Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test"

Transkript

1 Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test

2 Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen passende Nej Ja Anvend modellen

3 Smpel/Multpel Lneær Regresson Model: Y β + β x + β x + β x + L+ β x + ε k k Y afhængge varabel for te observaton. X j j te uafhængge/forklarende varable for te observaton. ε fejled, uafhængge og normalfordelte med mddelværd 0 og varans σ (kort: d N(0,σ ). β 0,,β k og σ er modellen parametre.

4 Smpel/Multpel Lneær Regresson Model: Y β 0 + β x + L + β k x k ε ε d N (0, σ + ) Systematsk komponent + Stokastsk komponent Bemærk: Den betngede mddelværd for Y : E[ Y x,, x β + β x + L + β x K k ] 0 k k

5 Regressonslne / -plan Den estmerede regresson lne/plan: b 0 er estmat af parameteren β 0 b er estmat af β, b er estmat af β osv. Resdual: Sum of square errors k k x b x b x b b x b y L ˆ y y e ˆ { Y X Yˆ Y e X ( ) n n y y e ˆ SSE

6 Model: y 0 + βx + βx β + ε Estmeret model: ˆ + y b0 + b x b x Resdual: y e e yˆ y x x $y b0 + bx + bx

7 Mndste Kvadraters Metode SSE er et mål for den totale afstand fra regressonslnen/planet tl observatonerne. SSE er en funkton af b 0, b,,b k : Mndste Kvadraters Metode: V vælger b 0, b,,b k, så SSE er mndst mulg. ( ) ( ) n k k n n x b b x b y y y e 0 ) ( ˆ SSE L

8 Total, forklaret og uforklaret varaton Total varaton Forklaret varaton + Uforklaret varaton n y Gennemsnttet af alle observatoner: Mean Squares: MST SST SSE + SSR ( ) n ( ) n y y y yˆ + ( yˆ ) y n n y SST SSR SSE MSR MSE n k n ( k + )

9 Determnatonskoeffcenten Andelen af den totale varaton der er forklaret: R Pr defnton: 0 R. R vokser når antal forklarende varable (k) vokser. Justeret R : SSR SST R SSE SST adj R Forklaret varaton Totale varaton Adj R vokser hvs fordelen ved en ekstra parameter er større end ulempen. MSR MST

10 F-Test H 0 : β β β k 0, dvs. der er kke en lneær sammenhæng mellem Y og X erne. H : Der er en lneær sammenhæng mellem Y og mndst et af X erne. Teststørrelse: MSR F MSE SSR k ( n ( k + )) Under H 0 følger F en F-fordelng med k og n-(k+) frhedsgrader. Store værder af F er krtsk for H 0. SSE

11 F-Test Krtsk værd ved sgnfkansnveau α: F α ( k, n ( k + )) Eksempel: F(5,50) og α0.05: F,7 P-værd0, F,5 P-værd0, α0, α0, Krtsk værd: F 0.05 (5,50),4

12 t-test: Test af Parameter H 0 : β 0, dvs. der er kke en lneær sammenhæng mellem Y og X. H : Der er en lneær sammenhæng mellem Y og X. Teststørrelse: t b s. e.( b ) Under H 0 følger t en t-fordelng med n-(k+) frhedsgrader. Værder af t langt fra nul er krtske for H 0.

13 t-test Krtsk værd ved sgnfkansnveau α: Eksempel: t(45) og α0.05: t α ( n ( k + )) t,4 t, P-værd0,0 0. P-værd0, α0,05 0. α0, Krtsk værd: +/- t 0.05 (45) +/-,0

14 Partel F-Test Sammenlgne en Fuld model med k forklarende varable, med en Reduceret model, der ndeholder r færre forklarende varable. H 0 : Den fulde model er kke besværet værd. H : Jo, det er den. Teststørrelse: Under H 0 følger F en F-fordelng med r og n-(k+) frhedsgrader. Store værder af F er krtsk for H 0. F ( SSRR SSR MSE F F ) / r

15 Dummy Varable En kategorsk forklarende varabel X med r nveauer omkodes tl (r-) 0/ dummy varable X,,X r-. Hver dummy varabel kodes som X hvs X er på ' te nveau. 0 alle andre tlfælde.

16 Modelkontrol V skal kontrollere følgende antagelser Y afhænger lneært af X ε er normal fordelt med mddelværd 0 og fast varans σ ndbyrdes uafhængge og uafhængg af Y og X. Vgtgste ngredens: Resdualer e. Grafske checks: Scatterplots, Resdualplots, Hstogrammer og Normalfordelngsplot.

17 Resdualplot Resdualer Resdualer 0 0 x or y$ x or y$ Homoskedastsk: Resdualerne ser ud tl at varere uafhænggt af hnanden og x. Heteroskedastsk: Varansen for resdualerne ændrer sg når x ændrer sg. Resdualer Resdualer 0 0 Td Resdualerne udvser lneær trend med tden (ellern anden varabel v kke har brugt). Dette ndkerer at td skulle nkluderes modellen. x or y$ Det buede mønster ndkerer en underlæggende kke-lneær sammenhæng.

18 Check for normalfordelng Hstogram og Q-Q plot Q-Q plot: prkkerne skal sno sg usystematsk omkrng den rette lne.

19 Check for Uafhængghed Som supplement tl resdual-plot kan man udføre formelle test for uafhængghed. Hvs observatoner er ndsamlet over td er et Durbn- Watson test for auto-korrelerede resdualer på sn plads. Et Run Test, hvor man ser på resdualernes fortegn. Problemer med heteroskedatske resdualer, kan tl tder afhjælpes med en transformaton, fx ved at erstatte Y med Y.

20 Modelsøgnng Backward søgnng: V starter med den fulde model Udfør t-test for alle β parametre modellen. Den parameter med højst P-værd over 0,05 fjernes fra modellen. Gentages ndtl alle P-værder er under 0,05. Bemærk: P-værder ændrer sg når parametre/varable fjernes fra modellen typsk nedad. Dette gælder specelt hvs en eller flere forklarende varable er mult-kolneære (fx ancentet og alder)

21 Modelsøgnng Forward søgnng: V starter med den tomme model Udfører et t-test for alle parametre der kke er modellen. Den parameter med lavest P-værd under 0,05 tlføjes. Fortsætter ndtl alle parameter har en P-værd over 0,05. Stepwse søgnng: Kombnerer Forward og Backward søgnng.

22 Multpel Lneær Regresson: Udvdelser Polynomel Regresson: Fx: Y β + β x + β x + ε 0 Dette er stadg en lneær regresson. For nogle kke-lneære modeller er det mulgt at transformere dsse, så der fremkommer en lneær model.

23 Logstsk Regresson Afhængg 0/ varabel Y : Succes og 0 Fasko p P(Y ) -p P(Y 0) Model: p log p Omskrvnng: Hvs v solerer p ovenfor får v: β 0 + βx p exp( β0 + βx ) + exp( β + β X 0 ) exp( η) p + exp( η)

24 Fortolknng af Odds p Odds: p Jo mndre odds jo mndre p. Hvs odds et er p/(-p) 4, så betyder det at sandsynlgheden for Succes er 4 gange større end for Fasko. Af logt modellen følger at Odds p β0 + βx β0 β X p Hvad sker der med odds et når X vokser med : e β 0 + β X + ) e 0 e e ( β β X β e β Odds et ændres med faktor når X vokser med. e e e

25 Logstsk Regresson: Test V ønsker at teste hypotesen H 0 : β 0 H : β 0 Teststørrelse: W b s e..( b ) Kaldes Wald teststørrelsen. Under H 0 følger W en Χ ( ch--anden ) fordelng med frhedsgrad. Store værder af W er krtske for H 0.

26 Ikke-parametrske Metoder Karakterseret ved kke at ndeholde antagelser om bestemte fordelnger, fx normalfordelte fejlled.

27 Ikke Parametrske Test Run Test: Tester om en sekvens af fx K er og P er er tlfældg. Testen baserer sg på antallet af runs af K er og P er. Mann-Whtney U Test: Test for om to fordelnger er ens. Små of store værder af U er krtske for H 0. Wlcoxon Snged-Rank Test: Et alternatv tl parret t- test. Baseret på rank af forskelle. Kruskal-Walls Test: Ikke parametrsk alternatv tl ensdet varansanalyse (ANOVA). Testet baserer sg på ranks.

28 Ch--anden Teststørrelse O er faktske antal observatoner te kategor og E er det forventede antal observatoner under H 0. Ch--anden teststørrelsen er gvet ved X O E E k ( ) Når stkprøvestørrelsen vokser og k fastholder, så nærmer X sg en Ch--anden fordelng. Bemærk: For at ch--anden approksmatonen er god skal alle E være mndst 5, dvs. v forventer mndst 5 observatoner hver kategor.

29 Kontngenstabeller Udgangspunkt er to kategorske varable A har r kategorer {,,,r} B har c kategorer {,,,c} Tlsvarende kontngenstabel har r rækker og c kolonner. Hver celle (,j) tabellen ndeholder antal af observatoner O j, hvor A og Bj. R er rækkesummen: summen af observatoner te række. R er samtdg antal observatoner, hvor A. C j er kolonnesummen: summen af observatoner j te kolonne. C j er samtdg antal observatoner, hvor Bj.

30 Kontngenstabel: Test for Uafhængghed H 0 : Kategorske varable A og B er uafhængge. H : A og B er afhængge. Under H 0 er det forventede antal observatoner celle (,j) gvet ved E j R C j / n. Teststørrelse: c r ( O j Ej ) X E j Under H 0 følger X en Χ -fordelng med (-c)(-r) frhedsgrader. Store værder af X er krtsk for H 0. j

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression

Statistik Lektion 15 Mere Lineær Regression. Modelkontrol Prædiktion Multipel Lineære Regression Statstk Lekton 15 Mere Lneær Regresson Modelkontrol Prædkton Multpel Lneære Regresson Smpel Lneær Regresson - repetton Spørgsmål: Afhænger y lneært af x?. Model: y = β + β x + ε ε d N(0, σ 0 1 2 ) Systematsk

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelsøgning Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelsøgnng Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E[ y] = α...

Læs mere

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol

Anvendt Statistik Lektion 10. Regression med både kvantitative og kvalitative forklarende variable Modelkontrol Anvendt Statstk Lekton 0 Regresson med både kvanttatve og kvaltatve forklarende varable Modelkontrol Opsummerng I forbndelse med multpel lneær regresson så v på modeller på formen E y] = α... [ 3 3 4 4

Læs mere

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA)

Statistik II Lektion 4 Generelle Lineære Modeller. Simpel Lineær Regression Multipel Lineær Regression Flersidet Variansanalyse (ANOVA) Statstk II Lekton 4 Generelle Lneære Modeller Smpel Lneær Regresson Multpel Lneær Regresson Flersdet Varansanalyse (ANOVA) Logstsk regresson Y afhængg bnær varabel X 1,,X k forklarende varable, skala eller

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Opbygnng af statstsk model Eksploratv data-analyse Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Statikstik II 4. Lektion. Generelle Lineære Modeller

Statikstik II 4. Lektion. Generelle Lineære Modeller Statkstk II 4. Lekton Generelle Lneære Modeller Generel Lneær Model Y afhængg skala varabel X 1,,X k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet X + k = E( Y X ) = α + β x + + β

Læs mere

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel

Statistik II Lektion 5 Modelkontrol. Modelkontrol Modelsøgning Større eksempel Statstk II Lekton 5 Modelkontrol Modelkontrol Modelsøgnng Større eksempel Generel Lneær Model Y afhængg skala varabel 1,, k forklarende varable, skala eller bnære Model: Mddelværden af Y gvet =( 1,, k

Læs mere

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller

Statikstik II 3. Lektion. Multipel Logistisk regression Generelle Lineære Modeller Statkstk II 3. Lekton Multpel Logstsk regresson Generelle Lneære Modeller Defntoner: Repetton Sandsynlghed for at Ja tl at være en god læser gvet at man er en dreng skrves: P( God læser Ja Køn Dreng) Sandsynlghed

Læs mere

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol

Økonometri lektion 7 Multipel Lineær Regression. Testbaseret Modelkontrol Økonometr lekton 7 Multpel Lneær Regresson Testbaseret Modelkontrol MLR Model på Matrxform Den multple lneære regressons model kan skrves som X y = Xβ + Hvor og Mndste kvadraters metode gver følgende estmat

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1

Økonometri 1. Heteroskedasticitet 27. oktober Økonometri 1: F12 1 Økonometr 1 Heteroskedastctet 27. oktober 2006 Økonometr 1: F12 1 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.3-4) Sdste gang: I dag: Konsekvenser af heteroskedastctet for OLS Korrekton af varansen

Læs mere

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder

Regressionsanalyse. Epidemiologi og Biostatistik. 1.Simpel lineær regression (Kapitel 11) systolisk blodtryk og alder Regressonsanalyse Epdemolog og Bostatstk Mogens Erlandsen, Insttut for Bostatstk Uge, torsdag (forelæsnng) 1.Smpel lneær regresson (Kaptel 11) systolsk blodtryk og alder. Multpel lneær regresson (Kaptel

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)?

Økonometri 1. Lineær sandsynlighedsmodel. Hvad nu hvis den afhængige variabel er en kvalitativ variabel (med to kategorier)? Dagens program Økonometr Heteroskedastctet 6. oktober 004 Hovedemnet for denne forelæsnng er heteroskedastctet (kap. 8.-8.3) Lneære sandsynlghedsmodel (kap 7.5) Konsekvenser af heteroskedastctet Hvordan

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 9

Økonometri 1 Efterår 2006 Ugeseddel 9 Økonometr 1 Efterår 006 Ugeseddel 9 Program for øvelserne: Opsamlng på Ugeseddel 8 Gruppearbejde SAS øvelser Ugeseddel 9 består at undersøge, om der er heteroskedastctet vores model for væksten og så fald,

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Morten Frydenberg Bostatstk verson dato: -4- Bostatstk uge mandag Morten Frydenberg, Afdelng for Bostatstk Resume: Hvad har v været gennem ndtl nu Lneær (normal) regresson en kontnuert forklarende varabel

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dagens program: Heteroskedastctet (Wooldrdge kap. 8.4) Kvanttatve metoder Heteroskedastctet 6. aprl 007 Sdste gang: Konsekvenser af heteroskedastctet for OLS Whte s korrekton af OLS varansen Test for heteroskedastctet

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Simpel Lineær Regression - repetition

Simpel Lineær Regression - repetition Smpel Leær Regresso - repetto Spørgsmål: Afhæger leært af?. Model: β + β + ε ε d N(0, σ 0 ) Sstematsk kompoet + Stokastsk kompoet Estmato - repetto Vha. Mdste Kvadraters Metode fder v regressosle hvor

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag

6. SEMESTER Epidemiologi og Biostatistik Opgaver til 3. uge, fredag Afdelng for Epdemolog Afdelng for Bostatstk 6. SEESTER Epdemolog og Bostatstk Opgaver tl 3. uge, fredag Data tl denne opgave stammer fra. Bland: An Introducton to edcal Statstcs (Exercse 11E ). V har hentet

Læs mere

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse

Prøveeksamen Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kommenteret vejledende besvarelse Økonometr Prøveeksamen Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Kommenteret vejledende besvarelse Resultaterne denne besvarelse er fremkommet ved brug af eksamensnummer 7. Dne

Læs mere

Lineær regressionsanalyse8

Lineær regressionsanalyse8 Lneær regressonsanalyse8 336 8. Lneær regressonsanalyse Lneær regressonsanalyse Fra kaptel 4 Mat C-bogen ved v, at man kan ndtegne en række punkter et koordnatsystem, for at afgøre, hvor tæt på en ret

Læs mere

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006

Økonometri 1. Lineær sandsynlighedsmodel (Wooldridge 8.5). Dagens program: Heteroskedasticitet 30. oktober 2006 Dagens program: Øonometr 1 Heterosedastctet 30. otober 006 Effcent estmaton under heterosedastctet (Wooldrdge 8.4): Sdste gang: Kendte vægte - Weghted Least Squares (WLS) Generalzed Least Squares (GLS)

Læs mere

Bilag 6: Økonometriske

Bilag 6: Økonometriske Marts 2015 Blag 6: Økonometrske analyser af energselskabernes omkostnnger tl energsparendsatsen Energstyrelsen Indholdsfortegnelse 1. Paneldataanalyse 3 Specfkaton af anvendte panel regressonsmodeller

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf3 Insttut for Matematske Fag Aalborg Unverstet Gvet n uafhængge

Læs mere

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen

Landbrugets efterspørgsel efter Kunstgødning. Angelo Andersen Landbrugets efterspørgsel efter Kunstgødnng Angelo Andersen.. Problemformulerng I forbndelse med ønsket om at reducere kvælstof udlednngen fra landbruget kan det være nyttgt at undersøge hvordan landbruget

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation

Statistik Lektion 14 Simpel Lineær Regression. Simpel lineær regression Mindste kvadraters metode Kovarians og Korrelation Statstk Lekto 4 Smpel Leær Regresso Smpel leær regresso Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures ( ad Sales ( Et scatterplot vser par (, af observatoer.

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1

Økonometri 1. Avancerede Paneldata Metoder I 24.november F18: Avancerede Paneldata Metoder I 1 Økonometr 1 Avancerede Paneldata Metoder I 24.november 2006 F18: Avancerede Paneldata Metoder I 1 Paneldatametoder Sdste gang: Paneldata begreber og to-perode tlfældet (kap 13.3-4) Uobserveret effekt modellen:

Læs mere

Repetition. Forårets højdepunkter

Repetition. Forårets højdepunkter Repetto Forårets højdepukter Forårets højdepukter Smpel Leær Regresso Smpel leær regresso: Mdste kvadraters metode Kovaras og Korrelato Scatterplot Scatterplot kf Advertsg Epedtures (X ad Sales (Y Et scatterplot

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Opsamlng vedr. nferens uden MLR.5: Beregnng af robuste standardfejl og kovarans under heteroskedastctet (W8.) W.6: Flere emner en multpel regressonsmodel Inferens den

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Økonometri 1 Efterår 2006 Ugeseddel 13

Økonometri 1 Efterår 2006 Ugeseddel 13 Økonometr 1 Efterår 2006 Ugeseddel 13 Prram for øvelserne: Gruppearbejde plenumdskusson SAS øvelser Øvelsesopgave: Vækstregressoner (fortsat) Ugeseddel 13 fortsætter den emprske analyse af vækstregressonen

Læs mere

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser

Vi ønsker også at teste hypoteser om parametrene. F.eks: Kan µ tænkes at være 0 (eller anden fast, kendt værdi)? Eksempel: dollarkurser Uge 37 I Teoretsk Statstk, 9.sept. 003. Fordelger kyttet tl N-ford. Gvet: uafhægge observatoer af samme N(µ,σ )-fordelte stokastske varabel. Formelt: X,X,,X uafhægge, alle N(µ,σ )-fordelt. Mddelværd µ

Læs mere

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model)

Statistik 9. gang 1 REGRESSIONSANALYSE. Korrelation (kontrol af model) Regression (tilpasning af model) Statstk 9. gag REGRESSIONSANALYSE Korrelato kotrol af model Regresso tlpasg af model Statstk 9. gag KORRELATIONS ANALYSE. Grad af fælles varato mellem X og Y. Område og fordelg af sample data 3. Optræde

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 y = cy ( c 0) Plan for resten af gennemgangen Kvanttatve metoder Instrumentvarabel estmaton 4. maj 007 F5: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler En regressor,

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvanttatve metoder 2 Instrumentvarabel estmaton 14. maj 2007 KM2: F25 1 y = cy ( c 0) Plan for resten af gennemgangen F25: Instrumentvarabel (IV) estmaton: Introdukton tl endogentet og nstrumentvarabler

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder

Indtjening, konkurrencesituation og produktudvikling i danske virksomheder Kvanttatve metoder 2 Forår 2007 Oblgatorsk opgave 2 Indtjenng, konkurrencestuaton og produktudvklng danske vrksomheder Opgavens prmære formål er at lgne formen på tag-hjem delen af eksamensopgaven. Der

Læs mere

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006

Økonometri 1. Avancerede Paneldata Metoder II Introduktion til Instrumentvariabler 27. november 2006 Økonometr 1 Avancerede Paneldata Metoder II Introdukton tl Instrumentvarabler 27. november 2006 Paneldata metoder Sdste gang: Paneldata med to eller flere peroder og fxed effects estmaton. Første-dfferens

Læs mere

Løsninger til kapitel 12

Løsninger til kapitel 12 Løsnnger tl kaptel 1 Opgave 1.1 HypoStat gver umddelbart: ft = 7 En P Teststørrelse H 0 : Alle P passer mandag 80 0,14857 48,8571 3,89737 H 1 : Ikke alle P passer trsdag 30 0,14857 48,8571 1,48899 onsdag

Læs mere

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol

Udvikling af en metode til effektvurdering af Miljøstyrelsens Kemikalieinspektions tilsyn og kontrol Udvklng af en metode tl effektvurderng af Mljøstyrelsens Kemkalenspektons tlsyn og kontrol Orenterng fra Mljøstyrelsen Nr. 10 2010 Indhold 1 FORORD 5 2 EXECUTIVE SUMMARY 7 3 INDLEDNING 11 3.1 AFGRÆNSNING

Læs mere

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004

Økonometri 1. For mange variable i modellen. For få variable. Dagens program. Den multiple regressionsmodel 21. september 2004 Dages program Økoometr De multple regressosmodel. september 004 Emet for dee forelæsg er stadg de multple regressosmodel (Wooldrdge kap. 3.4-3.5) Praktske bemærkg Opsamlg fra sdst Irrelevate varable og

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 9

Kvantitative metoder 2 Forår 2007 Ugeseddel 9 Kvanttatve metoder 2 Forår 2007 Ugeseddel 9 Program for øvelserne: Introdukton af problemstllng og datasæt Gruppearbejde SAS øvelser Paneldata for tlbagetræknngsalder Ugesedlen analyserer et datasæt med

Læs mere

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 12. forelæsning Bo Friis Nielsen Sandsynlghedsregnng. forelæsnng Bo Frs Nelsen Matematk og Computer Scence Danmarks Teknske Unverstet 800 Kgs. Lyngby Danmark Emal: bfn@mm.dtu.dk Dagens nye emner afsnt 6.5 Den bvarate normalfordelng Y

Læs mere

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36.

Antag X 1,..., X n stokastiske variable med fælles middelværdi µ og varians σ 2. Hvis µ er ukendt estimeres σ 2 ved 1/36. Estmaton af varans/sprednng Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - rw@math.aau.dk Insttut for Matematske Fag Aalborg Unverstet Antag X,..., X n stokastske varable med fælles

Læs mere

Beregning af strukturel arbejdsstyrke

Beregning af strukturel arbejdsstyrke VERION: d. 2.1.215 ofe Andersen og Jesper Lnaa Beregnng af strukturel arbedsstyrke Der er betydelg forskel Fnansmnsterets (FM) og Det Økonomske Råds (DØR) vurderng af det aktuelle output gap. Den væsentlgste

Læs mere

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen

Vægtet model. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægte. Vægte: Eksempel. Definition: Vægtrelationen Vægtet model Landmålngens fejlteor Lekton 4 Vægtet gennemsnt Fordelng af slutfejl - kkb@mathaaudk http://peoplemathaaudk/ kkb/undervsnng/lf Gvet n uafhængge målnger x,, x n af n størrelser µ,, µ n Målnger

Læs mere

Binomialfordelingen. Erik Vestergaard

Binomialfordelingen. Erik Vestergaard Bnomalfordelngen Erk Vestergaard Erk Vestergaard www.matematkfysk.dk Erk Vestergaard,. Blleder: Forsde: Stock.com/gnevre Sde : Stock.com/jaroon Sde : Stock.com/pod Desuden egne fotos og llustratoner. Erk

Læs mere

Kvantitative metoder 2 Forår 2007 Ugeseddel 10

Kvantitative metoder 2 Forår 2007 Ugeseddel 10 Kvanttatve metoder 2 Forår 2007 Ugeseddel 0 Program for øvelserne: Gennemgang af teoropgave fra Ugesedel 9 Gruppearbejde og plenumdskusson SAS øvelser, spørgsmål -4. Sdste øvelsesgang (uge 2): SAS øvelser,

Læs mere

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005

Økonometri 1. Funktionel form. Funktionel form (fortsat) Dagens program. Den simple regressionsmodel 14. september 2005 Dages program Økoometr De smple regressosmodel 4. september 5 Dee forelæsg drejer sg stadg om de smple regressosmodel (Wooldrdge kap.4-.6) Fuktoel form Hvorår er OLS mddelret? Varase på OLS estmatore Regressosmodelle

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Validering og test af stokastisk trafikmodel

Validering og test af stokastisk trafikmodel Valderng og test af stokastsk trafkmodel Maken Vldrk Sørensen M.Sc., PhDstud. Otto Anker Nelsen Cv.Ing., PhD, Professor Danmarks Teknske Unverstet/ Banestyrelsen Rådgvnng 1. Indlednng Trafkmodeller har

Læs mere

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00

Fagblok 4b: Regnskab og finansiering 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 til 31.01 2004 kl. 14.00 Fagblok 4b: Regnskab og fnanserng 2. del Hjemmeopgave - 28.01 2005 kl. 14.00 tl 31.01 2004 kl. 14.00 Dette opgavesæt ndeholder følgende: Opgave 1 (vægt 50%) p. 2-4 Opgave 2 (vægt 25%) samt opgave 3 (vægt

Læs mere

Husholdningsbudgetberegner

Husholdningsbudgetberegner Chrstophe Kolodzejczyk & Ncola Krstensen Husholdnngsbudgetberegner En model for husholdnngers daglgvareforbrug udarbejdet for Penge- og Pensonspanelet Publkatonen Husholdnngsbudgetberegner En model for

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Fysik 3. Indhold. 1. Sandsynlighedsteori

Fysik 3. Indhold. 1. Sandsynlighedsteori Fysk 3 Indhold Termodynamk John Nclasen 1. Sandsynlghedsteor 1.1 Symboler 1.2 Boolsk Algebra 1.3 Betngede Udsagn 1.4 Regneregler 1.5 Bayes' formel 2. Fordelnger 2.1 Symboler 2.2 Bnomal Fordelngen 2.3 ultnomal

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvattatve metoder Iferes de leære regressosmodel 9. marts 007 Opsamlg vedr. feres e leær regressosmodel uder Gauss-Markov atagelser (W.4-5) Eksempel med flere restrktoer (F-test) Lagrage

Læs mere

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger

Variansanalyse (ANOVA) Repetition, ANOVA Tjek af model antagelser Konfidensintervaller for middelværdierne Tukey s test for parvise sammenligninger Vaansanalyse (ANOVA) Repetton, ANOVA Tjek af model antagelse Konfdensntevalle fo mddelvædene Tukey s test fo pavse sammenlgnnge ANOVA - defnton ANOVA (ANalyss Of VAance), også kaldet vaansanalyse e en

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Lineær regression i SAS. Lineær regression i SAS p.1/20

Lineær regression i SAS. Lineær regression i SAS p.1/20 Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Stadig ligeløn blandt dimittender

Stadig ligeløn blandt dimittender Stadg lgeløn blandt dmttender Kvnder og mænd får stadg stort set lge meget løn deres første job, vser DJs dmttendstatstk for oktober 2013. Og den gennemsntlge startløn er nu på den pæne sde af 32.000 kr.

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Scorer FCK "for mange" mål i det sidste kvarter?

Scorer FCK for mange mål i det sidste kvarter? Uge 7 I Teoretsk Statstk, 9. aprl 2004. Hvor er v? Hvor var v: opstllg af statstske modeller Hvor skal v he: tro om estmato og test 2. Eksempel: FCK Estmato (tutvt) Test Maksmum lkelhood estmato Scorer

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Kreditrisiko efter IRBmetoden

Kreditrisiko efter IRBmetoden Kredtrsko efter IRBmetoden Vacceks formel Arbejdspapr, oktober 2013 1 KRAKAfnans - Fnanskrsekommssonens sekretarat Teknsk arbejdspapr udkast 15. oktober 2013 Indlednng Det absolutte mndstekrav tl et kredtnsttut

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Tabsberegninger i Elsam-sagen

Tabsberegninger i Elsam-sagen Tabsberegnnger Elsam-sagen Resumé: Dette notat beskrver, hvordan beregnngen af tab foregår. Første del beskrver spot tabene, mens anden del omhandler de afledte fnanselle tab. Indhold Generelt Tab spot

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC

PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC PRODUKTIONSEFFEKTEN AF AVL FOR HANLIG FERTILITET I DUROC MEDDELELSE NR. 1075 Vrknngsgraden (gennemslaget) tl en produktonsbesætnng for avlsværdtallet for hanlg fertltet Duroc blev fundet tl 1,50, hvlket

Læs mere

2. Sandsynlighedsregning

2. Sandsynlighedsregning 2. Sandsynlghedsregnng 2.1. Krav tl sandsynlgheder (Sandsynlghedens aksomer) Hvs A og B er hændelser, er en sandsynlghed, hvs: 1. 0 ( A) 1 n 2. ( A ) 1 1 3. ( A B) ( A) + ( B), hvs A og B ngen udfald har

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Måleusikkerhed i kalibrering Nr. : AB 11 Dato : 2011-12-01 Side : 1/3

Måleusikkerhed i kalibrering Nr. : AB 11 Dato : 2011-12-01 Side : 1/3 Sde : 1/3 1. Anvendelsesområde 1.1 Denne akkredterngsbestemmelse gælder ved DANAK s akkredterng af kalbrerngslaboratorer. 1. Akkredterede kalbrerngslaboratorer skal ved estmerng af uskkerhed, rapporterng

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat.

Nøglebegreber: Objektivfunktion, vægtning af residualer, optimeringsalgoritmer, parameterusikkerhed og korrelation, vurdering af kalibreringsresultat. Håndbog grundvandsmodellerng, Sonnenborg & Henrksen (eds 5/8 GEUS Kaptel 14 IVERS MODELLERIG Torben Obel Sonnenborg Geologsk Insttut, Københavns Unverstet Anker Laer Høberg Hydrologsk Afdelng, GEUS øglebegreber:

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x

Læs mere

Note til Generel Ligevægt

Note til Generel Ligevægt Mkro. år. semester Note tl Generel Lgevægt Varan kap. 9 Generel lgevægt bytteøkonom Modsat partel lgevægt betragter v nu hele økonomen på én gang; v betragter kke længere nogle prser for gvet etc. Den

Læs mere

Fastlæggelse af strukturel arbejdsstyrke

Fastlæggelse af strukturel arbejdsstyrke d. 23.5.2013 Fastlæggelse af strukturel arbedsstyrke Dokumentatonsnotat tl Dansk Økonom, Forår 2013 For at kunne vurdere økonomens langsgtede vækstpotentale og underlggende saldoudvklng og for at kunne

Læs mere

RESEARCH PAPER. Nr. 7, Prisoptimering i logitmodellen under homogen og heterogen forbrugeradfærd. Jørgen Kai Olsen

RESEARCH PAPER. Nr. 7, Prisoptimering i logitmodellen under homogen og heterogen forbrugeradfærd. Jørgen Kai Olsen RESEARCH PAPER Nr. 7, 23 Prsotmerng logtmodellen under homogen og heterogen forbrugeradfærd af Jørgen Ka Olsen INSTITUT FOR AFSÆTNINGSØKONOMI COPENHAGEN BUSINESS SCHOOL SOLBJERG PLADS 3, DK-2 FREDERIKSBERG

Læs mere

Luftfartens vilkår i Skandinavien

Luftfartens vilkår i Skandinavien Luftfartens vlkår Skandnaven - Prsens betydnng for valg af transportform Af Mette Bøgelund og Mkkel Egede Brkeland, COWI Trafkdage på Aalborg Unverstet 2000 1 Luftfartens vlkår Skandnaven - Prsens betydnng

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Baggrundsnotat omhandlende metode til Elforbrugspanelerne

Baggrundsnotat omhandlende metode til Elforbrugspanelerne Baggrundsnoa omhandlende meode l Elforbrugspanelerne 8. maj 01 1 Formål... 1 Modelbeskrvelse... 1 3 Forudsænnger for og mulge es af den lneære regressonsmodel... 3.1 OLS modellen og dens opbygnng... 3.

Læs mere

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1

Rettevejledning til Økonomisk Kandidateksamen 2005II, Økonometri 1 Rettevejlednng tl Økonomsk Kanddateksamen 005II, Økonometr 1 Vurderngsgrundlaget er selve opgavebesvarelsen og blaget, nklusve det afleverede SAS program. Materalet på dskette/cd bedømmes som sådan kke,

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

BEVISER TIL KAPITEL 7

BEVISER TIL KAPITEL 7 BEVISER TIL KAPITEL 7 A. Komplemetærhædelse Det er klart, at e hædelse A og de komplemetære hædelse A udgør hele udfaldsrummet U, dvs. A A = Da fås P(U = U P(A A = P (A + P(A = da de to hædelser er dsjukte

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 21. september 2005 Dages program Økoometr De multple regressosmodel. september 005 Emet for dee forelæsg er de multple regressosmodel (Wooldrdge kap 3.-3.3+appedx E.-E.) Defto og motvato Fortolkg af parametree de multple

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Stadig ligeløn blandt dimittender

Stadig ligeløn blandt dimittender Stadg lgeløn blandt dmttender Kvnder og mænd får stadg stort set lge meget løn deres første job, vser DJs dmttendstatstk for oktober 2012. Og den gennemsntlge startløn er fortsat på den pæne sde af 31.500

Læs mere