktoen Eksempel: Simpel aktievudeing (Godons fomel) En aktie udbetale fast 21 k. i udbytte, = 5%, n = S 0 = b = 21 0,05 = 420 k. 36 / 49

13 Ydeligee aspekte Antal temine: geneelt Det nødvendige antal temine fo at opnå en nutidsvædi S 0 med betaling b og entesats e givet ved ( ) ln 1 S 0 b n = ln(1 + ) Husk at opund til næmeste heltal! Teminslig betaling Fo en given nutidsvædi S 0, antal temine n og entesats kan den konstante teminslige betaling b bestemmes som α 1 = 1 (1+) n b = S 0 α 1 kaldes kapitalindvindingsfaktoen. 37 / 49 Kapitalindvindingsfaktoen geneelt 1,20 Kapitalindvindingsfakto Teminslig betaling 1,00 0,80 0,60 0,40 0,20 0, Temine = 1% = 5% = 10% 38 / 49

14 Y t1 Y t2 Y tn 1 Y tn Illustation geneelt En ydelsesække kan beskives vha. et diagam, de illustee ydelsenes kendte støelse og kendte tidsmæssige placeing (teminstidspunkte): i dag/valø 0 t 1 t 2 t n 1 t n tid Valødato = den dag hvo handlen gennemføes (typisk 3 bøsdage efte handelsdagen) Y t e ydelsen på et teminstidspunkt t {t 1, t 2,..., t n } og n e antal esteende temine. 40 / 49 geneelt Hvad e et lån? (se Viksomhedens finansieing, afsnit 4.1) Et låns ydelse bestå af afdag og entebetaling Y j = AFD j + R j } {{ } }{{} afdag ente j = 1, 2,..., n hvo afdaget nedbinge det lånte beløb (hovedstolen), mens entebetalingen kompensee långive fo at have ydet lånet. Restgælden til tid j betegnes med G j, mens den teminslige nominelle ente betegnes med. Da lånet optages til tid t = 0 e dets hovedstol givet ved estgælden til tid 0, dvs. G 0. I voes eksemple sætte vi som egel G 0 = / 49

15 slån geneelt Kendetegn: Konstant ydelse, Y j = Y fo alle j = 1, 2,..., n Y Y Y Y i dag/valø 0 t 1 t 2 t n 1 t n tid Ydelsen bestemmes så hovedstolen netop foentes med, dvs. G 0 = Y j (1 + ) j = Y j=1 (1 + ) j = Y α n, j=1 hvo α n = 1 (1+) n. Med G 0 = 100 fås altså Y = 100 α n = 100α 1 = 100 n 1 (1 + ) n 42 / 49 slån - fotsat Restgælden efte j temine G j = k=j+1 geneelt Y k (1 + ) (k j) = Y α n j, da lånet netop e en annuitet med n j esteende temine. Rentebetalingen i temin j + 1 R j+1 = G j = Y α n j = (1 + ) (n j) 1 (1 + ) (n j) 1 (1 + ) n = (1 + ) n Afdaget i temin j + 1 ] AFD j+1 = Y R j+1 = Y [1 α n j = Y (1+) (n j) = (1+)AFD j 43 / 49

16 geneelt Eksempel på ydelsesække fo et annuitetslån En fiktiv 8% annuitetsobligation med udløb 15/ og én ålig temin vil have følgende ydelsesække den 20/3 2012: Temin Afdag Rentebetaling Ydelse ,05 8,00 25, ,41 6,64 25, ,88 5,16 25, ,47 3,57 25, ,19 1,86 25,05 Se Excelfilen LektionA1.xlsx 44 / 49 Stående lån geneelt Kendetegn: ingen løbende afdag, AFD j = 0 fo alle j = 1, 2,..., n 1 og AFD n = G 0 = 100. Rentebetaling: R j = R = G 0 = 100 fo alle j = 1, 2,..., n. Ydelse: Y j = AFD j + R j. 100(1 + ) i dag/valø 0 t 1 t 2 t n 1 t n tid 45 / 49

17 geneelt Eksempel på ydelsesække fo et stående lån Obligationen 4% Danske Stat STL 2017 (fondskode DK ) e et 4% (inkonvetebat) stående lån, som e udstedt af den danske stat, ha én ålig temin og udløbe 15/ Ydelsesækken p. 20/ (p. 100 k. nominel vædi) e defo: Temin Afdag Rentebetaling Ydelse ,00 4, ,00 4, ,00 4, ,00 4, ,00 4, ,00 104,00 Se Excelfilen LektionA1.xlsx 46 / 49 Seielån geneelt Kendetegn: konstante afdag, AFD j = AFD = 100 n fo alle j = 1, 2,..., n. Restgælden efte j temine G j = 100 j AFD = 100 ( 1 j ) n Rentebetalingen i temin j + 1 R j+1 = G j = 100 ( 1 j ) n Ydelsen på tidspunkt j Y j = AFD j + R j = 100 [ ( 1 n + 1 j 1 )] n 47 / 49

18 geneelt Eksempel på ydelsesække fo et seie lån En fiktiv 12% S 2015 obligation, de e en seie obligation, ha én ålig temin og udløbe den 15/ P. 20/ e de te esteende temine, så ydelsesækken (p. 100 k. nominel vædi) e: Temin Afdag Rentebetaling Ydelse ,33 12,00 45, ,33 8,00 41, ,33 4,00 37,33 Se Excelfilen LektionA1.xlsx 48 / 49 geneelt Uamotisable lån/evigtløbende annuitet Vi så tidligee, at > 0 : α 1 nå n Ydelsen fo et evigtløbende annuitet lån blive defo Y = 100 α 1 = 100 Det vil sige, at de betales kun ente af estgælden lånet afdages aldig, thi fo alle j = 1, 2,.... R j = 100 AFD j = 0 Y j = AFD j + R j = 100 opstå som gænsetilfældet n fo alle 3 standadlån. 49 / 49

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.

Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år. 16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode

Læs mere

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Praksis om miljøvurdering

Praksis om miljøvurdering Paksis om miljøvudeing Miljøvudeingsdage 2015 Nyee paksis på miljøvudeingsomådet Flemming Elbæk Flemming Elbæk, advokat, HD(Ø) Ansættelse: Advokatfuldmægtig, 2006-2008 Juist, Miljøministeiet, 2008-2012

Læs mere

Erhvervs- og Selskabsstyrelsen

Erhvervs- og Selskabsstyrelsen Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak

Læs mere

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs.

Januar2003/ AM Rentesregning - LÅN & OPSPARING 1/8. Aftager med...% Gange med (1...%) r:=...% Før aftager med...% og bliver til Efter, dvs. Jaua2003/ AM Retesegig - LÅN & OPSPARING 1/8 PROCENT Po cet betyde p. 100" altså hudededele p% = p 100 Decimaltal Ved omskivig fa pocet til decimaltal flyttes kommaet to pladse mod veste 5%=0,05 0,1%=0,001

Læs mere

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016

Regional Udvikling, Miljø og Råstoffer. Jordforurening - Offentlig høring Forslag til nye forureningsundersøgelser og oprensninger 2016 Regional Udvikling, Miljø og Råstoffe Jodfouening - Offentlig høing Foslag til nye foueningsundesøgelse og opensninge 2016 Decembe 2015 Food En jodfouening kan skade voes fælles gundvand, voes sundhed

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet

Pension og Tilbagetrækning - Ikke-parametrisk Estimation af Heterogenitet Pension og Tilbagetækning - Ikke-paametisk Estimation af Heteogenitet Søen Anbeg De Økonomiske Råds Sekataiat, DØRS Pete Stephensen Danish Rational Economic Agents Model, DREAM DREAM Abedspapi 23:2 foeløbig

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

VORDINGBORG KOMMUNE. Butiksområde ved Bryggervangen LOKALPLAN NR. C-15.2. 20 kr. BØDKERVÆNGET BRYGGERVANGEN VÆVERGANGEN VALDEMARSGADE

VORDINGBORG KOMMUNE. Butiksområde ved Bryggervangen LOKALPLAN NR. C-15.2. 20 kr. BØDKERVÆNGET BRYGGERVANGEN VÆVERGANGEN VALDEMARSGADE VORDINGBORG KOMMUNE N BØDKERVÆNGET VÆVERGANGEN BRYGGERVANGEN VALDEMARSGADE LOKALPLAN NR. C-15.2 Butiksomåde ved Byggevangen Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger

3.0 Rørberegninger. VIDENSYSTEM.dk Bygningsinstallationer Varme Fordelingssystem 3.0 Rørberegning. 3.1 Rørberegningers forudsætninger VIDENSYSTEM.dk Bygningsinstallatione Vae Fodelingssyste 3.0 Røbeegning 3.0 Røbeegninge 3.1 Røbeegningens foudsætninge 3. Tyktabsbeegning geneelt 3.3 Paktiske hjælpeidle 3.4 Beegningspincip fo tostengsanlæg

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser.

praktiske. Der er lavet adskillige undersøgelser at skelne i mellem: ulaboratorieundersøgelser og ufeltundersøgelser. Betonø ha den støste vandføingskapacitet Et afløbssystems opgave e at lede vand samt uenhede til ensningsanlæg elle ecipient. Evnen til at gøe dette afhænge af systemets hydauliske egenskabe næmee betegnet

Læs mere

Rentesregning: Lektion A2. Intern rente, Flere rentetilskrivninger, Excel. Introduktion. Peter Ove Christensen. Forår 2012

Rentesregning: Lektion A2. Intern rente, Flere rentetilskrivninger, Excel. Introduktion. Peter Ove Christensen. Forår 2012 Rentesregning: Lektion A2, Flere rentetilskrivninger, Excel Peter Ove Christensen Forår 2012 1 / 26 Definition Hvilken rentesats giver vores betalingsrække en ønsket værdi? Denne rentesats kaldes for den

Læs mere

CO 2. -regnskab For virksomheden Jammerbugt Kommune

CO 2. -regnskab For virksomheden Jammerbugt Kommune -egnskab Fo viksomheden Jammebugt Kommune Fosidebilledet vise Ryå, de gå ove sine bedde -egnskab fo Jammebugt Kommune Jammebugt Kommune indgik d. 9. oktobe 2009 en klimakommuneaftale med Danmaks Natufedningsfoening.

Læs mere

Wear&Care Brugervejledning. A change for the better

Wear&Care Brugervejledning. A change for the better A change fo the bette Intoduktion Wea&Cae e en smat løsning, de give mulighed fo at følge fugtniveauet i bleen, så den kan skiftes efte behov. Infomationen gå fa en sende på bleen til modtageens smatphone

Læs mere

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG

LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG LOKALPLAN 14-027 CENTER- OG BOLIGOMRÅDE VED JØRGEN STEINS VEJ, VESTBJERG AALBORG KOMMUNE TEKNISK FORVALTNING JUNI 2001 Vejledning En lokalplan fastlægge bestemmelse fo, hvodan aeale, nye bygninge, beplantning,

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE N VOLDGADE ALGADE BAISSTRÆDE LOKALPLAN NR. C-16.1 Centeomåde mellem Algade og Voldgade, Vodingbog Vodingbog juni 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets

Læs mere

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber.

Kap. 1: Logaritme-, eksponential- og potensfunktioner. Grundlæggende egenskaber. - 4 - Kap. : Logaitme-, eksponential- og potensfunktione. Gundlæggende egenskabe... Logaitmefunktione. Definition... Ved en logaitmefunktion fostå vi en funktion f, som opfylde følgende te kav: ) Dm(f)

Læs mere

Claus Munk. kap. 1-3. Afdeling for Virksomhedsledelse, Aarhus Universitet Esben Kolind Laustrup

Claus Munk. kap. 1-3. Afdeling for Virksomhedsledelse, Aarhus Universitet Esben Kolind Laustrup Claus Munk kap. 1-3 1 Dagens forelæsning Grundlæggende introduktion til obligationer Betalingsrækker og låneformer Det danske obligationsmarked Pris og kurs Effektive renter 2 Obligationer Grundlæggende

Læs mere

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007

AKTUEL ANALYSE. Nye tider på boligmarkedet 24. januar 2007 AKTUEL ANALYSE Nye tie på boligmakeet 24. janua 2007 De høje pisstigningstakte på boligmakeet e løjet af, og meget tale fo en fotsat afæmpning i en kommene ti. Sien boligmakeet vente i 1993, e pisene vokset

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Trivselsundersøgelse 2010

Trivselsundersøgelse 2010 Tivselsundesøgelse, byggeteknike, kot-og landmålingseknike, psteknolog og bygni (Intenatal) Pinsesse Chalottes Gade 8 København N T: Indhold Indledning... Metode... Tivselsanalyse fo bygni... Styke og

Læs mere

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen

Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...

Læs mere

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( )

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( ) Kvantemekanik 0 Side af 9 Bintatomet I Sfæisk hamoniske Ifølge udtyk (9.7) e Lˆ Lˆ og de eksistee således et fuldstændigt sæt af = 0 samtidige egenfunktione fo ˆL og L ˆ de som antydet i udtyk (9.8) kan

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom

Læs mere

Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning

Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning Livstidssundhedsomkostninge fo ygee og ldig-ygee Ålige omkostninge ved pssiv ygning Konsulentppot udbejdet til Hjetefoeningen f pojektlede Susnne Reindhl Rsmussen, egotepeut, MPH DSI Institut fo Sundhedsvæsen,

Læs mere

p o drama vesterdal idræt musik kunst design

p o drama vesterdal idræt musik kunst design musik dama kunst design filmedie idæt pojektpocespobieenpos itpoblempovokationpodu kt p on to p ot estpobablypogessivpodu ktionpovinspomotionp otesepologpoevefipofil Vestedal Efteskole // Gl. Assensvej

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

247. Kirkens budget 2012

247. Kirkens budget 2012 Dagsoden til mødet i Økonomiudvalget den. septembe 011 kl. 09:30 i Mødelokale,1. sal, Nd. Kajgade Pkt. Tekst Åbne dagsodenpunkte Kikens budget 01 Budgetfoslag fo 01 og oveslagsåene 013-015 (. behandling)

Læs mere

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE

VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Modul 0: Speciale 0. semeste, cand.oecon Aalbog Univesitet Afleveet d. 30. maj 202 VURDERING AF LØSNINGSFORSLAG I FORBINDELSE MED DEN EUROPÆISKE STATSGÆLDSKRISE Vejlede: Finn Olesen Skevet af Henik Hanghøj

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI 4 timers skriftlig eksamen, 10-14, tirsdag 1/6 2004. Ingen hjælpemidler (blyant & lommeregner dog tilladt).

Læs mere

Etiske dilemmaer i fysioterapeutisk praksis

Etiske dilemmaer i fysioterapeutisk praksis side 06 fysioteapeuten n. 06 apil 2008 AF: FYSIOTERAPEUT, PH.D.-STUDERENDE JEANETTE PRÆSTEGAARD j.paestegaad@oncable.dk Foto: GITTE SKOV fafo.fysio.dk Etiske dilemmae i fysioteapeutisk paksis Hvis vi ikke

Læs mere

Dimittendundersøgelse, 2009 Dato: 3. juni 2009

Dimittendundersøgelse, 2009 Dato: 3. juni 2009 Dimittendundesøgelse 2008-2009 Afspændingspædagoguddannelsen Dimittendundesøgelse, 2009 Dato: 3. juni 2009 Opsummeing af undesøgelse foetaget blandt dimittende fa Afspændingspædagoguddannelsen Datagundlag

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

Psykisk arbejdsmiljø (kort) udarbejdet af NFA (AMI)

Psykisk arbejdsmiljø (kort) udarbejdet af NFA (AMI) Psykisk abejdsmiljø (kot) udabejdet af NFA (AMI) Navn, dato, å Hvilken afdeling abejde du i? Afdelingens navn De følgende spøgsmål handle om dit psykiske abejdsmiljø. Sæt et kyds ud fo hvet spøgsmål ved

Læs mere

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord

Helikopterprojekt Vejprospektering mellem Sisimiut og Sønderstrømfjord Helikoptepojekt Vejpospekteing mellem Sisimiut og Søndestømfjod 7.-. august 006 Hold Emil Stüup-Toft, s060480 Vivi Pedesen, s06048 János Hethey, s03793 Moten Bille Adeldam, s00334 Rettelsesblad til tykt

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE NÆSTVEDVEJ N ALGADE MARIENBERGVEJ LOKALPLAN NR. C-2.2 Banegådsomådet, Vodingbog By Vodingbog august 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt

Læs mere

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )

( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( ) Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt

Læs mere

Frivillige dyrkningsaftaler i indsatsområder

Frivillige dyrkningsaftaler i indsatsområder Miljøpojekt N. 812 2003 Fivillige dykningsaftale i indsatsomåde Gundlag og mulighede belyst ud fa kvælstofpoblematikken Egon Noe og Andes Højlund Nielsen Danmaks JodbugsFoskning Helene Simoni Thoup og

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

VORDINGBORG KOMMUNE. Boligområde "Falunparken" LOKALPLAN NR. B-25.2. 20 kr. FALUNVEJ PRINS JØRGENS ALLÈ KØBENHAVNSVEJ

VORDINGBORG KOMMUNE. Boligområde Falunparken LOKALPLAN NR. B-25.2. 20 kr. FALUNVEJ PRINS JØRGENS ALLÈ KØBENHAVNSVEJ VORDINGBORG KOMMUNE N PRINS JØRGENS ALLÈ FALUNVEJ KØBENHAVNSVEJ LOKALPLAN NR. B-25.2 Boligomåde "Falunpaken" Vodingbog mats 2005 20 k. Rettelsesblad til Lokalplan B-25.2 Lokalplan C.17.24.01 Vaehus ved

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

1. Indledning... 1 2. Lineær iteration... 2

1. Indledning... 1 2. Lineær iteration... 2 Hvad e matematik? B, i og ISBN 978 87 766 494 3 Pojekte: Kapitel Pojekt.3 Lieæe Iteatiospocesse Idhold 1. Idledig... 1 2. Lieæ iteatio... 2 2.1 Lieæ vækst... 2 2.2 Ekspoetiel vækst... 2 2.3 Foskudt ekspoetiel

Læs mere

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

Appendiks B: Korrosion og restlevetid for trådbindere

Appendiks B: Korrosion og restlevetid for trådbindere Appendiks B: Koosion og esleveid fo ådbindee I de følgende omales koosionspocessene fo ådbindee og hvodan man beegne esleveiden fo en koodee ådbinde. Tådbindee ha i idens løb væe udfø af: messing (en legeing

Læs mere

Uddannelsesordning for uddannelsen til Gastronom

Uddannelsesordning for uddannelsen til Gastronom Uddannelsesodning fo uddannelsen til Gastonom Udstedelsesdato: 9. juni 2011 Udstedt af Det faglige Udvalg fo Gastonomuddannelsen i henhold til bekendtgøelse n. 329 af 28. apil 2009 om uddannelsene i den

Læs mere

Peter Ove Christensen og Bjarne Graabech Sørensen. Opgavesamling. til. Rentesregning

Peter Ove Christensen og Bjarne Graabech Sørensen. Opgavesamling. til. Rentesregning Peter Ove Christensen og Bjarne Graabech Sørensen Opgavesamling til Rentesregning Institut for Regnskab, Finansiering og Erhvervsjura Syddansk Universitet 2001 Forord Nærværende opgavesamling er udarbejdet

Læs mere

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi

Finanskalkulationer Side 1/19 Steen Toft Jørgensen. Finanskalkulationer. avanceret rentesregning. matematiske modeller i økonomi Faskalkulatoe Sde /9 Stee Toft Jøgese Faskalkulatoe avaceet etesegg matematske modelle økoom Idholdsfotegelse: Kaptel : Rete Retebegebet Omkostge Retefomle Effektv ete Kotuet foetg Tdsdagam Flytg af kaptal

Læs mere

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej

VORDINGBORG KOMMUNE. Boligområde ved Kalvøvej LOKALPLAN NR. B-24.2. 20 kr. Færgegårdsvej Bogøvej. Kalvøvej VORDINGBORG KOMMUNE N Fægegådsvej Bogøvej Kalvøvej LOKALPLAN NR. B-24.2 Boligomåde ved Kalvøvej Vodingbog apil 2005 20 k. Lokalplanlægning Planloven indeholde bestemmelse om Byådets et og pligt til at

Læs mere

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009 N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i

Læs mere

LOKALPLAN NR. 360 HENRIETTELUND

LOKALPLAN NR. 360 HENRIETTELUND 1 LOKALPLAN NR. 360 HENRIETTELUND EN KORTFATTET BESKRIVELSE Beliggenhed Langs Kægade i Vop Lokalplanen omfatte et ca. 4,13 ha stot omåde fodelt på 4 pivate ejendomme beliggende fo foden af Tebbestp Bakke

Læs mere

Danske Regioner Økonomi Vejledning 2013 Udsendt september 2013

Danske Regioner Økonomi Vejledning 2013 Udsendt september 2013 Danske Økonomi Vejledning 2013 Udsendt septembe 2013 Pis- og lønudviklingen 2012-2014 Denne vejledning indeholde en endelig opgøelse af pis- og løn udviklingen (PL) i 2012 samt et nyt skøn fo 2013 og skøn

Læs mere

- 1 - Materialet vil med fordel kunne indgå i et tværfagligt samarbejde med samfundsfag.

- 1 - Materialet vil med fordel kunne indgå i et tværfagligt samarbejde med samfundsfag. - 1 - Låntyper I bogens del 2 kan du læse om Procent og rente (s. 41-66). Vi vil i materialet her gå lidt videre til mere komplicerede renteberegninger ved forskellige låntyper. Stoffet er et muligt supplement

Læs mere

diagnostik Skulder fysioterapeuten nr. 05 marts 2009

diagnostik Skulder fysioterapeuten nr. 05 marts 2009 side 08 fysioteapeuten n. 05 mats 2009 diagnostik Skulde Mogens Dam e oplægsholde på fagfestivalen d. 26.-28. mats 2009. Fysioteapeut Mogens Dam ha udvalgt en ække gængse diagnostiske test fo skuldepobleme.

Læs mere

Notat. 18. oktober 2011. Social & Arbejdsmarked

Notat. 18. oktober 2011. Social & Arbejdsmarked Notat Fovaltning: Social & Abejdsmaked Dato: J.n.: B.n.: 18. oktobe Udf diget af: mbf Vedłende: Fłtidspension Notatet sendes/sendt til: Abejdsmakedsudvalget Fłtidspension De ha i de seneste v et en tendens

Læs mere

Projekt 1.8 Design en optimal flaske

Projekt 1.8 Design en optimal flaske ISBN 978-87-7066-9- Pojekte: Kapitel Vaiabelsammenænge. Pojekt.8 Design en optimal flaske Pojekt.8 Design en optimal flaske Fimaet PatyKids ønske at elancee dees enegidik Enegize. Den skal ave et nyt navn

Læs mere

Ønskekøbing Kommune - netværksanalyse i den administrative organisation

Ønskekøbing Kommune - netværksanalyse i den administrative organisation Ønskekøbing Kommune - netvæksanalyse i den administative oganisation Hvodan vike det i paksis? Elektonisk spøgeskemaundesøgelse Svaene fa undesøgelsen kombinees med alleede eksisteende stamdata i minde

Læs mere

Kort kan man sige: ydelse = rente + afdrag

Kort kan man sige: ydelse = rente + afdrag LÅN 1q Begreber i forbindelse med lån En stor del af forbruget i det danske samfund finansieres ved hjælp af lån. Mange af os låner penge når vi skal købe større forbrugsgoder, såsom biler. Lån er imidlertid

Læs mere

Ejendomsværdibeskatning i Danmark

Ejendomsværdibeskatning i Danmark DET SAMFUNDSVIDENSABEIGE FAUTET Økonomisk Insiu ØBENAVNS UNIVERSITET andidaspeciale aine Gønbæk von Fühen Ringsed Ejendomsvædibeskaning i Danmak Analysee i en anvend geneel ligevægsmodel Vejlede: oul Schou

Læs mere

Sabatiers princip (elevvejledning)

Sabatiers princip (elevvejledning) Sabaties pincip (elevvejledning) Væ på toppen af vulkanen Sammenligning af katalysatoe Fomål I skal måle hvo godt foskellige stoffe vike som katalysato fo udvikling af oxygen fa hydogenpeoxid. I skal sammenligne

Læs mere

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning)

Fagstudieordning for tilvalgsuddannelsen i Erhvervsøkonomi (2012-ordning) Fagstudieodning fo tilvalgsuddannelsen i Ehvevsøkonomi (2012-odning) 1 Indledning Til denne uddannelsesspecifikke fagstudieodning knytte sig også Rammestudieodning fo Det Samfundsvidenskabelige Fakultet,

Læs mere

STATISTIKNOTER Simple multinomialfordelingsmodeller

STATISTIKNOTER Simple multinomialfordelingsmodeller STATISTIKNOTER Simple multinomialfodelingsmodelle Jøgen Lasen IMFUFA Roskilde Univesitetscente Febua 1999 IMFUFA, Roskilde Univesitetscente, Postboks 260, DK-4000 Roskilde. Jøgen Lasen: STATISTIKNOTER:

Læs mere

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt.

Lokalplanlægning. Lokalplanen er bindende for den enkelte grundejer, men handler kun om fremtidige forhold og giver ikke grundejerne handlepligt. VORDINGBORG KOMMUNE CHR RICHARDTSVEJ N KØBENHAVNSVEJ LOKALPLAN NR. B-16.2 Boligomåde vest fo Solbakkevej, Vodingbog By Vodingbog septembe 2006 20 k. Lokalplanlægning Planloven indeholde bestemmelse om

Læs mere

Løsninger til kapitel 11. Opgave 11.1 a) I Excel-udskriften ses bl.a. p-værdien for testen med nulhypotesen.

Løsninger til kapitel 11. Opgave 11.1 a) I Excel-udskriften ses bl.a. p-værdien for testen med nulhypotesen. Løsninge til kapitel Opgave. a) I Excel-udskiften ses bl.a. p-vædien fo testen med nulhypotesen. Det ses, at denne p-vædi e på, og da dette e minde end signifikansniveauet på %, så konkludes det, at gennemsnittene

Læs mere

Nutidsværdi af samlede ydelser års ydelse Før skat Efter skat

Nutidsværdi af samlede ydelser års ydelse Før skat Efter skat Oversigt over lån 17. marts 2016 Kunde BOLIGSELSKABET FOR HØNG OG OMEGN Ejendom Glentevej 2-88, 4270 Høng Kontaktperson Ole Rahbek Holm, tlf. 55 85 02 11 Side 1 af 6 Pantnummer 1114.5063 Finansieringseksempel

Læs mere

CoCo-obligationer i matematisk modelperspektivering

CoCo-obligationer i matematisk modelperspektivering CoCo-obligatione i matematisk modelpespektiveing CoCo bonds in a mathematical modeling pespective af JENS PRIERGAARD NIELSEN ######-#### THESIS fo the degee of MSc in Business Administation and Management

Læs mere

Impulsbevarelse ved stød

Impulsbevarelse ved stød Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt

Læs mere

Betinget skød e. af areal 85.705 m 2, med de paa ejendommen værende bygninger, med grund- mur- og nagelfast appertinentier, med hegn og plantninger

Betinget skød e. af areal 85.705 m 2, med de paa ejendommen værende bygninger, med grund- mur- og nagelfast appertinentier, med hegn og plantninger Mt. n., ejelav, sogn: 4 a, Stempel: 1.487 k. 50 øe (I København kvate) Hesbjeg Gaaden, elle (I de søndejydske lands- Søbog sogn dele) bd. og bl. I tingbogen, at. n., ejelav, sogn. Gade og hus n.: n.7%

Læs mere

Ejlskov A/S har for Vejdirektoratet udført prøvetagning af sediment i 2 regnvandsbassiner på Etape 4540 tilslutningsanlæg ved Odense SØ.

Ejlskov A/S har for Vejdirektoratet udført prøvetagning af sediment i 2 regnvandsbassiner på Etape 4540 tilslutningsanlæg ved Odense SØ. Notat 25-03-2014 Ejlskov A/S Jens Olsens Vej 3 8200 Åhus N Danmak www.ejlskov.com Sag: 14038 phk@ejlskov.com Tel: 87310063 Klient: Vejdiektoatet Pojekt: Etape 4540 Tilslutningsanlæg Odense SØ Opgave: Pøvetagning

Læs mere

ELVISK. It-supporter, Datatekniker infrastruktur. & Datatekniker programmering. Brug e r. er v. jl f. ve r løs. af Ne. Elev Virksomhed Skole.

ELVISK. It-supporter, Datatekniker infrastruktur. & Datatekniker programmering. Brug e r. er v. jl f. ve r løs. af Ne. Elev Virksomhed Skole. Po amu dvik lin Desin up k c Ba ed Sikkeh S e v el øs nin af Ne t m Poam væ k Da ta e e i n se ba Bu e s e vi ce Se m Poam ve løs nin e Fe e i n n di jl f in Softwae ae Hadw D at aba se Si k he d ERHVERVSUDDANNELSER

Læs mere

Julestjerner af karton Design Beregning Konstruktion

Julestjerner af karton Design Beregning Konstruktion Julestjene af katon Julestjene af katon Design Beegning Konstuktion Et vilkåligt antal takke En vilkålig afstand fa entum ud til spidsene En vilkålig afstand fa entum ud til toppunktene i "indakkene" En

Læs mere

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien

Fra udsat til ansat. Medieinfo. Socialrådgiveren. job til udsatte unge. dgmedia.dk. ds advarer mod at spare i psykiatrien Socialådgiveen Medieinfo 2015 socialådgiveen 11/14 Læs mee om voes mange ande medie på Fa udsat til ansat viksomhedspaktik skaffe job til udsatte unge dgmedia.dk ds advae mod at spae i psykiatien Kommunalt

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Oversigt over nuværende finansiering

Oversigt over nuværende finansiering 1 1 Oversigt over nuværende finansiering Værdiansættelsesdato 01/07/2016 Analysedato Analyseperioden for porteføljen Gæld i alt Heraf Realkredit Heraf udenlandsk valuta Derivater 30/06/2016-31/12/2040

Læs mere

Detaljeret information om cookies

Detaljeret information om cookies Detaljeet infomation om cookies Website: http://mbbl.dk/ Kontoldato: 2015-11-07 Kontolleet af: Cookie Repots Limited http://www.cookieepots.com/ Dette dokument e udabejdet så "Ministeiet fo By, Bolig og

Læs mere

2,80% p.a. Halvårligt 30 dage pr. mdr.j360 dage pr. år 30. marts 2010. Ingen 0,00% p.a. af restgælden. 2,82%

2,80% p.a. Halvårligt 30 dage pr. mdr.j360 dage pr. år 30. marts 2010. Ingen 0,00% p.a. af restgælden. 2,82% Roskilde Kommune Fællesforvaltningen Økonomi og analyse Køgevej 80 4000 Roskilde Forslag til finansiering af låneramme 2009 samt lån mod dispensationer. Under henvisning til telefonsamtale med Hans-Jørgen

Læs mere

WWW g SOCIALE MEDIER. IQg NQ. I Ng takt med at vi bruger mere og mere tid på nettet

WWW g SOCIALE MEDIER. IQg NQ. I Ng takt med at vi bruger mere og mere tid på nettet VIRKELIG g VIRTUEL WWW g SOCIALE MEDIER I takt med at vi bge mee og mee tid på nettet smelte det sammen med nævæ og fysisk kontakt. Vi få hologamme d kan øe. De sociale medie blive alt afgøende fo fastholde

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET INVESTERINGS- OG FINANSIERINGSTEORI 4 timers skriftlig eksamen, 9-13, tirsdag 16/6 2003. Ingen hjælpemidler (blyant & lommeregner dog tilladt).

Læs mere

TDC A/S Nørregade København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud

TDC A/S Nørregade København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling TC levee en ække samtafikpodukte, de e undelagt

Læs mere

MATEMATIK på Søværnets officerskole

MATEMATIK på Søværnets officerskole MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt

Læs mere

247. Kirkens budget 2012

247. Kirkens budget 2012 Refeat fa mødet i Økonomiudvalget den. septembe 011 kl. 09:30 i Mødelokale,1. sal, Nd. Kajgade Mødet sluttede kl. 11.30 Pkt. Tekst Åbne dagsodenpunkte Kikens budget 01 Budgetfoslag fo 01 og oveslagsåene

Læs mere

SUPERLEDNING af Michael Brix Pedersen

SUPERLEDNING af Michael Brix Pedersen UPERLEDNING af Mihael Bix Pedesen Indledning I denne note foudsættes kendskab til de eleentæe egenskabe ved hödingeligningen (se fx Refeene [] elle [3], lidt eleentæe egenskabe ved koplekse tal og Eules

Læs mere