Statistiske Modeller 1: Kontingenstabeller i SAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Statistiske Modeller 1: Kontingenstabeller i SAS"

Transkript

1 Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel. Mere præcist, hvis vi i multinomialmodellen vil teste π Π 2 under π Π 1, hvor Π 2 Π 1 Π (k), er 2 log Q den samme som hvis vi i poissonmodellen med λ i = γπ i, i = 1,..., k, tester (γ, π) R + Π 2 under modellen (γ, π) R + Π 1. Desuden fås estimaterne i multinomialmodellen fra estimaterne i poissonmodellen ved ˆπ i = ˆλ i /ˆλ = ˆλ i /n, hvor n er det samlede antal observationer, n = i n(i). For at lave beregninger i multinomialmodellen i SAS gør vi derfor det at vi bruger poissonmodellen i SAS. Hvis vi specificerer sandsynlighederne i en multinomialmodel ved { } p(i) = exp φ 0 + a φ a (i a ), hvor A er en klasse af ikke-tomme delmængder af mængden af inddelingskriterier Γ, så vil φ 0 være bestemt ved i p(i) = 1. Den tilsvarende poissonmodel er givet ved { } λ i = exp φ 0 + a φ a (i a ), (1) hvor φ 0 nu varierer frit. Estimatet for φ a (i a ) fra poissonmodellen er det samme som estimatet i multinomialmodellen. 2 Dataindlæsning En kontingenstabel indlæses i SAS i form af en matriks. Antallet af rækker er lig med antallet af celler i kontingenstabellen, det vil sige I = γ Γ I γ, og antallet af søjler er lig med antallet af inddelingskriterier plus 1, det vil sige Γ + 1. I SAS hedder et inddelingskriterie en faktor. Hvert inddelingskriterie svarer til en søjle, og her angives for hver celle i kontingenstabellen niveauet for dette kriterie. Den sidste søjle indeholder de observerede antal i hver celle. Læser vi en række fra venstre mod højre får vi værdierne for niveauerne af alle kriterierne i Γ for en given celle, og til sidst får vi det observerede antal i cellen. 1

2 Som et eksempel ser vi på hvor mange der har bestået første årsprøve på politstudiet på København Universitet i årgangene Vi deler ind efter den adgangsgivende eksamen: matematikere, sproglige, andre, efter køn: mænd, kvinder, og efter resultat: bestået, dumpet. Tallene er givet i tabellen nedenfor. bestået dumpet matematikere mænd kvinder sproglige mænd kvinder andre mænd kvinder 8 24 To versioner af det tilsvarende input til SAS er gengivet nedenfor. I den første version er den adgangsgivende eksamen kodet som 1,2,3, køn er kodet som 1,2, og resultat er kodet som 1,2. DATA politstudie; INPUT adgang koen resultat antal; DATALINES; ; I den næste version er den adgangsgivende eksamen kodet som mat, sprog, andet, køn er kodet som mand, kvinde, og resultat er kodet som bestaaet, dumpet. DATA politstudie; INPUT adgang$1-5 koen$7-12 resultat$14-21 antal; DATALINES; mat mand bestaaet 407 mat mand dumpet 460 mat kvinde bestaaet 39 mat kvinde dumpet 50 sprog mand bestaaet 46 sprog mand dumpet 112 sprog kvinde bestaaet 20 2

3 sprog kvinde dumpet 42 andet mand bestaaet 42 andet mand dumpet 177 andet kvinde bestaaet 8 andet kvinde dumpet 24 ; 3 Modelspecifikation Vi vil betragte modeller hvor cellesandsynlighederne p(i) specificeres ved hovedvirkninger og interaktioner. Lad os starte med et eksempel. Vi betragter en 2-dimensional kontingenstabel hvor de to inddelingskriterier er rækker R og søjler S. Der er r niveauer for R og s niveauer for S. Følgende tabel giver en række modeller og deres beskrivelse i SAS: model cellesandsynlighed SAS M 0 p ij fri R S R*S M 1 p ij = α i β j R S 1 M 2 p ij = α i R s M2 p ij = 1β r j S M 3 p ij = 1 1 r s Princippet i SAS opskrivningen er at hovedvirkninger angives ved at skrive navnet på kriteriet (eller faktoren), og vekselvirkninger angives ved at skrive navnene på de faktorer der indgår med imellem. Lad os prøve at formulere SAS opskrivningen generelt. Lad Γ være mængden af inddelingskriterier eller faktorer. Lad A være en klasse af ikke-tomme delmængder af Γ. Vi betragter modellen hvor { } p(i) = exp φ 0 + a A φ a (i a ). Modelopskrivningen i SAS består nu i en opremsning af alle elementer i A. Hvis a A består af et inddelingskriterie kun, a = {γ}, skriver vi bidraget i modelformlen som γ (svarende til R og S i eksemplet ovenfor). Hvis a A indeholder flere elementer, a = {γ 1,..., γ v }, skriver vi bidraget i modelformlen som γ 1 γ 2 γ v. Hvis A = {a 1,...,a k }, og hvis vi indfører notationen { γ hvis a = {γ}, ã = γ 1 γ 2 γ v hvis a = {γ 1,...,γ v }, så kan vi angive modelformlen som ã 1 ã 2 ã k (2) Man benytter altid følgende konvention for rækkefølgen af leddene i (2): 3

4 Konvention A: Hvis a 1, a 2 A og a 1 a 2 så skrives ã 1 før ã 2. (3) For at lave en entydig opskrivning af parametrene i modellen bruger vi den konvention, at hvis et interaktionsled er med i modellen, så skal alle lavere ordens interaktionsled, indeholdt i dette led, også med. Vi kan sige dette mere præcist på følgende vis. Vi betragter modellen { } p(i) = exp φ 0 + a A φ a (i a ). (4) hvor A er en klasse af ikke-tomme delmængder af Γ. Konvention B: a A b A b a. (5) Betragt som et eksempel en 3-dimensional kontingenstabel med inddelingskriterierne R, S, og H. Vi vil undersøge modellen hvor der er interaktion mellem R og S, mellem R og H, men hvor der ikke er interaktion mellem S og H og der er ingen trejde ordens interaktion. I SAS bliver denne model R S H R S R H (6) For ydermere at have en entydig opskrivning under konvention B i (5) benytter SAS den opskrivning der er nævnt i (3) i LCT. Reference cellen i, der benyttes til dette, er i SAS cellen givet ved det sidste niveau for alle inddelingskriterierne. For en 2-dimensional kontingenstabel med inddelingskriterier R og S og r niveauer for R og s niveauer for S har vi således φ R (r) = 0, φ S (s) = 0, φ R,S (r, j) = 0 j, φ R,S (i, s) = 0 i. Bemærkning: (I behøves ikke at læse dette.) Det er ikke strengt nødvendigt at overholde konvention B i (5). Selvom ikke alle b a er inkluderet i A vil SAS fitte den samme model. I eksemplet ovenfor med tre inddelingskriterier vil SAS fitte den samme model som i (6) ved blot at skrive R S R H. Parametriseringen er imidlertid anderledes og det kan være svært at overskue dette. Ydermere vil det have indflydelse på dele af det output som omtales nedenfor. 4 SAS kørsel Lad os som et eksempel starte med at analysere data i politstudie fra afsnit 2. Vi kører først en fuld model med alle interaktioner. I SAS kan det gøres som følger. PROC GENMOD DATA=politstudie ORDER=DATA; CLASS adgang koen resultat; MODEL antal=adgang koen resultat adgang*koen adgang*resultat koen*resultat adgang*koen*resultat/dist=poisson; 4

5 Hvis vi vil undersøge modellen, hvor der kun er interaktion mellem adgang og koen og mellem adgang og resultat, skriver vi PROC GENMOD DATA=politstudie ORDER=DATA; CLASS adgang koen resultat; MODEL antal=adgang koen resultat adgang*koen adgang*resultat/ dist=poisson; (7) Generelt skal vi i første linie angive navnet på vores datamatriks: (8) PROC GENMOD DATA=<navn> ORDER=DATA; Genmod er navnet på den relevante procedure i SAS, og ORDER=DATA er en besked til SAS om at bruge samme rækkefølge for niveauerne som den hvormed de optræder ved indlæsningen af data. I den næste linie: CLASS F1 F2... Fk; angives navnene på alle faktorerne (inddelingskriterierne) i datasættet. Dette er altså alle navnene pånær det sidste i INPUT linien i forbindelse med indlæsningen af data. Endelig følger specifikation af modellen i linien MODEL antal=<interaktionsled>/dist=poisson; Her er antal det navn vi brugte i INPUT linien i forbindelse med indlæsningen af data for søjlen med antal observationer i hver celle. <interaktionsled> er en specifikation af modellen som i (2) og eksemplificeret i (6), og hvor vi bruger konvention B i (5). At data skal analyseres i en poissonmodel angives ved dist=poisson. 5 Output Den første del af output fra kørsel af politstudie i (7) er som følger: The GENMOD Procedure Model Information Data Set WORK.POLITSTUDIE Distribution Poisson Link Function Log Dependent Variable antal Observations Used 12 5

6 Class Level Information Class Levels Values adgang 3 mat sprog andet koen 2 mand kvinde resultat 2 bestaaet dumpet Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X Log Likelihood Hvis vi istedet kører modellen i (8) er den første del med Model Information og Class Level Information naturligvis som før, hvorimod Criteria For Assessing Goodness Of Fit bliver: Criteria For Assessing Goodness Of Fit Criterion DF Value Value/DF Deviance Scaled Deviance Pearson Chi-Square Scaled Pearson X Log Likelihood SAS giver således først information om hvilket datasæt der er analyseret, og hvilke faktorer der indgår. Den egentlige analyse starter først med Criteria For Assessing Goodness Of Fit. Den sidste linie Log Likelihood angiver den maksimale værdi af loglikelihood funktionen for den betragtede model (i poissonmodellen). Hvis vi ønsker at lave et test for reduktionen af modellen fra (7) til (8) bliver 2 log Q: 2 log Q = 2[ ] = (9) Generelt er antallet af frihedsgrader i den approksimerende χ 2 -fordeling d 1 d 2, hvor d 1 er antallet af frie parametre i den model vi tester under, og d 2 er antallet af frie parametre i den model vi ønsker at teste. Antallet af frie parametre kan findes ved hjælp af tallet angivet i søjlen DF. Reglen er, at d = k 1 DF, hvor k er antallet af celler i kontingenstabellen som angives under Observations Used i output. Vi får derfor at d 1 d 2 = (k 1 DF 1 ) (k 1 DF 2 ) = DF 2 DF 1. I tilfældet ovenfor bliver antallet af frihedsgrader altså 3 0 = 3. 6

7 De fire linier ovenover Log Likelihood angiver forskellige teststørrelser for et test af den fittede model under den fulde model hvor alle parametrene kan variere frit. Deviance og Scaled Deviance er 2 log Q for dette test, hvorimod Pearson Chi-Square og Scaled Pearson X2 er X 2 = i (n(i) e(i))2 /e(i), hvor e(i) er det forventede antal e(i) = nˆp(i) i celle i under modellen. Da det første output ovenfor svarer til den fulde model (7), er der ingen forskel mellem den fulde model og den fittede model, hvorfor teststørrelserne er nul. I det næste output fra model (8) ser vi, at Deviance er den samme værdi som vi selv beregnede i (9), idet vi i (9) netop testede under den fulde model (7). Den næste del af output giver de estimerede parametre under modellen, det vil sige φ a (i a ), a A, for modellen givet ved (4), og φ 0 fra den tilsvarende poissonmodel (1). I tabel 1 gengives dette for kørslen af modellen i (8). Udover estimatet angives en standardafvigelse på estimatet og et approksimativt 95% konfidensinterval. Endelig angives der en teststørrelse for om denne parameter kan testes lig med nul, og den tilsvarende p-værdi angives. Bemærk at visse parametre er sat til nul for at have en entydig parametrisering, jævnfør (3) i LCT. Opsummering: Hvis vi ønsker at lave et 2 log Q test model M 2 under en model M 1 laver vi to SAS-kørsler, en for model M 1 og en for model M 2. Vi aflæser så Log Likelihood i de to kørsler og beregner 2 log Q herfra. Estimaterne for φ a (i a ), a A, i modellen (4) aflæses direkte i SAS-udskriften. 6 De forventede antal Hvis vi ændrer kaldet i (8) til PROC GENMOD DATA=politstudie ORDER=DATA; CLASS adgang koen resultat; MODEL antal=adgang koen resultat adgang*koen adgang*resultat/ dist=poisson PREDICTED; bevirker dette at der til sidst i output skrives en tabel med overskriften Observation Statistics. Denne ses nedenfor. Observation Statistics Observation antal Pred Xbeta Std HessWgt (10)

8 Analysis Of Parameter Estimates Standard Wald 95% Confidence Chi- Parameter DF Estimate Error Limits Square Pr > ChiSq Intercept <.0001 adgang mat adgang sprog adgang andet koen mand <.0001 koen kvinde resultat bestaaet <.0001 resultat dumpet adgang*koen mat mand adgang*koen mat kvinde adgang*koen sprog mand <.0001 adgang*koen sprog kvinde adgang*koen andet mand adgang*koen andet kvinde adgang*resultat mat bestaaet <.0001 adgang*resultat mat dumpet adgang*resultat sprog bestaaet adgang*resultat sprog dumpet adgang*resultat andet bestaaet adgang*resultat andet dumpet Scale NOTE: The scale parameter was held fixed. Table 1: Udskrift fra SAS: estimater.

9 Første søjle er blot en nummerering af cellerne, anden søjle er de observerede antal i cellerne, og trejde søjle er de forventede antal under den model der fittes til data som angivet i SAS-kaldet (10). Denne tabel kan bruges til at checke om alle de forventede er større end eller lig med 5, som er vores tommelfingerregel for at bruge den approksimerende chi 2 -fordeling til 2 log Q. 7 Type 1 og 3 tabeller Hvis vi ændrer kaldet i (8) til PROC GENMOD DATA=politstudie ORDER=DATA; CLASS adgang koen resultat; MODEL antal=adgang koen resultat adgang*koen adgang*resultat/ dist=poisson TYPE1 TYPE3; bevirker dette, at der til sidst i output skrives en tabel med overskriften LR Statistics For Type 1 Analysis, og en tabel med overskriften LR Statistics For Type 3 Analysis. Hver af de to tabeller har en række for hvert af de led der angives i modelformlen i (11), og rækkefølgen er som angivet i modelformlen. Det er derfor vigtigt at konvention A i (3) overholdes. Udover rækkefølgen af leddene i modelformlen i (11) er tabellerne afhængige af hvilke led der indgår i formlen, hvorfor det er vigtigt at overholde konvention B i (5). (11) LR Statistics For Type 3 Analysis Chi- Source DF Square Pr > ChiSq adgang <.0001 koen <.0001 resultat <.0001 adgang*koen <.0001 adgang*resultat <

10 I tabellen LR Statistics For Type 3 Analysis indeholder søjlen Chi-Square den sædvanlige 2 log Q teststørrelse for at vi kan fjerne det led, der er angivet under Source, når vi tester under den model (11) der blev angivet ved kaldet af SAS. Sojlen med DF angiver frihedsgraderne i den approksimerende χ 2 -fordeling, og søjlen Pr > ChiSq er p-værdien for dette test. I denne tabel giver det kun mening at betragte nogle af rækkerne. Hvis vi siger at modellen er givet ved en klasse A af ikke-tomme delmængder af Γ, som i (2), vil vi kun betragte de rækker der svarer til b A for hvilke der ikke findes a A med b a. I tabellen ovenfor svarer det til at vi ikke vil betragte de tre første rækker, men kun betragte de to sidste rækker. Forklaringen paa dette er, at hvis en model indeholder en interaktion mellem nogle faktorer, så vil alle lavere ordens interaktioner også naturligt være tilstede, hvorfor en sådan lavere ordens interaktion ikke kan fjernes alene. Hvis vi i en type 3 tabel finder at det er rimeligt at fjerne et led fra modellen (for eksempel hvis p-værdien er større end 0.05), vil vi lave en ny SAS-kørsel hvor vi fjerner dette led fra modelformlen. LR Statistics For Type 1 Analysis Chi- Source Deviance DF Square Pr > ChiSq Intercept adgang <.0001 koen <.0001 resultat <.0001 adgang*koen <.0001 adgang*resultat <.0001 Vi læser tabellen LR Statistics For Type 1 Analysis nedefra. Hver række indeholder et test for at vi kan fjerne det led, der angives under Source, hvor vi tester under den model der fremkommer ved at fjerne alle de led der står i rækkerne under den aktuelle række fra den oprindelige modelformel i (11). Søjlen Chi-Square indeholder 2 log Q teststørrelsen og DF angiver frihedsgraderne i den approksimerende χ 2 - fordeling. Hvis vi kigger på rækken adgang*resultat får vi teststørrelsen for et test af modellen adgang koen resultat adgang*koen under modellen adgang koen resultat adgang*koen adgang*resultat Hvis vi kigger på rækken resultat får vi teststørrelsen for et test af modellen under modellen adgang koen adgang koen resultat Type 1 tabellen indeholder også en første række med navnet Intercept. Her testes at φ 0 = 0 i poissonmodellen (1). 10

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Statistisk modellering af meldugangreb i vinterhvede. Analyse på baggrund af observationer i Registreringsnettet

Statistisk modellering af meldugangreb i vinterhvede. Analyse på baggrund af observationer i Registreringsnettet Statistisk modellering af meldugangreb i vinterhvede Analyse på baggrund af 13.000 observationer i Registreringsnettet 2000-2007 Rapporten beskriver den statistiske model samt analysens resultater Jens

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1 Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ jlj@statcon.dk Dagens Tekst Logistisk regression Binære data Logit transformation

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A) Økonometri 1 Forår 2003 Ugeseddel 13 Program for øvelserne: Gruppearbejde Opsamling af gruppearbejdet og introduktion af SAS SAS-øvelser i computerkælderen Øvelsesopgave 6: Hvem består første årsprøve

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Lineær regression i SAS. Lineær regression i SAS p.1/20

Lineær regression i SAS. Lineær regression i SAS p.1/20 Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k

Poul Thyregod, introslide.tex Specialkursus vid.stat. foraar Lad θ = θ(β) R k for β B R m med m k Dagens program: Likelihoodfunktion, begreber : Mandag den 4. februar Den generelle lineære model score-funktion: første afledede af log-likelihood har middelværdien nul observeret information: anden afledede

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2007. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 8 sider.

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Regressionsanalyse i SAS

Regressionsanalyse i SAS Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark IMM Statistical Consulting Center Technical University of Denmark ISCC Brugervejledning til beregningsmodul til robust estimation af nugget effect Endelig udgave til Eurofins af Christian Dehlendorff 15.

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Betinget fordeling Uafhængighed. Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary 1 Kontingenstabeller Betinget fordeling Uafhængighed 2 Chi-kvadrat test for uafhængighed Beregning af forventet tabel Chi-kvadrat teststatistik Chi-kvadrat test. Chi-kvadratfordelingen Agresti - Summary

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Hvad skal vi lave? Model med hovedvirkninger Model med vekselvirkning F-test for ingen vekselvirkning. 1 Kovariansanalyse. 2 Sammenligning af modeller

Hvad skal vi lave? Model med hovedvirkninger Model med vekselvirkning F-test for ingen vekselvirkning. 1 Kovariansanalyse. 2 Sammenligning af modeller Hvad skal vi lave? 1 Kovariansanalyse Model med hovedvirkninger Model med vekselvirkning F-test for ingen vekselvirkning 2 Sammenligning af modeller 3 Mere generelle modeller PSE (I17) ASTA - 14. lektion

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2006. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 6 sider.

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens

Oversigt over emner. Punktestimatorer: Centralitet(bias) og efficiens Oversigt Oversigt over emner 1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens 2 Konfidensinterval Konfidensinterval for andel Konfidensinterval - normalfordelt stikprøve

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium

χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium χ 2 -test i GeoGebra Jens Sveistrup, Gammel Hellerup Gymnasium Man kan nemt lave χ 2 -test i GeoGebra både goodness-of-fit-test og uafhængighedstest. Den følgende vejledning bygger på GeoGebra version

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 15. december 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere