Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser"

Transkript

1 Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1

2 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp af enten odds-ratio værdier eller relative risici. 3) Det billede, som en tabel, der viser sammenhængen mellem eksposition og sygdom/død vil ofte være confounded af bagvedliggende faktorer. 4) Man eliminerer confounder-effekten ved såkaldte stratificerede analyser 2

3 Confounding 3 Confounder før exposure Der er statistisk sammenhæng mellem confounder og exposure Confounderen er selv en risikofaktor Hvis exposure-risikoen afhænger af værdien af confounderen tales der om effekt-modifikation

4

5 Sociologisk-epidemiologisk-statistisk terminologi Der tales om de samme ting EPIDEMIOLOGEN SOCIOLOGEN STATISTIKEREN Stratifikation Mantel-Haensel analyser Elaborering og specifikation Analyse af betingede relationer Regressionsanalyser Confounding Forklaring Betinget uafhængighed Confounding Specifikation: Ingen interaktion Homogene sammenhænge Effekt-modifikation Heterogene Interaktion sammenhænge Odds-ratio værdier Gammakoefficienter Parametre i logistiske regressionsanalyser 5

6

7 Mantel-Haensel estimatet Sygdom Eksposition nej ja I alt nej a b a+b ja c d c+d I alt a+c b+d n = a+b+c+d Odds-ratio ω= ad bc 7

8

9 Antag at Z er en confounder med k forskellige værdier. Confounder (Z) Sygdom Eksposition nej ja antal odds-ratio Z = 1 nej a 1 b 1 a1d1 ω 1 = b1c1 ja c 1 d 1 n 1 Z = 2 nej a 2 b 2 a 2d 2 ω 2 = b 2c 2 ja c 2 d 2 n 2.. Z = nej a b a d ω = b c.. ja c d n Z = k nej a k b k ω k = a b k k d c k k ja c k d k n k 9

10 Mantel og Haensel (1959) estimatet af den fælles odds-ratio Bemærk, at ω = MH k = 1 k = 1 ad n bc n a d = b c = b c ω a d = = ω. b c Indsæt i definitionen af ω MH 10

11 ω = MH b c k = 1 k i= 1 k k = 1 bici ni i= 1 k = 1 = bc ω n bici n n ( v ) = ω ω MH er et vægtet gennemsnit af odds-ratio erne fra de enkelte strata, fordi summen af vægtene, i ω er lig med 1. v bc n = bic, i i ni 11

12 Husk: For det første: ω γ = ω og ω = γ γ, For det andet: den partielle γ koefficient er defineret som vægtede gennemsnits af koefficienter beregnet i separate strata. Samme grundlæggende ide bag den partielle γ coefficient og Mantel-haensel estimatet af den fælles odds-ratio. 12

13 Et epidemiologisk eksempel: Sammenhæng mellem rygevaner og hjertesygdomme Tallene i parenteser er 95% konfidensintervaller. hjertesygdom risiko relativ risiko Ryger nej ja sandsynlighed odds logit risikoratio oddsratio nej ( ) ja ( ) ref ref ( ) χ 2 = df = 1 p =

14 Forekomst af tidligere hjertesygdom er også en risikofaktor, Risiko forbundet med tidligere hjertesygdom. Hjertesygdom risiko relativ risiko Tidl. sygd. nej ja sandsynlighed odds logit risikoratio oddsratio nej ( ) ja ( ) ref ref ( ) χ 2 = df = 1 p =

15 Sammenhæng mellem rygevaner og forekomst af tidligere hjertesygdom. Ryger ikke Ryger Ialt Ingen tidl. hjertesygdom 3500 (62.2%) 2128 (37.8 %) 5628 Tidligere hjertesygdom 52 (46.8 %) 59 (53.2 %) 111 χ 2 = df = 1 p = Tidligere hjertesygdom er en confounder. 15

16 Den stratificerede analyse Betinget sammenhæng mellem rygevaner hjertesygdom givet tidligere hjertesygdom Personer uden tidligere hjertesygdom Hjertesygdom risiko relativ risiko Ryger nej ja Sandsynlighed odds logit risikoratio oddsratio nej ( ) ja ( ) ref ref ( ) χ 2 = df = 1 p =

17 Personer med tidligere hjertesygdom Hjertesygdom risiko relativ risiko Ryger nej ja p odds logit risikoratio oddsratio nej ( ) ja ( ) ref ref ( ) χ 2 = df = 1 p = ω = ( ) ω MH = ( ) Meget lille forskel på odds-ratio værdier før og efter confounder kontrol. Men fornemmelse af effekt modifikation 17

18

19 Breslow-day test for homogenitet Et klassisk χ 2 test af forskel på det observerede og det forventede. Den forventede tabel: 1) Samme række- og søjlesummer som observeret. 2) Odds-ratio værdierne er lig med ω MH i alle strata Tallene a, b, c, d, erstattes altså at forventede værdier E(a ), E(b ), E(c ), E(d ) for hvilke det gælder at E( a ) E( d ) E( b ) E( c ) = ω MH Breslow-Day testet er 2 χ k ( a E( a )) ( b E( b )) ( c E( c )) ( d E( d )) = = 1 E( a ) E( b ) E( c ) E( d ) Asymptotisk χ 2 fordelt med k-1 frihedsgrader. 19

20

21 Eksemplet Strata Odds-ratio Ingen tidligere hjertesygdom ( ) Tidligere hjertesygdom ( ) Mantel-Haensel estimat ( ) Breslow-Day test for homogenitet: χ 2 = 7.33 df = 1 p = Signifikant evidens for effekt-modifikation 21

22

23 Test for betinget uafhængighed Det har kun mening at teste om eksposition og sygdom er betinget uafhængige hvis hypotesen om homogenitet accepteres. Hvis det er tilfældet er der tre muligheder: 1) Beregn separate χ 2 tests for hvert stratum og læg dem sammen til et samlet globalt χ 2 test. Antallet af frihedsgrader er lig med antallet af strata. 2) Cochran s eller Mantel-Haensels test. (næste side) 3) Benyt et såkaldt -test, hvor logaritmen af Mantel- Haensel estimatet divideres med standardfejlen for logaritmen af estimatet: = ln( ω ) MH s.e.(ln( ω )) MH 23

24 Cochrans og Mantel-Haensel s test Beregn den observerede og forventede marginale fordeling for de to variable under nul-hypotesen ved at summere samtlige forventede værdier i hver celle henover de forskellige strata. De observerede frekvenser er givet ved a c = a, b b =, = c, d = d De forventede værdier er givet ved F( a) = F( a ), F( b) F( b ) =, F( c) = F( c ), F( d) F( d ) = Beregn derefter et konventionelt χ 2 test til sammenligning af ovenstående observerede og forventede frekvenser. 24

25 Eksemplet Mantel-Hansels test χ 2 = frihedsgrad, p< Z-testet er enig i denne konklusion. ln(ω MH ) = 0.699, standard fejlen er lig med = p <

26 Mantel-Haensel analyse af sammenhængen mellem år og boligstandard kontrolleret for uddannelse 26

27 ÅR År * BOLIG Bolig * UDD Uddannelse Crosstabulation UDD Uddannelse 1,00 <9 år 2, år 3, år ÅR År Total ÅR År Total ÅR År Total 1, , , , , , % within ÅR År % within ÅR År % within ÅR År % within ÅR År % within ÅR År % within ÅR År % within ÅR År % within ÅR År % within ÅR År BOLIG Bolig 1,00 god 2,00 dårlig Total ,3% 40,7% 100,0% ,6% 9,4% 100,0% ,1% 24,9% 100,0% ,5% 28,5% 100,0% ,8% 7,2% 100,0% ,8% 16,2% 100,0% ,1% 18,9% 100,0% ,8% 3,2% 100,0% ,3% 7,7% 100,0% 27

28 UDD Uddannelse 1,00 <9 år 2, år 3, år Risk Estimate Odds Ratio for ÅR År (1, / 2, ) For cohort BOLIG Bolig = 1,00 god For cohort BOLIG Bolig = 2,00 dårlig N of Valid Cases Odds Ratio for ÅR År (1, / 2, ) For cohort BOLIG Bolig = 1,00 god For cohort BOLIG Bolig = 2,00 dårlig N of Valid Cases Odds Ratio for ÅR År (1, / 2, ) For cohort BOLIG Bolig = 1,00 god For cohort BOLIG Bolig = 2,00 dårlig N of Valid Cases,152,098,235,655,593,723 4,315 2,992 6, ,195,117,324,770,707,840 3,954 2,540 6, ,143,035,588,838,714,983 5,865 1,602 21, % Confidence Interval Value Lower Upper Tre odds-ratio værdier <9 år: år: år:

29 Statistics Conditional Independence Homogeneity Tests for Homogeneity of the Odds Ratio Cochran's Mantel-Haensel Breslow-Day Tarone's Asymp. Sig. Chi-Squared df (2-sided) 135,878 1, ,976 1,000,582 2,748,582 2,748 Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haensel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haensel statistic when the sum of the differences between the observed and the expected is 0. Estimate ln(estimate) Std. Error of ln(estimate) Asymp. Sig. (2-sided) Asymp. 95% Confidence Interval Mantel-Haensel Common Odds Ratio Estimate Common Odds Ratio ln(common Odds Ratio) Lower Bound Upper Bound Lower Bound Upper Bound,167-1,790,165,000,121,231-2,114-1,467 The Mantel-Haensel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate. Mantel-Haensel estimatet =

30 Multipel stratifikation: Uddannelse + Kohorte år 30

31 KØN Køn * BOLIG Bolig * UDD Uddannelse * ÅR År Crosstabulation ÅR År 1, , UDD Uddannelse 1,00 <9 år 2, år 3, år 1,00 <9 år 2, år 3, år KØN Køn Total KØN Køn Total KØN Køn Total KØN Køn Total KØN Køn Total KØN Køn Total 1,00 mand 2,00 kvinde 1,00 mand 2,00 kvinde 1,00 mand 2,00 kvinde 1,00 mand 2,00 kvinde 1,00 mand 2,00 kvinde 1,00 mand 2,00 kvinde BOLIG Bolig 1,00 god 2,00 dårlig Total ,5% 47,5% 100,0% ,6% 37,4% 100,0% ,3% 40,7% 100,0% ,9% 33,1% 100,0% ,8% 19,2% 100,0% ,5% 28,5% 100,0% ,8% 22,2% 100,0% ,0% 10,0% 100,0% ,1% 18,9% 100,0% ,4% 10,6% 100,0% ,3% 8,7% 100,0% ,6% 9,4% 100,0% ,6% 7,4% 100,0% ,0% 7,0% 100,0% ,8% 7,2% 100,0% ,1% 3,9% 100,0% ,6% 2,4% 100,0% ,8% 3,2% 100,0% 31

32 Risk Estimate 95% Confidence Interval ÅR År 1, UDD Uddannelse 1,00 <9 år Odds Ratio for KØN Køn (1,00 mand / 2,00 kvinde) For cohort BOLIG Bolig = 1,00 god Value Lower Upper,661,409 1,068,839,678 1,038 2, år For cohort BOLIG Bolig = 2,00 dårlig N of Valid Cases Odds Ratio for KØN Køn (1,00 mand / 2,00 kvinde) 1,269,970 1, ,481,250,924 3, år For cohort BOLIG Bolig = 1,00 god For cohort BOLIG Bolig = 2,00 dårlig N of Valid Cases Odds Ratio for KØN Køn (1,00 mand / 2,00 kvinde) For cohort BOLIG Bolig = 1,00 god,828,710,966 1,722 1,038 2, ,389,041 3,713,864,648 1,153 For cohort BOLIG Bolig = 2,00 dårlig 2,222,304 16,237 2, ,00 <9 år N of Valid Cases Odds Ratio for KØN Køn (1,00 mand / 2,00 kvinde) 37,808,378 1,728 2, år For cohort BOLIG Bolig = 1,00 god For cohort BOLIG Bolig = 2,00 dårlig N of Valid Cases Odds Ratio for KØN Køn (1,00 mand / 2,00 kvinde) For cohort BOLIG Bolig = 1,00 god For cohort BOLIG Bolig = 2,00 dårlig,980,909 1,056 1,212,611 2, ,943,395 2,248,996,936 1,059 1,056,471 2,367 3, år N of Valid Cases Odds Ratio for KØN Køn (1,00 mand / 2,00 kvinde) For cohort BOLIG Bolig = 1,00 god 319,598,052 6,829,984,915 1,059 For cohort BOLIG Bolig = 2,00 dårlig N of Valid Cases 1,647,155 17,

33 Statistics Conditional Independence Homogeneity Tests for Homogeneity of the Odds Ratio Cochran's Mantel-Haensel Breslow-Day Tarone's Asymp. Sig. Chi-Squared df (2-sided) 7,189 1,007 6,745 1,009 2,056 5,841 2,056 5,841 Under the conditional independence assumption, Cochran's statistic is asymptotically distributed as a 1 df chi-squared distribution, only if the number of strata is fixed, while the Mantel-Haensel statistic is always asymptotically distributed as a 1 df chi-squared distribution. Note that the continuity correction is removed from the Mantel-Haensel statistic when the sum of the differences between the observed and the expected is 0. Estimate ln(estimate) Std. Error of ln(estimate) Asymp. Sig. (2-sided) Asymp. 95% Confidence Interval Mantel-Haensel Common Odds Ratio Estimate Common Odds Ratio ln(common Odds Ratio) Lower Bound Upper Bound Lower Bound Upper Bound,653 -,427,159,007,477,892 -,739 -,114 The Mantel-Haensel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate. Mantel-Haensel estimat =

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Logistisk regression 2

Logistisk regression 2 Logistisk rgrssion 2 Indhold: Logit Logistisk rgrssion Paramtrisring Vkslvirkning 1 Sammnhæng mllm rygvanr og hjrtsygdomm CHD : Hjrtsygdom MI : dligr hjrtsygdomm Sammnligning af gruppr gørs vha odds ratio!

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Elaborering: Analyse af betingede relationer

Elaborering: Analyse af betingede relationer Elaborering: Analyse af betingede relationer 1 Mordsager i Florida i perioden 1973-79 Sammenhæng mellem morderens race og forekomst af dødsdom i 4764 mordsager i Florida i 1973-1979. Dom Morder sort hvid

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere. Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Confounding og stratificeret analyse

Confounding og stratificeret analyse Faculty of Health Sciences Confounding og stratificeret analyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursets form Seks fredage

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning

- Medlemsundersøgelse, Danske Fysioterapeuter, Juni 2010. Danske Fysioterapeuter. Kvalitet i træning Danske Fysioterapeuter Kvalitet i træning Undersøgelse blandt Danske Fysioterapeuters paneldeltagere 2010 Udarbejdet af Scharling Research for Danske Fysioterapeuter juni 2010 Scharling.dk Side 1 af 84

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for i dag: Kvantitative metoder Beskrivende statistik og analyse af kvalitatitive data 1. februar 007 Test i multinomialfordelingen: Q-testet (BL.13.1-) Opsamling fra sidste gang To eksempler To-dimensionale

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Beskrivende statistik og analyse af kvalitatitive data 12. februar 2007 Kvantitative metoder 2: F3 1 Program for i dag: Test i multinomialfordelingen: Q-testet (BL.13.1-2) Opsamling

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Træningsaktiviteter dag 3

Træningsaktiviteter dag 3 Træningsaktiviteter dag 3 I træningsaktiviteterne skal I arbejde videre med Framingham data og risikoen for hjertesygdom. I skal dels lave MH-analyser som vi gjorde i timerne og dels lave en multipel logistisk

Læs mere

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary 1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

2 Logaritme- og eksponentialfunktion 6

2 Logaritme- og eksponentialfunktion 6 Indhold 1 Kontingenstabeller 2 1.1 Krydstabeller....................................... 2 1.2 Forventede under nulhypotesen............................. 4 1.3 Ki-kvadrat test......................................

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Effektmålsmodifikation

Effektmålsmodifikation Effektmålsmodifikation Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2015 l Dias nummer 1 Sidste gang Vi snakkede

Læs mere

Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test

Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test 1 Kontingenstabeller Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test 2 Logaritme- og eksponentialfunktion 3 Logistisk regression Sammenligning af odds for 2 grupper

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Opgave 1. Angiv studiets formål, design og hvilke associationsmål, der bruges. Beskriv hovedresultaterne

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader

Stikprøver og stikprøve fordelinger. Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Stikprøver og stikprøve fordelinger Stikprøver Estimatorer og estimater Stikprøve fordelinger Egenskaber ved estimatorer Frihedsgrader Statistik Statistisk Inferens: Prediktere og forekaste værdier af

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

KA 4.2 Kvantitative Forskningsmetoder Forår 2010

KA 4.2 Kvantitative Forskningsmetoder Forår 2010 KA 4.2 Kvantitative Forskningsmetoder Forår 2010 Besvar alle spørgsmål. Brug ikke mere end én side af tekst på de åbne spørgsmål som er markeret * Answer all questions. Do not write more than one page

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Rigshospitalet Århus Sygehus Epidemiologi. Hvad er det? Definition Læren om sygdommes udbredelse og årsager Indhold To hovedopgaver: Deskriptiv

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet.

Kausalitet. Introduktion til samfundsvidenskabelig metode. Samfundsvidenskabelig metode. Hvad er metode? Hvad er kausalitet. Introduktion til samfundsvidenskabelig metode Samfundsvidenskabelig metode IT-Universitetet September 2007 Mikkel Leihardt Hvad er metode? Metode er regler og retningslinjer for, hvordan vi undersøger

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2007. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 8 sider.

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Økologiske studier Tværsnitsstudier Case-kontrolstudier Kohortestudier Randomiserede studier Hvorfor er det vigtigt at

Læs mere

Eksamen i statistik 2009-studieordning

Eksamen i statistik 2009-studieordning Kandidatuddannelsen i Folkesundhedsvidenskab Det sundhedsvidenskabelige fakultet Københavns Universitet 21.12.2010 Eksamen i statistik 2009-studieordning Underviser Svend Kreiner Udarbejdet af eksamens

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Benchmarking af kommunernes sagsbehandling antagelser, metode og resultater

Benchmarking af kommunernes sagsbehandling antagelser, metode og resultater Benchmarking af kommunernes sagsbehandling antagelser, metode og resultater Anna Amilon Materiel vurdering Ved vurderingen af en afgørelses materielle indhold vurderes afgørelsens korrekthed i forhold

Læs mere

REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

REEKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N REEKSAMEN I EPIDEMIOLOGISKE METODER IT

Læs mere

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , )

Statistik for MPH: oktober Attributable risk, bestemmelse af stikprøvestørrelse (Silva: , ) Statistik for MPH: 7 29. oktober 2015 www.biostat.ku.dk/~pka/mph15 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere