Termodynamik. Esben Mølgaard. 5. april N! (N t)!t! Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Termodynamik. Esben Mølgaard. 5. april N! (N t)!t! Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system"

Transkript

1 Termodynamik Esben Mølgaard 5. april Statistik Hvis man har N elementer hvoraf t er defekte, eller N elementer i to grupper hvor forskydningen fra 50/50 (spin excess) er 2s, vil antallet af mulige tilstande være givet som g(n, t) = g(n, s) = N! (N t)!t! (1) N! ( 1N + s)!( 1N s)! 2 2 (2) Ved store N bliver denne binomiale fordeling lig med normal- eller Gaussfordeligen g(n, s) = g(n, 0) exp( 2s 2 /N) (3) Når to systemer sættes sammen bliver fordelingsfunktionen for det samlede system g(n, s) = s 1 g 1 (N 1, s 1 )g 2 (N 2, s s 1 ) (4) 2 Energi og temperatur Entropien er defineret som σ(n, U ln(n, U) (5) σ = S k B (6) To systemer siges at være i termisk ligevægt når σ1 σ2 = U 1 N 1 U 2 N 2 (7) Denne lighed leder meget naturligt til definitionen af temperatur: 1 σ = τ U N (8) τ = k B T (9) 1

2 Vi ser altså følgende sammenhæng mellem de traditionelle størrelse og de fundamentale τσ = T S (10) Entropistigningen σ når energien U overføres fra system 1 til system 2 er givet som ( σ = ) U (11) τ 1 τ 2 3 Boltzmann fordeling Tilstandsummen defineres som (τ) = i exp( ε i /τ) = s g s exp( ε s /τ) (12) Den første sum er over tilstande hvorimod den anden er over energiniveauer. Det er meget vigtigt at man ikke blander disse to sammen. Størrelsen exp( ε/τ) kaldes Boltzmann faktoren. Sandsynligheden for at et system er i tilstanden i med energien ε i, eller energiniveauer s med energien ε s og multipilicitet g s er givet som P (ε) = exp( ε i/τ) = g s exp( ε s /τ) Et systems gennemsnitlige energi U kan nu let findes idet U = ε = ε s P (ve s ), dette giver εi exp( ε i /τ) εs g s exp( ε s /τ) U = = = τ 2 ln (14) τ Tryk er defineret som U σ p = = τ V σ V U Den følgende relation kaldes den termodynamiske identitet 4 Helmholtz fri energi Helmholtz fri energi er defineret som (13) (15) du = τdσ pdv = T ds pdv (16) F U τσ (17) Denne funktion har minimum når et system med konstant temperatur og volumen er i ligevægt. Den fri energi giver os nogle differential relationer F F = σ; = p (18) τ V V 2 τ

3 Disse leder os videre til den første Maxwell relation vi har stødt på σ p = V τ Tilstandssummen kan let bestemmes ud fra F som τ V (19) F = τ ln (20) 5 Termisk stråling og Planck fordeling Det gennemsnitlige antal fotoner i en tilstand med frekvens ω i et sortlegeme er s = 1 exp( ω/τ) 1 (21) Denne formel gælder for alle bølgefelter med energi på formen ε s = s ω Den gennemsnitlige termiske energi i tilstanden er givet som ε = s ω = ω exp( ω/τ) 1 (22) I den klassiske grænse hvor τ ω gælder den simple relation ε = τ (23) I et kubisk sortlegeme hulrum (cavity) er enrgitætheden givet ved U V = π c 3 τ 4 (24) Plancks strålingslov der giver frekvensfordelingen af termisk stråling er u ω = π 2 c 3 ω 3 exp( ω/τ) 1 (25) Entropien af fotonerne i et sortlegeme er givet ved σ(τ) = 4π2 V 45 ( τ c ) 3 (26) Energifluxtætheden J U angiver hvor meget energi der udstråles per tid fra et areal af enhedstørrelse J U = π2 τ c 2 = σ BT 4 (27) Hvor σ B er Stefan-Boltzmanns konstant og absolut intet har med entropien at gøre. Et legeme der stråler på denne måde siges at være et sortlegeme. 3

4 6 Kemisk potential og Gibbs fordeling Det kemiske potential µ er defineret som µ(τ, V, N) F N τ,v Betingelsen for diffusiv ligevægt, det vil sige at partikler ikke bevæger sig mellem systemerne er så (28) µ 1 = µ 2 (29) Er der ikke ligevægt vil partiklerne bevæge sig fra højt kemisk potential til lavt kemisk potential. Det kemiske potential for en ideal gas er givet som µ = τ ln(n/n Q ) = τ ln(p/τn Q ) (30) En anden definition af det kemiske potential ud fra entropien er µ(u, V, N) σ = τ N U,V (31) For andre sammenhænge mellem τ, p, µ og de partielt afledte af σ, U, F se tabel 5.1 på side 133 i Kittel/Kroemer. Den termodynamiske identitet (16) kan udvides til at inkludere partikkel antal ud fra det kemiske potential du = τdσ pdv + µdn (32) Gibbs summen er en udvidelse af tilstandssummen til også at tage højde for det kemiske potential, den er defineret som (µ, τ) = N=0 s(n) exp[(nµ ε s )/τ] = ASN exp[(nµ ε s(n )/τ] (33) Hvor summen over ASN er summen over alle tilstande og over alle antal partikler. Tilsvarende som med tilstandssummen kaldes exp[(nµ ε s(n )/τ] Gibbs faktoren. Sandsynligheden for at finde et system i tilstanden N 1, ε 1 er så givet som P (N 1, ε 1 ) = exp[(nµ ε s(n)/τ] Det gennemsnitlige partikkel antal i et system er givet som ASN N = N exp[(nµ ε s)/τ] = τ ln µ Det viser sig smart at indføre den absolutte aktivitet λ (34) (35) λ exp(µ/τ) (36) 4

5 Gibbs summen kan så skrives som og det gennemsnitlige partikkel antal = ASN λ N exp ε s /τ (37) N = λ ln (38) λ Den gennemsnitlige energi i et system er givet som ASN U = ε = ε s exp[(nµ ε s )/τ] (39) ( = τµ µ ) ln (40) (1/τ) 7 Ideale gasser 7.1 Første kig på ideale gasser Vi starter med at definere kvantekoncentrationen n Q n Q = (Mτ/2π 2 ) 3/2 (41) Det skal bemærkes at dette ikke er en konstant selvom den optræder på den måe i mange formler. Det er en funktion af partikklens masse M og temperatur τ For en ideal monatomar gas af N partikler gælder følgende sammenhæng mellem temperatur og energi U = 3 Nτ (42) 2 Tilstandssummen for en ideal gas med kun en slags atomer af N spin nul atomer er N = (n/n Q) N (43) N! Tilstandsformlen for en ideal gas, idealgasligningen er har mange former, nogle af de vigtigste er pv = Nτ pv = N N A RT p = nτ (44) Hvor N A er avogradros tal således at N/N A er stofmængden i mol, R er gaskonstanten og n er partikkel koncentrationen. Entropien af en ideal gas er givet som σ = N[ln(n Q /n) ] (45) Hvor n igen er partikkel koncentrationen, og ikke stofmængden i mol. Varmekapaciteten ved hhv konstant volumen og tryk er givet ved C V = 3 2 N C p = 5 2 N (46) 5

6 7.2 Mere om ideale gasser Fermi-Dirac fordelings funktionen er (denne funktion er ikke sej) f(ε) = N(ε) = 1 λ 1 exp(ε/τ) + 1 = 1 exp((ε µ)/τ) + 1 (47) Bose-Einstein fordelings funktion (denne funktion er sej) f(ε) = N(ε) = 1 λ 1 exp(ε/τ) 1 = 1 exp((ε µ)/τ) 1 (48) I den klassiske grænse exp[(ε µ)/τ] 1 smelte disse to sammen og man får den klassisk e fordelings funktion Der gælder at f(ε) = exp[(µ ε)/τ] = λ exp[ ε/τ] (49) Det kemiske potential for en ideal gas ses så at være Den frie energi er λ = exp(µ/τ) = n/n Q (50) µ = τ ln(n/n Q ) = τ[ln N ln V 3 2 ln τ ln(2π 2 /M)] (51) For Gibbs fri energi for en ideal gas se (66) Ideale gasser med interne frihedsgrader F = Nτ[ln(n/n Q ) 1] (52) Gibbs summen for en ideal enatomar gas med interne frihedsgrader er = 1 + λ int exp( ε n /τ) (53) hvor int er tilstandssummen for de interne frihedsgrader. De fleste termodynamiske størrelse bliver ændret når der er tale om molekyler med indre frihedsgrader, ændringerne er λ = n/(n Q int ) µ = τ[ln(n/n Q ) ln int ] (54) Fint F int = Nτ ln int σ int = (55) τ Resultatet U = 3 Nτ gælder stadig, men kun for den translatoriske energi. Har molekylerne rotations eller vibrations energi skal dette også medregnes for at få 2 U. V 6

7 7.2.2 Ekspansioner af forskellig art For næsten al viden om dette se tabel 6.3 på side 176 i Kittel/Kromer. Temperatur ændringen for en reversibel ekspansion ved konstant entropi er 2/3 V1 τ 2 = τ 1 (56) V 2 Dette resulatat gælder dog kun hvis der er tale om en ideal gas uden indre frihedsgrader. Er der indre frihedsgrader er formlen γ 1 V1 τ 2 = τ 1 (57) V 2 hvor γ = C p /C V. For trykket er gælder for hhv uden og med indre frihedsgrader 8 Varme og arbejde 5/3 V1 p 2 = p 1 (58) V 2 γ V1 p 2 = p 1 (59) V 2 Carnot effektiviteten, den teoretisk maksimale effektiveitet af en proces der reversibeltlaver varme om til arbejde W η C = = τ h τ l = 1 τ l (60) Q h τ h τ h 9 Gibbs fri energi rev Tilsvarende med Helmholtz fri energi kan man definere Gibbs fri energi der har minimum når systemet er i ligevægt og det foregår under konstant tryk og temperatur Differentialet af G kan skrives G U τσ + pv (61) dg = µdn σdτ + V dp (62) Differentiation af G giver os en hel række nyttige størrelser nemlig G G G = µ; = σ; = V (63) N τ p τ,p N,p Det viser sig desuden at når der kun er tale om et system med en slags partikler kan G skrives som G(N, p, τ) = Nµ(p, τ) (64) 7 N,τ

8 er der flere slags partikler bliver G i stedet G = j N j µ j (65) Gibbs fri energi for en ideal gar er G(τ, p, N) = Nτ ln(p/(τn Q )) (66) 8

Nanotermodynamik formelsamling

Nanotermodynamik formelsamling Nanotermodynamik formelsamling Af Asmus Ougaard Dohn & Sune Klamer Jørgensen 2. november 2005 ndhold 1 Kombinatorik 2 2 Termodynamik 3 3 deal gasser: 5 4 Entropi og temp.: 7 5 Kemisk potential: 7 6 Gibbs

Læs mere

Termodynamikkens første hovedsætning

Termodynamikkens første hovedsætning Statistisk mekanik 2 Side 1 af 13 Termodynamikkens første hovedsætning Inden for termodynamikken kan energi overføres på to måder: I form af varme Q: Overførsel af atomar/molekylær bevægelsesenergi på

Læs mere

Benyttede bøger: Statistisk fysik 1, uredigerede noter, Per Hedegård, 2007.

Benyttede bøger: Statistisk fysik 1, uredigerede noter, Per Hedegård, 2007. Formelsamling Noter til Fysik 3 You can know the name of a bird in all the languages of the world, but when you re finished, you ll know absolutely nothing whatever about the bird... So let s look at the

Læs mere

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5.

Tilstandssummen. Ifølge udtryk (4.28) kan MB-fordelingen skrives , (5.1) og da = N, (5.2) . (5.3) Indføres tilstandssummen 1 , (5. Statistisk mekanik 5 Side 1 af 10 ilstandssummen Ifølge udtryk (4.28) kan M-fordelingen skrives og da er μ N e e k = N g ε k, (5.1) N = N, (5.2) μ k N Ne g = e ε k. (5.3) Indføres tilstandssummen 1 Z g

Læs mere

KOMPENDIUM TIL STATISTISK FYSIK

KOMPENDIUM TIL STATISTISK FYSIK KOMPENDIUM TIL STATISTISK FYSIK 3. UDGAVE REVIDERET: 18. APRIL 2011 UDARBEJDET AF SØREN RIIS AARHUS SCHOOL OF ENGINEERING Ö Ô Ý º Ùº DETTE VÆRK ER TRYKT MED ADOBE UTOPIA 10PT LAYOUT OG TYPOGRAFI AF FORFATTEREN

Læs mere

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden. Entropien er det centrale begreb i termodynamikkens anden hovedsætning (TII):

Læs mere

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi

Statistisk mekanik 2 Side 1 af 10 Entropi, Helmholtz- og Gibbs-funktionen og enthalpi. Entropi Statistisk mekanik 2 Side 1 af 10 Entropi Entropi er en tilstandsvariabel 1, der løst formuleret udtrykker graden af uorden i et system. Da der er mange flere uordnede (tilfældigt ordnede) mikrotilstande

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de M svingninger i en sortlegeme-kavitet som fotoner.

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de EM svingninger i en sortlegeme-kavitet som

Læs mere

FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve

FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve FYSIK 3 / TERMODYNAMIK Københavns Universitet, 13. april, 2016, Skriftlig prøve Benyttelse af medbragt litteratur, noter, lommeregner og computer uden internetadgang er tilladt. Der må skrives med blyant.

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Atomare kvantegasser. Michael Budde. Institut for Fysik og Astronomi og QUANTOP: Danmarks Grundforskningsfonds Center for Kvanteoptik

Atomare kvantegasser. Michael Budde. Institut for Fysik og Astronomi og QUANTOP: Danmarks Grundforskningsfonds Center for Kvanteoptik Atomare kvantegasser Når ultrakoldt bliver hot Michael Budde Institut for Fysik og Astronomi og QUANTOP: Danmarks Grundforskningsfonds Center for Kvanteoptik Aarhus Universitet Plan for foredraget Hvad

Læs mere

AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS TERMODYNAMIK 2. SEMESTER NANOTEKNOLOGI

AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS TERMODYNAMIK 2. SEMESTER NANOTEKNOLOGI AALBORG UNIVERSITET DET INGENIØR-, NATUR- OG SUNDHEDSVIDENSKABELIGE BASISÅR SE - KURSUS TERMODYNAMIK 2. SEMESTER NANOTEKNOLOGI FORÅR 2008 Indholdsfortegnelse TERMODYNAMIK LEK. 1...4 VARMELÆRER...4 Hvorfor

Læs mere

Formelsamling i astronomi. Februar 2016

Formelsamling i astronomi. Februar 2016 Formelsamling i astronomi. Februar 016 Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder Jordens sideriske

Læs mere

INDHOLD. 5 Lektion Opgave a b Opgave K Lynge opgave

INDHOLD. 5 Lektion Opgave a b Opgave K Lynge opgave . Indhold 1 Lektion 1 1 1.1 Opgave A............................... 1 1.1.1 A.a............................... 1 1.1. A.b.............................. 1.1.3 A.c............................... 1. Lynge

Læs mere

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 6 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 5 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 5 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Anvendt BioKemi: MM2. Anvendt BioKemi: Struktur. 1) MM2- Opsummering. Aminosyrer og proteiner som buffere

Anvendt BioKemi: MM2. Anvendt BioKemi: Struktur. 1) MM2- Opsummering. Aminosyrer og proteiner som buffere Anvendt BioKemi: Struktur 1) MM1 Intro: Terminologi, Enheder Math/ biokemi : Kemiske ligninger, syre, baser, buffer Små / Store molekyler: Aminosyre, proteiner 2) MM2 Anvendelse: blod som et kemisk system

Læs mere

NOTER & OPGAVER STATISTISK FYSIK

NOTER & OPGAVER STATISTISK FYSIK NOTER & OPGAVER I STATISTISK FYSIK Henrik Smith og Jens Jensen Ørsted Laboratoriet. September 1995 Indhold 1 Entropi og temperatur 1 1.1 Ligevægt og temperatur......................... 1 1.2 Entropi og

Læs mere

Statistisk mekanik 1 Side 1 af 11 Introduktion. Indledning

Statistisk mekanik 1 Side 1 af 11 Introduktion. Indledning Statistis meani Side af Indledning Statisti er et uundværligt matematis redsab til besrivelsen af et system med uoversueligt mange bestanddele. F.es. er der så mange luftmoleyler i blot mm 3 luft, at det

Læs mere

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi

Termodynamik - Statistisk fysik - Termodynamiske relationer - Fri energi - Entropi Fag: Termodynamik - Statitik fyik - Termodynamike relationer - Fri energi - Entropi 1 Indholdfortegnele... 2 Forord... 3 Formelle definitioner... 3 Et ytem... 3 Et lukket ytem... 3 Et ioleret ytem... 3

Læs mere

Lærebogen i laboratoriet

Lærebogen i laboratoriet Lærebogen i laboratoriet Januar, 2010 Klaus Mølmer v k e l p Sim t s y s e t n a r e em Lærebogens favoritsystemer Atomer Diskrete energier Elektromagnetiske overgange (+ spontant henfald) Sandsynligheder,

Læs mere

m: masse i masseprocent : indhold i volumenprocent : indhold

m: masse i masseprocent : indhold i volumenprocent : indhold Kemisk formelsamling (C-niveau s kernestof samt en del formler, der hører hjemme på Kemi B ) Mængdeberegninger m: masse M: molar masse n : stofmængde : volumen ρ : densitet (massetæthed) c : koncentration

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Forklaring. Størrelsesforhold i biologien DIFFUSION. Biofysik forelæsning 8 Kapitel 1 (8) Mindste organisme: 0.3 :m = m (mycoplasma)

Forklaring. Størrelsesforhold i biologien DIFFUSION. Biofysik forelæsning 8 Kapitel 1 (8) Mindste organisme: 0.3 :m = m (mycoplasma) Størrelsesforhold i biologien Forklaring Mindste organisme: 0.3 :m = 3 10-7 m (mycoplasma) Største organisme: 3 10 1 m (blåhval) Største Organismer : 10 Mindste = Enkelte celler: 0.3 :m - 3 :m Største

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Biofysik forelæsning 8 Kapitel 1 (8)

Biofysik forelæsning 8 Kapitel 1 (8) Størrelsesforhold i biologien Forklaring Mindste organisme:.3 :m = 3-7 m (mycoplasma) Største organisme: 3 m (blåhval) Største Organismer : Mindste = Enkelte celler:.3 :m - 3 :m Største Celler : Mindste

Læs mere

Kolde atomare gasser Skræddersyet kvantemekanik. Georg M. Bruun Fysiklærerdag 2011

Kolde atomare gasser Skræddersyet kvantemekanik. Georg M. Bruun Fysiklærerdag 2011 Kolde atomare gasser Skræddersyet kvantemekanik Georg M. Bruun Fysiklærerdag Wednesday, January 6, Hovedbudskaber Bose-Einstein Kondensation = Identitetskrise for kvantepartikler BEC i atomare ultrakolde

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable Kursus 02402 Introduktion til Statistik Forelæsning 2: Kapitel 4, Diskrete fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

hvor a og b er konstanter. Ved middelværdidannelse fås videre

hvor a og b er konstanter. Ved middelværdidannelse fås videre Uge 3 Teoretisk Statistik. marts 004. Korrelation og uafhængighed, repetition. Eksempel fra sidste gang (uge ) 3. Middelværdivektor, kovarians- og korrelationsmatrix 4. Summer af stokastiske variable 5.Den

Læs mere

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J.

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J. Diffusionsligningen Fællesprojekt for FY50 og MM50 Marts 009 Hans J. Munkholm og Paolo Sibani Besvarelse fra Hans J. Munkholm 1 (a) Lad [x, x + x] være et lille delinterval af [a, b]. Den masse, der er

Læs mere

Fysik 12. Sebastian B. Simonsen. June 13, 2004

Fysik 12. Sebastian B. Simonsen. June 13, 2004 Fysik 12 Sebastian B. Simonsen June 13, 2004 Contents 1 Vigtige formler til Fysik 12 3 1.1 Relativitets teori......................... 3 1.1.1 Einsteins postulater.................... 3 1.1.2 Fomler...........................

Læs mere

Statitisk fysik Minilex

Statitisk fysik Minilex Statitisk fysik Minilex Henrik Dahl 15. januar 006 Indhold 1 Sandsynlighedsteori Fordelinger 3 Eksperimentelle usikkerheder 3 4 Parameterbestemmelse 3 5 Priors, entropi 3 6 Termodynamik 4 6.1 Kanonisk

Læs mere

Fysik 7 - Statistisk fysik Formelsamling til eksamen

Fysik 7 - Statistisk fysik Formelsamling til eksamen Fysik 7 - Statistisk fysik Formelsamling til eksamen Sebastian B. Simonsen og Lykke Pedersen 18. januar 2006 Indhold 1 Kapitel 1 - Indledning 2 2 Kapitel 2 - Sandsynlighedsfordelinger 3 2.1 Binomial fordeling........................

Læs mere

Entropibegrebet Jacob Nielsen 1

Entropibegrebet Jacob Nielsen 1 Entropibegrebet Jacob Nielsen 1 I 1871 introducerede Maxwell dæmonen, der ved hjælp af molekylær information tilsyneladende kan krænke termodynamikkens 2. hovedsætning. Centralt i termodynamikken står

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

A4: Introduction to Cosmology. Forelæsning 2 (kap. 4-5): Kosmisk Dynamik

A4: Introduction to Cosmology. Forelæsning 2 (kap. 4-5): Kosmisk Dynamik A4: Introduction to Cosmology Forelæsning (kap. 4-5): Kosmisk Dynamik 1-komponent modeller Robertson-Walker metrikken ds = c dt² a t [ Metrik med medfølgende koordinater (x,θ,φ), x= S κ (r) i den rumlige

Læs mere

Elektrokemisk potential, membranpotential og. Donnanligevægt

Elektrokemisk potential, membranpotential og. Donnanligevægt Elektrokemisk potential, membranpotential og Donnanligevægt Elektrokemisk potential: µ Når en elektrisk ladning, q, transporteres i et ydre elektrisk felt fra potentialet φ 1 til φ 2, er det tilhørende

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Formelsamling i astronomi. November 2015.

Formelsamling i astronomi. November 2015. Formelsamling i astronomi. November 015. Formelsamlingen er ikke komplet det bliver den nok aldrig. Men måske kan alligevel være til en smule gavn. Sammenhæng mellem forskellige tidsenheder: Jordens sideriske

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 23. august 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1

Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1 Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger

Læs mere

Lys på (kvante-)spring: fra paradox til præcision

Lys på (kvante-)spring: fra paradox til præcision Lys på (kvante-)spring: fra paradox til præcision Metrologidag, 18. maj, 2015, Industriens Hus Lys og Bohrs atomteori, 1913 Kvantemekanikken, 1925-26 Tilfældigheder, usikkerhedsprincippet Kampen mellem

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 8. august 2013 kl. 9 00 13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Benyttede bøger: Introduction to Cosmology, Barbara Ryden, 2003.

Benyttede bøger: Introduction to Cosmology, Barbara Ryden, 2003. Formelsamling Noter til Astronomi 1 You can know the name of a bird in all the languages of the world, but when you re finished, you ll know absolutely nothing whatever about the bird... So let s look

Læs mere

Magmatisk petrologi / Geologi 3.1/ Magmatisk petrologi. - læren om dannelsen af bjergarter fra magma

Magmatisk petrologi / Geologi 3.1/ Magmatisk petrologi. - læren om dannelsen af bjergarter fra magma Magmatisk petrologi / Geologi 3.1/ 2005 Magmatisk petrologi - læren om dannelsen af bjergarter fra magma Piton de la Fournaise, Reunion, Indiske Ocean - En intraplade vulkanø Program for Geologi 3.1 Ligger

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 21. September, 2007 Lidt om binomialkoefficienter n størrelsen af en mængde/population. Vi ønsker at udtage en sub population af størrelse r. To sub populationer

Læs mere

Big Bang Modellen. Varmestråling, rødforskydning, skalafaktor og stofsammensætning.

Big Bang Modellen. Varmestråling, rødforskydning, skalafaktor og stofsammensætning. Big Bang Modellen Varmestråling, rødforskydning, skalafaktor og stofsammensætning. Jacob Nielsen 1 Varmestråling spiller en central rolle i forståelsen af universets stofsammensætning og udvikling. Derfor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset

02402 Vejledende løsninger til Splus-opgaverne fra hele kurset 02402 Vejledende løsninger til Splus-opgaverne fra hele kurset Vejledende løsning SPL3.3.1 Der er tale om en binomialfordeling med n =10ogp=0.6, og den angivne sandsynlighed er P (X =4) som i bogen også

Læs mere

Tillæg til partikelfysik (foreløbig)

Tillæg til partikelfysik (foreløbig) Tillæg til partikelfysik (foreløbig) Vekselvirkninger Hvordan afgør man, hvilken vekselvirkning, som gør sig gældende i en given reaktion? Gravitationsvekselvirkningen ser vi bort fra. Reaktionen Der skabes

Læs mere

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. Teoretisk Statistik, 9 marts 2005 Empiriske analoger (Kap. 3.7) Normalfordelingen (Kap. 3.12) Opsamling på Kap. 3 nb. Det forventes ikke, at alt materialet dækkes d. 9. marts. 1 Empiriske analoger Betragt

Læs mere

Noter til kemi A-niveau

Noter til kemi A-niveau Noter til kemi A-niveau Grundlæggende kemi til opgaveregning 2.0 Af Martin Sparre INDHOLD 2 Indhold 1 Kemiske ligevægte 3 1.1 En simpel kemisk ligevægt.................... 3 1.2 Forskydning af ligevægte.....................

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Kursus 02402 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m.

For nemheds skyld: m = 2, dvs. interesseret i fordeling af X 1 og X 2. Nemt at generalisere til vilkårligt m. 1 Uge 11 Teoretisk Statistik 8. marts 2004 Kapitel 3: Fordeling af en stokastisk variabel, X Kapitel 4: Fordeling af flere stokastiske variable, X 1,,X m (på en gang). NB: X 1,,X m kan være gentagne observationer

Læs mere

MODUL 1-2: ELEKTROMAGNETISK STRÅLING

MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1 - ELEKTROMAGNETISKE BØLGER I 1. modul skal I lære noget omkring elektromagnetisk stråling (EM- stråling). I skal lære noget om synligt lys, IR- stråling, UV-

Læs mere

Elementær termodynamik og kalorimetri

Elementær termodynamik og kalorimetri Elementær termodynamik og kalorimetri 1/14 Elementær termodynamik og kalorimetri Indhold 1. Indre og ydre energi...2 2. Varmeteoriens (termodynamikkens) 1. hovedsætning...2 3. Stempelarbejde...4 4. Isoterm

Læs mere

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen Repetition Lov om total sandsynlighed Bayes sætning P( B A) = P(A) = P(AI B) + P(AI P( A B) P( B) P( A B) P( B) +

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

Indhold. Noter til statistisk fysik II. 3. januar 2012. Jens Egebjerg Bækhøj & Christian Kraglund Andersen

Indhold. Noter til statistisk fysik II. 3. januar 2012. Jens Egebjerg Bækhøj & Christian Kraglund Andersen Noter til statistisk fysik II 3. januar 2012 Jens Egebjerg Bækhøj & Christian Kraglund Andersen Institut for Fysik og Astronomi Aarhus Universitet, Denmark Indhold Indhold i 1 Termodynamik 1 1.1 Systemet

Læs mere

Spørgsmål 1 Kemisk ligevægt

Spørgsmål 1 Kemisk ligevægt Spørgsmål 1 Kemisk ligevægt Du skal redegøre for den teori der ligger op til forståelsen af eksperimentet Indgreb i et ligevægtssystem. Du skal som minimum inddrage begreberne: Reversibel og irreversibel

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 6.1 Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler Lineære transformationer

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4 Vejledende løsning 5.46 P (0.010 < error < 0.015) = (0.015 0.010)/0.050 = 0.1 > punif(0.015,-0.025,0.025)-punif(0.01,-0.025,0.025) [1] 0.1

Læs mere

Opholdstidsfordeling i Kemiske Reaktorer

Opholdstidsfordeling i Kemiske Reaktorer Opholdstidsfordeling i Kemiske Reaktorer Køreplan 01005 Matematik 1 - FORÅR 2005 Introduktion Strømningsmønsteret i kemiske reaktorer modelleres ofte gennem to ydertilfælde, Ideal stempelstrømning, hvor

Læs mere

Den levende kraft energi og varme

Den levende kraft energi og varme Den levende kraft energi og varme Hvad vil det sige, at noget har energi, og hvordan opstod begrebet? Og hvad er sammenhængen mellem energi og varme? Forståelsen af dette hang i 1800-tallet tæt sammen

Læs mere

Lidt om fordelinger, afledt af normalfordelingen

Lidt om fordelinger, afledt af normalfordelingen IMM, 2002-10-10 Poul Thyregod Lidt om fordelinger, afledt af normalfordelingen 1 Introduktion I forbindelse med inferens i normalfordelinger optræder forskellige fordelinger, der er afledt af normalfordelingen,

Læs mere

Teoretiske Øvelser Mandag den 28. september 2009

Teoretiske Øvelser Mandag den 28. september 2009 Hans Kjeldsen hans@phys.au.dk 21. september 2009 Teoretiske Øvelser Mandag den 28. september 2009 Øvelse nr. 10: Solen vor nærmeste stjerne Solens masse-lysstyrkeforhold meget stort. Det vil sige, at der

Læs mere

Anvendt BioKemi: MM4. Anvendt BioKemi: Struktur. 1) MM4- Opsummering. Små molekyler: fedtsyre. Store molekyler: fedt, lipids, lipoproteiner

Anvendt BioKemi: MM4. Anvendt BioKemi: Struktur. 1) MM4- Opsummering. Små molekyler: fedtsyre. Store molekyler: fedt, lipids, lipoproteiner Anvendt BioKemi: Struktur 1) MM1 Intro: Terminologi, Enheder Math/ biokemi : Kemiske ligninger, syre, baser, buffer Små / Store molekyler: Aminosyre, proteiner 2) MM2 Anvendelse: blod som kemiske systemer

Læs mere

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning

Fejlforplantning. Landmålingens fejlteori - Lektion 5 - Fejlforplantning. Repetition: Varians af linear kombination. Eksempel: Vinkelberegning Fejlforplantning Landmålingens fejlteori Lektion 5 Fejlforplantning - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf13 Landmåling involverer ofte bestemmelse af størrelser som ikke kan

Læs mere

Den klassiske oscillatormodel

Den klassiske oscillatormodel Kvantemekanik 6 Side af 8 n meget central model inden for KM er den såkaldte harmoniske oscillatormodel, som historisk set spillede en afgørende rolle i de banebrydende beskrivelser af bla. sortlegemestråling

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Sandsynlighedsregning Oversigt over begreber og fordelinger

Sandsynlighedsregning Oversigt over begreber og fordelinger Tue Tjur Marts 2007 Sandsynlighedsregning Oversigt over begreber og fordelinger Stat. MØK 2. år Kapitel : Sandsynlighedsfordelinger og stokastiske variable En sandsynlighedsfunktion på en mængde E (udfaldsrummet)

Læs mere

Opgaver til Fysik 3 Termodynamik

Opgaver til Fysik 3 Termodynamik Opgaver til Fysik 3 Termodynamik Disse opgaver er taget fra forskellige kilder. Nomenklaturen kan derfor afvige fra lærebogens. Opgave 1 What is the probability of getting either a seven or a six when

Læs mere

Bøjning i brudgrænsetilstanden. Per Goltermann

Bøjning i brudgrænsetilstanden. Per Goltermann Bøjning i brudgrænsetilstanden Per Goltermann Lektionens indhold 1. De grundlæggende antagelser/regler 2. Materialernes arbejdskurver 3. Bøjning: De forskellige stadier 4. Ren bøjning i simpelt tværsnit

Læs mere

Nedenstående spørgsmål er med forbehold for censors godkendelse Spørgsmål 1 Molekyler Eksempler fra hverdagen

Nedenstående spørgsmål er med forbehold for censors godkendelse Spørgsmål 1 Molekyler Eksempler fra hverdagen Nedenstående spørgsmål er med forbehold for censors godkendelse Spørgsmål 1 Molekyler Eksempler fra hverdagen Der ønskes en gennemgang af udvalgte molekylers opbygning, samt deres betydning i hverdagen.

Læs mere

ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt

ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt Atomets partikler: Elektrisk ladning Lad os se på et fysisk stof som kobber: Side 1 Atomets

Læs mere

Modeldannelse og simulering

Modeldannelse og simulering Modeldannelse og simulering Tom S. Pedersen, Palle Andersen tom@es.aau.dk pa@es.aau.dk Aalborg Universitet, Institut for Elektroniske Systemer Automation and Control Modeldannelse og simulering p. 1/21

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

Dimensionering af samling

Dimensionering af samling Bilag A Dimensionering af samling I det efterfølgende afsnit redegøres for dimensioneringen af en lodret støbeskelssamling mellem to betonelementer i tværvæggen. På nedenstående gur ses, hvorledes tværvæggene

Læs mere

Spørgsmål 1 Carbonhydrider

Spørgsmål 1 Carbonhydrider Nedenstående spørgsmål er med forbehold for censors godkendelse Spørgsmål 1 Carbonhydrider Der ønskes en gennemgang af udvalgte carbonhydriders opbygning og kemiske egenskaber. Du skal inddrage øvelsen:

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 Skriftlig prøve, torsdag den 8 maj, 009, kl 9:00-13:00 Kursus navn: Fysik 1 Kursus nr 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Besvarelsen

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og

Læs mere

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr) CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: PQ. juli 200Z Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff. Kursus 242 Introduktion til Statistik Forelæsning 3: Kapitel 5: Kontinuerte fordelinger Per Bruun Brockhoff DTU Compute, Statistik Bygning 35/324 Danmarks Tekniske Universitet 28 Lyngby Danmark e-mail:

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Huseftersynsordningen plus, minus ti år -

Huseftersynsordningen plus, minus ti år - Huseftersynsordningen plus, minus ti år - ! # # # % & # ( ( #! # ) # ( & # # # # +! #!# %, # # #! %.# / # # 0#( # # # # # # %, # # # 1 # # % 2 # & # # 0#( # # # # # 2 # #! 2 ( # # 3 ( & # # # (#! #, #

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 6.1. Ligefordelinger, fra sidst Den standardiserede normalfordeling Normalfordelingen Beskrivelse af normalfordelinger: - Tæthed og fordelingsfunktion - Middelværdi, varians og fraktiler

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Termin hvori undervisningen afsluttes: maj-juni 2011 Københavns Tekniske

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Ekstra termodynamikopgaver i Fysik 1, 10022/24 F12

Ekstra termodynamikopgaver i Fysik 1, 10022/24 F12 Ekstra termodynamikopgaver i Fysik, 00/4 F Opgave Tre opfindere, A, B og C, fortæller dig at de hver har designet en varmemaskine A s maskine kan udføre et arejde på 0 J ved tilførsel af 50 J med en spildvarme

Læs mere

Elementær sandsynlighedsregning

Elementær sandsynlighedsregning Elementær sandsynlighedsregning Sandsynlighedsbegrebet Et udfaldsrum S er mængden af alle de mulige udfald af et eksperiment. En hændelse A er en delmængde af udfaldsrummet S. Den hændelse, der ikke indeholder

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns

Læs mere