Matematik for C niveau

Størrelse: px
Starte visningen fra side:

Download "Matematik for C niveau"

Transkript

1 Matematik for C niveau M. Schmidt

2 Indholdsfortegnelse 1. Tal og bogstavregning... 5 De elementære regnings arter og deres rækkefølge... 5 Brøker... 9 Regning med bogstavudtryk Talsystemet Intervaller Potenser og rødder Ligninger Uligheder Formler Funktioner Koordinat systemet Funktions begrebet Grafisk billede Nogle elementære funktioner Funktioners monotoniforhold Grafisk løsning af ligninger og uligheder Generelt om funktioner Lineære funktioner og deres grafer Ret linje gennem to punkter Procentregning Regning med procenter Ændring af et tal med en procentdel Indekstal Rentesregning Renteformlen Rentefod for forskellige tidsrum

3 Gennemsnitlig vækstrate Opsparing og lån Annuitets opsparing Annuitets lån Ensvinklede og retvinklede trekanter Ensvinklede trekanter Phytagoras sætning Trekanters areal Sinus og cosinus Den retvinklede trekant Tangens Eksponentielle funktioner To vækstmodeller Eksponentielle funktioner Enkelt logaritmiske koordinat systemer Bestemmelse af forskriften for en eksponentiel funktion Logaritme funktionen Eksponentielle ligninger Fordoblings konstant Halverings konstant Potensfunktioner og potensudviklinger Potensfunktioner Potensudviklinger Dobbelt logaritmiske koordinat systemer Bestemmelse af forskriften for en potensudvikling Procentvis ændring af den afhængige og den uafhængige variabel Potensligninger Beskrivende statistik Ugrupperede observationer

4 Grupperede observationer Statistiske beskrivende størrelser for grupperede observationer

5 1. Tal og bogstavregning De fire regningsarter Regningsarternes hiearki Parenteser, plus og minusparenteser Brøker Bogstavregning Talsystemet Intervaller Potenser og rødder Ligninger Uligheder Formler Dette kapitel omhandler de grundlæggende regler for regning med tal og bogstaver, hvilket kaldes for aritmetik. De elementære regnings arter og deres rækkefølge De fire elementære regnings arter er subtraktion med tegnet (minus). Resultatet af en subtraktion kaldes en differens. multiplikation med tegnet (gange). Resultatet af en multiplikation kaldes et produkt. division med tegnet : (divideret med). Resultatet af en division kaldes en kvotient. addition med tegnet + (plus). Resultatet af en addition kaldes en sum. 5

6 Man siger f.eks. at summen af 8 og 5 er 13 produktet af 6 og 7 er 42 differensen mellem 7 og 4 er 3 kvotienten mellem 12 og 6 er 2 differensen mellem 6 og 9 er 3 kvotienten mellem 2 og 8 er REGNINGS-ARTERNES RÆKKEFØLGE Hvis der i et udtryk indgår flere regnings arter, skal de udføres i en bestemt rækkefølge. Man kaldes også dette for regnings arternes hiearki. Man regner f.eks. sådan og Det almindelige princip er følgende: Man ganger og dividerer inden man lægger til eller trækker fra. Disse regler er indbygget i lommeregneren, så udtryk som de ovenstående indtastes som de står: og Hvis der også optræder potenser, udregnes de før multiplikation og division: Eksempel , , , ,

7 PARENTESER Man bruger parenteser, når man vil ophæve den vedtagne rækkefølge af udregninger. Hvis man f.eks. ønsker at lægge sammen inden man ganger, så skriver man og fordi man uden parenteser får og Man bruger desuden parenteser i forbindelse med fælles faktorer for flere led. Vi udregner Her går 3 op i alle tallene 24, 9 og 15 og man siger at 3 er en fælles faktor for tallene. Den kan derfor sættes uden for en parentes Man kan også gange ind i en parentes. F.eks. giver disse to udregninger det samme: og Man siger at man har ganget ind i parentesen, når man skriver Tilsvarende fås

8 Eksempel 2 Man sætter uden for en parentes sådan: Man ganger ind i en parentes sådan: I nogle udregninger har man brug for at fjerne parenteser og her skal man kende forskel mellem plusparenteser og minusparenteser. Plusparenteser er parenteser med tegnet + foran. Den slags parenteser kan fjernes uden videre. F.eks. fordi man ved udregning får venstre side: højre side: Minusparenteser har fortegnet foran. De fjernes ved at skifte fortegnet i alle led i parentesen. F.eks Eksempel 3 Plus og minusparenteser hæves sådan:

9 Brøker Vi skal her gennemgå de gængse regneregler for brøker. Brøkregning har især interesse, når man skal regne på formler med bogstaver. I første omgang vil vi se på udregninger med rene tal. FORLÆNGNING OG FORKORTNING Man forlænger en brøk med et tal, hvis tæller og nævner ganges med samme tal. Brøken ændrer ikke værdi ved forlængning. Vi forlænger med 2 og får med 3 og får Man forkorter en brøk med et tal ved at dividere tæller og nævner med tallet. Brøken ændrer ikke værdi ved forkortning. F.eks. kan vi forkorte med 3 og få 21: 3 15: med 12 og få 24: 12 36: ADDITION OG SUBTRAKTION Brøker med samme nævner, lægges sammen og trækkes fra hinanden ved at lægge sammen og trække fra i tælleren og beholde nævneren: ,

10 Brøker med forskellige nævnere lægges sammen og trækkes fra hinanden, ved at finde en fællesnævner for brøkerne. Dette sker ved at forlænge hver brøk med passende tal, f.eks. er MULTIPLIKATION Man ganger en brøk med et tal ved at gange tælleren med tallet, f.eks , Et specialtilfælde, som vi senere skal bruge, er følgende: hvis man ganger en brøk med dens nævner, fås tælleren: Tilsvarende fås at To brøker ganges med hinanden ved at gange tæller med tæller og nævner med nævner: ,

11 DIVISION Man dividerer en brøk med et tal ved at gange med tallet i nævneren. F.eks. er Man dividerer med en brøk ved at gange med den omvendte brøk, f.eks

12 Regning med bogstavudtryk I bogstavregning lader man bogstaver stå istedet for tal. Eksempel 4 Udtrykket skal reduceres. Først ganges der ind i parentesen: Så hæves parenteserne: Eksempel 5 Hvis man er blevet vant til at reducere, kan man undvære nogle mellemregninger:

13 Eksempel 6 Sikkersoq har købt 5 appelsiner, 3 bananer og 2 citroner. appelsiner koster 4 kr. stk. og man kan skrive 4 bananer koster 6 kr. stk. og man kan skrive 6 citroner koster 5 kr. stk. og man kan skrive 5 Den samlede pris skrevet med bogstaver er: pris og kan så udregnes at være: pris kr. Eksempel 7 Erneeraq har været inde i den samme butik som Sikkersoq og har købt 8 appelsiner, 10 bananer og 7 citroner. Hvor meget har de tilsammen købt for? Den samlede pris skrevet med bogstaver er: pris og kan så udregnes at være: pris kr. 13

14 Eksempel 8 Arealet af en trekant kan skrives som:, hvor er grundlinjen og højden. Hvis man får at vide, at 5 cm og 7 cm, hvad er så arealet? cm 7 cm 17.5 cm 2 I en anden trekant er 2 cm og 10 cm. Hvad er arealet? cm 10 cm 10 cm 2 Dette viser hvorfor det er praktisk at skrive udtryk med bogstaver: man udskifter bogstaverne med de tal som er gældende i den givne situation. Eksempel 9 Man skal reducere udtrykket Først skal man finde en fællesnævner. Den mindste fællesnævner er

15 Talsystemet Tallene vi regner med, kan afsættes på en tallinje, hvor de positive tal afsættes til højre for 0 og de negative til venstre for 0. På tallinjen herover er kun afsat hele tal, men også brøker og decimalbrøker har deres plads på tallinjen. TYPER AF TAL Man bruger forskellige betegnelser for de forskellige taltyper. De naturlige tal Et naturligt tal er et helt, positivt tal. Vi betegner mængden af disse tal med og skriver sådan: De hele tal Samlingen af alle hele tal betegnes : 1,2,3,4, 3, 2 1, 0, 1, 2, 3, De hele tal består af de naturlige tal, de negative hele tal og det specielle tal 0, som hverken er positivt eller negativt. 15

16 De rationale tal Et rationalt tal er et tal, der kan skrives som en brøk med hele tal i tæller og nævner. Et par eksempler på rationale tal er 5 12, 9 6, 20 4, 30 65, 17 1 Vi ser, at hele tal er rationale. Desuden er endelige decimalbrøker rationale, fordi vi f.eks. kan skrive , De rationale tal betegnes med Q, der står for 'quotient', fordi en brøk kan opfattes som resultatet af en division. De fleste kvadratrødder er ikke rationale tal. F.eks. er 3 og 19 ikke rationale der findes ingen brøk, der præcis er lig med disse tal. De kaldes irrationale tal. De reelle tal Samtlige tal på tallinjen kaldes reelle tal. De omfatter de hele tal, de rationale tal og irrationale tal. Man skriver de reelle tal med symbolet. På intervalform skrives de rationale tal således: ; 16

17 Intervaller Det er praktisk at indføre en skrivemåde for intervaller på tallinjen. Man deler intervaller op i begrænsede og ubegrænsede intervaller. BEGRÆNSEDE INTERVALLER Et begrænset interval er et afsnit af tallinjen, der ligger mellem to givne tal, der kaldes intervallets endepunkter. Man kan vælge at medtage et eller begge endepunkter eller ingen af endepunkterne. Der er derfor fire forskellige typer af begrænsede intervaller, med hver sin skrivemåde. Eksempler: 5 ; 8 alle tal mellem 5 og 8, men 5 og 8 er ikke med i intervallet. 2 ; 10 alle tal fra og med 2 til 10, dvs. 2 er med og 10 er ikke med i intervallet. 3 ; 8 alle tal fra 3 til og med 8, dvs. 3 er ikke med og 8 er med i intervallet. 5 ; 9 alle tal fra og med 5 til og med 9, dvs. 5 er med og 9 er med i intervallet. I almindelighed er der altså de fire intervaltyper: ;, ;, ;, ; Den første type interval kaldes et åbent interval, fordi de to endepunkter ikke er med i intervallet. De to næste typer kaldes halvåbne, fordi det ene endepunkt er med og det andet ikke er med i intervallet Den sidste type kaldes et lukket interval, fordi begge endepunkter er med i intervallet. 17

18 Man viser de forskellige typer af intervaller med nogle specielle symboler for endepunkterne. Endepunktet tegnes med en fyldt cirkel, hvis det er med i intervallet. Endepunktet tegnes med en tom cirkel, hvis det ikke er med i intervallet. Eksempel 10 Herunder ses nogle eksempler på begrænsede intervaller og den tilhørende skrivemåde. 18

19 UBEGRÆNSEDE INTERVALLER Et ubegrænset interval på en tallinje består af alle de tal, der ligger til højre eller til venstre for et givent tal. Denne type intervaller skrives sådan: 7 ; alle tal, der er større end eller lig med 7 2 ; alle tal, der er større end 2 ; 5 alle tal, der er mindre end eller lig med 5 ; 3 alle tal, der er mindre end 3 Symbolerne og læses 'uendelig' og ' minus uendelig'. De er ikke tal, men viser at intervallerne fortsætter i det uendelige til højre eller venstre på tallinjen. 19

20 Potenser og rødder Vi skal se, at potenser og rødder er to sider af samme sag, idet rødder kan udtrykkes ved potenser. REGNEREGLER FOR POTENSER OG RØDDER Herunder ses eksempler på regning med potenser af tallet (nogle af regningerne forudsætter at 0 1 Disse regneregler udtrykkes i bogstaver sådan: Potensregneregler 20

21 Eksemplerne ovenfor demonstrerer kun regnereglerne for positive hele værdier af eksponenterne og. Man ønsker at reglerne skal gælde for alle hele eksponenter, dvs. også for eksponenten 0 og negative eksponenter. Eksponent 0 Det ses ved at indsætte 0 i den første regneregel at 1 1 Negativ, hel eksponent I den første regel sætter vi 3 og 3 og får 1 1 Dette argument kan gennemføres for et hvilket som helst tal. så vi i almindelighed får at: 1 Der gælder f.eks. at ,

22 POTENSER MED BRØKEKSPONENT Nu indføres potenser, hvor eksponenten ikke er et helt tal, men en brøk. Det er f.eks. potenser af typen 2, Man kan f.eks. betragte potensen Efter den sidste regel er Derfor må der gælde at På samme måde er Derfor må der gælde at Man definerer nu at: Således er 5 5, 8 8, Nu betragtes potenser med eksponenter der er brøker, hvis tæller ikke er 1. Som eksempel bruges regnereglen 22

23 på potensen Man får: Det sidste lighedstegn fås ved brug af definitionen på. Desuden gælder at Generelt defineres derfor Et eksempel er Regnereglerne for de specielle potenser er sammenfattet herunder:

24 Ligninger I dette afsnit skal vi se på hvordan man løser førstegradsligninger med én ubekendt. En typisk problemstilling, der kan formuleres som en ligning er følgende: Det koster 15 kr. i gebyr at sende en pakke og 10 kr. pr. kg. Hvor tung en pakke kan man sende, hvis man har 575 kr.? Man kan opstille følgende ligning Dette er et eksempel på en førstegradsligning med een ubekendt. At løse ligningen vil sige at finde de værdier af, som passer i ligningen. OMFORMNINGS-REGLER FOR LIGNINGER Når man skal løse en ligning, dvs. finde den eller de værdier af den ubekendte, der passer i ligningen anvendes en række omformnings regler. Når man bruger disse regler ændres løsningen ikke, men man kan skrive ligningen på en simplere form, der gør det nemt at se hvad løsningen er. Omformnings reglerne er: 1. Man må lægge det samme tal til på begge sider af lighedstegnet. 2. Man må trække det samme tal fra på begge sider af lighedstegnet. 3. Man må gange med det samme tal på begge sider af lighedstegnet, bortset fra 0 4. Man må dividere på begge sider af lighedstegnet med det samme tal, bortset fra 0 24

25 Ligninger der fås af hinanden ved at bruge disse regler samt de almindelige reduktionsregler, kaldes ensbetydende, dvs. de har de samme løsninger. For at vise at to ligninger er ensbetydende bruger man tegnet, som er en pil, der peger begge veje. Man skriver f.eks fordi begge ligninger har løsningen 4 De to ensbetydende ligninger fremgår af hinanden ved at bruge omformningsreglerne. I dette tilfælde: Den sidste ligning fremgår af den første ved at trække 1 fra på begge sider. Den første ligning fremgår af den sidste ved at lægge 1 til på begge sider. Eksempel 11 I dette eksempel vises hvordan man bruger omformnings reglerne til at forsimple en ligning Gang ind i parentesen på venstre side Hæv parentesen på højre side Reducer begge sider Læg 6 til på begge sider Reducer begge sider Læg 8 til på begge sider Reducer begge sider. 25

26 21 3 Divider med 3 på begge sider Når man er vant til at løse ligninger, vil man ofte udelade nogle af mellemregningerne. F.eks Ligningen fra indledningen kan løses ved at bruge omformnings reglerne: Man kan derfor sende en pakke på 56 kg, hvis man har 575 kr. 26

27 Man kan også løse ligninger, hvor den ubekendte står i nævneren på en brøk. F.eks

28 Uligheder En ulighed opstår, når man mellem to tal eller bogstavudtryk sætter et ulighedstegn, dvs. et af følgende fire tegn: mindre end f.eks. 710, 2 9 større end f.eks. 5 11, 143 mindre end eller lig med f.eks. 88, 3 2 større end eller lig med f.eks. 72, 6 5 De to første er skarpe ulighedstegn, de to sidste er svage. Man benytter desuden ulighedstegn til at angive tal, der på tallinjen ligger mellem to bestemte tal, dvs. et interval. F.eks hvilket læses x ligger mellem 4 og 10 inklusive At løse en ulighed vil sige at angive de værdier af, som passer i uligheden, dvs. gør den sand. I uligheden er 5 en løsning, fordi 5 passer: er sandt men 2 er ikke en løsning, da er falsk 28

29 Man kan måske se, at løsningerne er alle værdier af, som er større end eller lig med 4, dvs. løsningerne er 4 OMFORMNINGSREGLER FOR ULIGHEDER Omformningsreglerne ligner dem for ligninger : 1. Man må lægge det samme tal til på begge sider af lighedstegnet. 2. Man må trække det samme tal fra på begge sider af lighedstegnet. 3. Man må gange med det samme tal på begge sider af lighedstegnet, bortset fra 0 4. Man må dividere på begge sider af lighedstegnet med det samme tal, bortset fra 0 Men der er een vigtig ekstra regel: Når man ganger eller dividerer med et negativt tal, skal man vende ulighedstegnet. Den ekstra regel kan forklares ved at se på nogle eksempler. Se på den sande ulighed 12 8 Hvis man ganger med 3 på begge sider eller dividerer med 2 på begge sider fås igen sande uligheder: og

30 Se på den sande ulighed 18 6 Hvis man ganger med 2 på begge sider eller dividerer med 3 på begge sider uden af vende ulighedstegnet fås: Disse to uligheder er falske og 6 2 Man får sande uligheder ved at vende ulighedstegnet om: og 6 2 Dette forklarer hvorfor man skal vende ulighedstegnet om, når man ganger eller dividerer med et negativt tal. Eksempel 12 Vi løser et par simple uligheder, og vælger at skrive udregningerne op under hinanden:

31 Eksempel 13 Vi løser en ulighed ved at bruge omfornings reglerne: Løsningerne er derfor alle tal som er mindre end eller lig med 2. Dette er den såkaldte løsningsmængde som kaldes for, og kan skrives ;2 Løsningsmængden kan vises på en tallinje: 31

32 Formler Vi har allerede set på formlen for trekantens areal: Hvor er grundlinjen og er højden. 1 2 Der findes andre nyttige formler fra geometri, som man bør kende. Cirkelarealet: Cirkelomkredsen: 2 Hvor og er cirklens radius. 32

33 Den krumme overflade på en cylinder: 2 Volumen af cylinder: Hvor er højden af cylinderen. For at finde hele overfladen af cylinderen skal man lægge arealet af de to cirkler i enderne sammen med arealet af den krumme overflade. I science kan man finde denne her slags formler: hvor er massefylde (densitet), er masse og er volumen af en eller anden genstand eller en væske. hvor er fart, er afstand og er tid. De bogstaver, der optræder i en formel kaldes også for formlens variable. 33

34 Formler kan omskrives. F.eks. kan formlen omskrives på disse måder: Den størrelse som står alene på den ene side af lighedstegnet siges at være isoleret. Eksempel 14 Hvis en sten har massen 20 g og massefylde 2 stenens volumen så? hvor stort er 20 g 2 10 cm Eksempel 15 En cirkel har en omkreds 60 cm. Hvor stor er cirklens radius? cm cm 34

35 Eksempel 16 En cirkel har arealet 25 cm. Hvor stor er cirklens radius? cm Hvis man synes det er for indviklet at omskrive formler, kan man også sætte alle tal man kender ind først: Fordelen ved at omskrive til en færdig formel er, at man slipper for at lave hele udregningen forfra hver gang. 35

36 Kapiteloversigt 1 Regningsarternes rækkefølge 1. Potensopløftning og rodudragning. 2. Multiplikation og division. 3. Addition og subtraktion. Parenteser Parenteser sættes for at ophæve regningsarternes normale rækkefølge. Plusparenteser : fjernes uden videre. Minusparenteser: fjernes ved at skifte fortegn for leddene i parentesen. Brøker Regel Formulering Symbolsk Forlængning af en brøk Tæller og nævner ganges med samme tal Forkortning af en brøk Multiplikation af en brøk med et tal Multiplikation af en brøk med en brøk Tæller og nævner divideres med samme tal Tælleren ganges med tallet Tæller ganges med tæller og nævner med nævner : : Division af en brøk med et tal Nævneren ganges med tallet : 36

37 Division af et tal med en brøk Man ganger med den omvendte brøk Division af brøk med en brøk Man ganger med den omvendte brøk : Talsystemet de naturlige tal 1,2,3 : de hele tal, 3, 2, 1, 0, 1, 2,3, Q : de rational tal : de reelle tal Alle tal, der kan skrives som brøker Alle tal på tallinjen Ligninger 1. Man må lægge det samme tal til på begge sider af lighedstegnet. 2. Man må trække det samme tal fra på begge sider af lighedstegnet. 3. Man må gange med det samme tal på begge sider af lighedstegnet, bortset fra 0 4. Man må dividere på begge sider af lighedstegnet med det samme tal, bortset fra 0 Uligheder Omformningsreglerne er de samme som for ligninger, men hvis man ganger eller dividerer med et negativt tal, skal man vende ulighedstegnet. 37

38 2. Funktioner Koordinat systemet Funktionsbegrebet Regneforskrift for en funktion Definitions og værdimængde Elementære funktioner Monotoniforhold Grafisk løsning af ligninger og uligheder Generelt om funktioner Koordinat systemet Det sædvanlige koordinat system i planen består af to tallinjer, der står vinkelret på hinanden i deres fælles nulpunkt. Den ene, aksen. er orienteret mod højre, den anden aksen opad. Ved hjælp af koordinat akserne kan punkter i planen forsynes med koordinatsæt (også kaldet koordinater). Man nævner koordinaten først. På fig. 1 er afsat nogle punkter og koordinaterne er angivet. Koordinatakserne deler planen i 4 dele, de såkaldte kvadranter. De nummereres i omløbsretning mod uret som vist på fig. 1 med romertal. 38

39 Figur 1. 39

40 Funktions begrebet Vi forklarer funktionsbegrebet ved at se på nogle eksempler, der viser tankegangen og fastlægger bestemte udtryk. 1. Et taxifirma tager 20 kr. i startgebyr og 17 kr. pr. km for at køre. Hvad koster det at køre 8 km? hvor langt kan man køre for 200 kr.? 2. Der hældes kogende vand på en termokande (100. Temperaturen af vandet aftager med 5 i timen. Hvor varmt er vandet efter 3 timer? Hvornår er temperaturen faldet til 70? Den uafhængige variabel Begge eksempler indeholder en størrelse, vi frit kan vælge værdier for. Den kaldes den uafhængige variabel. Den uafhængige variabel er i de to eksempler: det kørte antal kilometer antal timer efter at vandet er hældt på kanden Man bestemmer selv, hvor langt man vil køre og man bestemmer selv, hvornår man vil måle temperaturen. 40

41 Den afhængige variabel Begge eksempler har også en størrelse, som ikke kan vælges frit. Den afhænger af den frit valgte variabel. Den størrelse, der ikke kan vælges frit kaldes den afhængige variabel og er i de to eksempler: Prisen for at køre et bestemt antal kilometer Vandets temperatur I hvert af eksemplerne er der tale om en funktion, Vi siger at : prisen er en funktion af kilometerantallet vandtemperaturen er en funktion af antallet af timer I almindelighed siger man at: den afhængige variabel er en funktion af den uafhængige. REGNEFORSKRIFT De funktioner, vi skal arbejde med er stort set altid fastlagt ved deres regneforskrifter. Man kan finde regneforskriften ved at udskifte en fast værdi af den uafhængige variabel med et. 1. Hvis man kører 8 km med taxifirmaet skal man betale kr. Hvis man kører km, skal man betale kr. Man siger så, at man har fundet en regneforskrift for funktionen. 41

42 Hvis angiver prisen, er sammenhængen mellem prisen og kilometer tallet : Det er praktisk at give funktionen et navn, og man bruger tit bogstaverne, og til dette. Altså kan man skrive: Hvis man kører 8 km med taxaen skriver man: og man siger at funktionsværdien af 8 er 156. Hvis man har 200 kr. kan man regne ud, hvor langt man kan køre: Derfor kan man køre km, hvis man har 200 kr. 42

43 2. Vandets temperatur i kanden falder med 5 i timer, så efter 3 timer er temperaturen og efter timer er den på samme måde som før kan man navngive: og En temperatur på 70 svarer til at 70. Derfor gælder der at: Det er derfor efter 6 timer at temperaturen er 70 43

44 Eksempel 1 En funktion er givet ved forskriften 52 Funktionsværdierne udregnes ved at erstatte med et tal. F.eks. fås funktionsværdierne af 3 og 4 sådan: Man kan opstille en tabel over funktionsværdier: Grafisk billede Vi ser igen på eksemplet med funktionen, der angiver temperaturen af vandet i termokanden: Som vist i eksempel 1 kan man opstille en tabel over sammenhørende værdier af og : Vi afsætter disse punkter i et koordinat system, dvs. vi afsætter punkterne 0,100, 1,95, 2,90, og trækker en streg igennem, som vist på fig. 2 44

45 Figur 2. Grafen kan også tegnes med CAS, det er nemmere end at tegne den ind på papir. Det viser sig at punkterne ligger på en ret linje, og hvis vi udvider tabellen med flere punkter vil de også ligge på samme linje. Den rette linje kaldes funktionens grafiske billede eller graf. 45

46 På fig 3. er vist grafen for funktionen, der angiver prisen for at køre km med taxifirmaet. Grafen er tegnet med CAS Figur 3. 46

47 DEFINITIONS- OG VÆRDIMÆNGDE For funktionen ovenfor har det ingen mening at fortsætte grafen til venstre for aksen man kan jo ikke køre et negativt antal kilometer. Man kan også vælge at begrænse sin kørsel til f.eks. 400 km Altså bruges der kun værdier mellem 0 og 400. Man siger at: og man skriver Definitions mængden for er 0 ; 400 Dm 0 ; 400 På samme måde med funktionen, der angiver temperaturen af vandet i kanden. Et negativt antal timer giver ingen mening. Hvis stuetemperaturen er 20 standser afkølingen, når vandet har denne temperatur, hvilket sker efter 16 timer. Derfor er definitionsmængden for alle tal mellem 0 og 16 inklusive : Dm 0 ; 16 I almindelighed har man følgende definition: Definition. Definitions mængden for en funktion består af alle de talværdier, som den uafhængige variabel kan have. Den kaldes for Dm. Definitions mængden angiver grafens udstrækning i aksens retning 47

48 Det har også interesse at se på de værdier af som bruges. I eksemplet med taxikørslen, var køreturen blevet begrænset til 400 km kr. Da man jo mindst skal betale 20 kr. er der brug for værdier mellem 20 kr. og 6820 kr. Dette interval kaldes funktionens værdimængde og man skriver Vm 20 ; 6820 I almindelighed har man følgende definition: Definition. Værdimængden for en funktion består af alle de talværdier, som den afhængige variabel kan have. Den kaldes for Vm. Værdimængden angiver grafens udstrækning i aksens retning 48

49 Eksempel 2 På fig. 4 er tegnet det grafiske billede af en funktion. Figur 4. Man kan aflæse definitions og værdimængden : Dm 1; 12 Vm 4; 6 Desuden kan man aflæse forskellige funktionsværdier, f.eks. 2 2, 7 1,

50 Man har så følgende definition på en funktion: Definition En funktion er en forskrift, der opfylder følgende: Til hver værdi af i definitions mængden svarer præcis et tal i værdimængden. Tallet kaldes funktionsværdien af, og man skriver 50

51 Nogle elementære funktioner KVADRAT-FUNKTIONEN Ved kvadratet på et tal forstås tallets 2. potens. Den såkaldte kvadrat funktion har forskriften og dens definitions mængde er alle reelle tal. Grafen ses på fig. 5, den kan tegnes med CAS. Grafen kaldes en parabel. Det ses at Vm 0 ; Parabler optræder mange stedet i naturen og i teknikken. Eksempelvis følger en bold som kastes, en riffelkugle og vandstrålen fra et springvand alle en parabelformet bane. Parabler bruges også i konstruktionen af broer og andre former for bygningsværker. Figur 5. 51

52 KVADRATRODS-FUNKTIONEN Alle positive tal har en kvadratrod. Kvadratroden af et positivt tal er det positive tal, der ganget med sig selv giver. F.eks. er 25 5 fordi og 49 7 fordi Desuden har 0 en kvadratrod: 0 0 fordi 0 0 Negative tal har ikke kvadratrødder, fordi et tal i 2. potens er positivt eller 0. Vi ser her på kvadratroden som funktion: Tabelværdier: Grafen for kvadratrods funktionen ses på fig. 6 52

53 Figur 6. 53

54 RECIPROKFUNKTIONEN At to tal er reciprokke betyder at de ganget med hinanden giver 1. Nogle eksempler på reciprokke tal er 2 og 0.5, 4 og 0.25, 5 og 0.2 det reciprokke tal til er fordi På lommeregneren findes en reciproktast. Funktionens graf kan tegnes med CAS. Grafen ses på fig. 7. Den kaldes en hyperbel. De to dele af grafen kaldes for de to grene. Figur 7. 54

55 Funktioners monotoniforhold I dette afsnit indføres begreberne voksende, aftagende og konstant funktion og desuden forklares begrebet monotoni interval. Endelig skal vi se på funktioners såkaldte maksimum og minimum, dvs. mulige største og mindsteværdier for funktioner. VOKSENDE, AFTAGENDE OG KONSTANT FUNKTION Vi ser på den funktion, hvis graf er angivet på fig. 8. For denne funktion gælder: større og større værdier giver større og større funktionsværdier ( værdier). En sådan funktion kaldes voksende. Det ses, at hvis man går mod højre på aksen gennem større og større tal, så vil værdierne også blive større og større. Figur 8. 55

56 På fig. 9 er tegnet grafen for en funktion, for hvilken der gælder: større og større værdier giver mindre og mindre funktionsværdier ( værdier). En sådan funktion kaldes aftagende. Hvis vi løber mod højre på aksen gennem større og større tal, vil de tilsvarende værdier blive mindre og mindre. Figur 9. Endelig kaldes en funktion konstant, hvis alle funktionsværdier er ens. Grafen er så en vandret linje. 56

57 MONOTONI-INTERVALLER Man kan opdele definitions mængden i såkaldte monotoni intervaller, hvor funktionen er voksende, aftagende eller konstant. Den funktion, hvis graf ses på fig. 10 har tre monotoni intervaller, idet man vælger monotoni intervallerne så store som muligt: er voksende i 1; 5 og 9; 12 er aftagende i 5; 9 Figur 10. Når man opskriver funktionens monotoni intervaller og angiver om funktionen er voksende, aftagende eller konstant i intervallet, har vi anført dens monotoniforhold. 57

58 Læg mærke til følgende: Monotoni intervaller aflæses udelukkende på aksen. Funktionens værdier på aksen indgår slet ikke. De punkter, hvor to monotoni intervaller støder sammen, medregnes til dem begge. MAKSIMUM OG MINIMUM I mange tilfælde har en funktion en størsteværdi og/eller en mindsteværdi, også kaldet maksimum og minimum. På fig. 10 er den største funktionsværdi 6 og den mindste funktionsværdi er 3 Man siger at: har et maksimum på 6 som antages for 12 har et minimum på 3 som antages for 9 58

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Kapitel 5 Renter og potenser

Kapitel 5 Renter og potenser Matematik C (må anvedes på Ørestad Gymnasium) Renter og potenser Når en variabel ændrer værdi, kan man spørge, hvor stor ændringen er. Her er to måder at angive ændringens størrelse. Hvis man vejer 95

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Kapitel 2 Tal og variable

Kapitel 2 Tal og variable Tal og variable Uden tal ingen matematik - matematik handler om tal og anvendelse af tal. Matematik beskæftiger sig ikke udelukkende med konkrete problemer fra andre fag, og de konkrete tal fra andre fagområder

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen

Lærervejledning til Træn matematik på computer. Lærervejledning. Træn matematik på computer. ISBN 978-87-992954-5-6 www.learnhow.dk v/rikke Josiasen Lærervejledning Træn matematik på computer Materialet består af 31 selvrettende emner til brug i matematikundervisningen i overbygningen. De fleste emner består af 3 sider med stigende sværhedsgrad. I

Læs mere

Rentesregning. Dine drømme er kun et klik væk... Lån op til 25.000 kr. nu

Rentesregning. Dine drømme er kun et klik væk... Lån op til 25.000 kr. nu Rentesregning Vi skal kigge på hvordan en lille rente kan have stor betydning på den samlede gæld. Vi skal kigge på lånetyper og opsparings samt gældsformlerne. Version 2.1 Sct. Knud Henrik S. Hansen Dine

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2014, skoleåret 13/14 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Oversigt over undervisningen i matematik 1y 07/08

Oversigt over undervisningen i matematik 1y 07/08 Oversigt over undervisningen i matematik 1y 07/08 side1 Der undervises efter: MatC Nielsen & Fogh: Vejen til Matematik C ( Forlaget HAX) EKS Knud Nissen : TI-82 stat introduktion og eksempler Ovenstående

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Undervisningsbeskrivelse & Oversigt over projektrapporter

Undervisningsbeskrivelse & Oversigt over projektrapporter Undervisningsbeskrivelse & Oversigt over projektrapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål 1a sommeren 2009 (reviderede) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar renteformlen og forklar hvorledes hver

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010 Institution Handelsskolen Sjælland Syd, Campus Vordingborg Uddannelse Fag og niveau Lærer(e)

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Niels Just Mikkelsen mac3 Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard Lindeløv mac2 Oversigt over gennemførte undervisningsforløb

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Lektion 9s Statistik - supplerende eksempler

Lektion 9s Statistik - supplerende eksempler Lektion 9s Statistik - supplerende eksempler Middelværdi for grupperede observationer... Summeret frekvens og sumkurver... Indekstal... Lektion 9s Side 1 Grupperede observationer Hvis man stiller et spørgsmål,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj - juni 2015, skoleåret 14/15 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg HF

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 8. klasse handler om tal og regning. Kapitlet indledes med, at vores titalssystem som positionssystem sættes i en historisk sammenhæng. Gennem arbejdet med

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Mundtlig eksamen Maj-Juni 2014 Institution VUF Uddannelse Fag og niveau stx (Studenterkursus) Matematik C

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2015 VUC

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007

FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 FAGLIG REGNING Pharmakon, farmakonomuddannelsen september 2007 Indholdsfortegnelse Side De fire regningsarter... 3 Flerleddede størrelser... 5 Talbehandling... 8 Forholdsregning... 10 Procentregning...

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution ZBC, Vordingborg Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørgen Slot

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 10/11 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Hvidovre-Amager Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Suna Vinther

Læs mere

vækst trin 2 brikkerne til regning & matematik preben bernitt

vækst trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik vækst trin 2 preben bernitt brikkerne til regning & matematik vækst, trin 2 ISBN: 978-87-92488-05-3 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er kun tilladt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 15 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kristian Møller

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 11. Denne

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

ØVEHÆFTE FOR MATEMATIK C RENTESREGNING

ØVEHÆFTE FOR MATEMATIK C RENTESREGNING ØVEHÆFTE FOR MATEMATIK C RENTESREGNING hvor a INDHOLDSFORTEGNELSE 1 Introduktion... side 1 Renters rente på 4 måder... side 2 2 Grundlæggende færdigheder... side 3 2c Anvendelse af kapitalfremskrivningsformlen

Læs mere

Grundlæggende matematik

Grundlæggende matematik Grundlæggende matematik Noterne vil indeholde gennemgang af grundlæggende regneregler og regneoperationer afledt af disse. Dette er (vil mange påstå) det vigtigste at mestre for at kunne begå sig i (samt

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Michael

Læs mere

Matematik for hf C-niveau

Matematik for hf C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for hf C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for hf C-niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2011 Institution Herningsholm Gymnasium, hhx i Herning Uddannelse Fag og niveau Lærer(e) hhx Matematik

Læs mere

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger

Eksamensspørgsmål 11q sommer 2012. Spørgsmål 1: Ligninger Eksamensspørgsmål 11q sommer 01. Gør rede for omformningsreglerne for ligninger. Spørgsmål 1: Ligninger Giv eksempler på hvordan forskellige ligninger løses. Du bør her komme ind på flere forskellige ligningstyper,

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Uddannelsescenter Herning, afd. HHX-Ikast Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side1 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis

Matematikkens mysterier - på et obligatorisk niveau. 1. Basis Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 1. Basis Jorden elektron Hvor mange elektroner svarer Jordens masse til? 1. Basis 1.0 Indledning 1.1 Tal 1. Brøker 1. Reduktioner 11

Læs mere

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1

JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 JENS CARSTENSEN JESPER FRANDSEN JENS STUDSGAARD MAT A1 stx MAT A1 stx 005-007 Jens Carstensen, Jesper Frandsen, Jens Studsgaard og Systime A/S Kopiering fra denne bog må kun finde sted i overensstemmelse

Læs mere