TALTEORI Wilsons sætning og Euler-Fermats sætning.

Størrelse: px
Starte visningen fra side:

Download "TALTEORI Wilsons sætning og Euler-Fermats sætning."

Transkript

1 Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter Trosborgs noter om talteori. Noterne vil primært introducere forskellige opgaveteknikker hvor man skal benytte Wilsons sætning eller Euler-Fermats sætning. 1 Wilsons sætning I Marianne Terps og Peter Trosborgs noter om talteori er Wilsons sætning bevist så her refererer vi den blot. 1.1 Wilsons sætning For ethvert primtal p gælder 1.2 Eksempel (p 1)! 1 (mod p). Wilsons sætning kan bl.a. benyttes til at vise at hvis p er et primtal som har rest 1 ved division med 4, da er 1 kvadratisk rest modulo p, dvs. at ligningen x 2 1 (mod p) har en løsning. Lad nemlig p være et primtal på formen p = 4m + 1. Ifølge Wilsons sætning gælder 1 (p 1)! m ( 2m)... ( 2) ( 1) ((2m)!) 2 (mod p). Dvs. at ((2m!) 2 1 (mod p), og dermed ses at 1 er kvadratisk rest modulo p. Senere skal vi se at 1 ikke er kvadratisk rest modulo primtal på formen 4m Opgave Bestem samtlige naturlige tal n for hvilke n går op i (n 1)! Opgave Er det muligt at dele en mængde bestående af ti på hinanden følgende naturlige tal i to disjunkte delmængder, som samlet indeholder alle ti tal, således at produktet af elementerne i hver af de to delmængder bliver det samme tal? 2 Euler-Fermats sætning I talteori opgaver hvor der indgår potenser, kan det være en hjælp at kende Euler-Fermats sætning. Sætningen er bevist i Marianne Terps og Peter Trosborgs noter om talteori så her refererer vi den blot. 2.1 Euler-Fermat Lad n være et naturligt tal, og a et helt tal således at (a, n) = 1. Da gælder a φ(n) 1 (mod n).

2 Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde Fermats lille sætning Fermats lille sætning er et specialtilfælde af Euler-Fermat: For et primtal p og et helt tal a hvor (p, a) = 1, gælder 2.3 Eksempel a p 1 1 (mod p). Euler-Fermats sætning kan bl.a. benyttes til at reducere potensen hvis man fx ønsker at udregne (mod 25). Da φ(25) = φ(5 2 ) = (5 1)5 = 20, er = 6 2 (6 20 ) (mod 25). 2.4 Inverse elementer Hvis a og n er to indbyrdes primiske hele tal, da kan Euler-Fermats sætning benyttes til at konstruere en invers til a (mod n). En invers til a er et helt tal a 1 som opfylder a a 1 1 (mod n). Ifølge Euler-Fermats sætning er a φ(n) 1 en invers til a da a φ(n) 1 (mod n). 2.5 Sætning Lad (a, n) = 1, og antag at a m 1 (mod n). Da gælder at a (φ(n),m) 1 (mod n). BEVIS: Den største fælles divisor af to tal kan altid skrives som en linearkombination af tallene, dvs. der findes hele tal s og t så (φ(n), m) = sφ(n) + tm. Dermed er 2.6 Eksempel a (φ(n),m) = a sφ(n)+tm = (a φ(n) ) s (a m ) t 1 (mod n). Findes der et helt tal n hvis cifre er lutter 1-taller således at n er delelig med 1999? Ja, det kan man benytte Euler-Fermats sætning til at vise. Da 1999 er et primtal, er φ(1999) = Der gælder nu at (mod 1999). Dermed går 1999 op i = }{{ }, og da (1999, 9) = 1, må 1999 gå op 1998 i }{{ } Opgaven kan faktisk også løses alene ved brug af skuffeprincippet og simple overvejelser om rester. 2.7 Opgave Vis at hvis m er et naturligt tal der ikke er delelig med 2, 3 eller 5, da findes et helt tal n hvis cifre er lutter 1-taller således at n er delelig med m. 2.8 Opgave Lad a og n være to indbyrdes primiske hele tal. Vis at hvis m er det mindste naturlige tal så a m 1 (mod n), da er m divisor i φ(n).

3 Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde Opgave Lad m være et ulige naturligt tal, og betragt følgen a 0 = m og a n = 2a n for n N. Vis at der findes uendeligt mange tal i følgen som er delelige med m Opgave Antag at n, k 2 er to naturlige tal. Vis at da er mindst et af tallene p = n + k n og q = nk (kn 1) + 1 ikke et primtal Opgave Bestem alle naturlige tal n, således at 3 n + 1 er delelig med n 2. (Baltic Way 2006) 3 Primtal på formen p = 4m + 3 Primtal af formen p = 4m + 1 og primtal af formen p = 4m + 3 har forskellige egenskaber, og her vil vi se på et par af disse. 3.1 Sætning Der gælder at 1 er kvadratisk rest modulo primtal på formen p = 4m + 1, mens 1 ikke er kvadratisk rest modulo primtal på formen p = 4m + 3. BEVIS: Vi har tidligere set at 1 er kvadratisk rest modulo primtal p på formen p = 4m + 1. Antag nu at der findes et helt tal x så x 2 1 (mod p), hvor p = 4m + 3. Dette giver at x 4m+2 = (x 2 ) 2m+1 ( 1) 2m+1 1 (mod p), men ifølge Euler-Fermat er x 4m+2 1 (mod p), hvilket er en modstrid. 3.2 Sætning Lad p være et primtal på formen p = 4m + 3. Hvis p går op i summen af to kvadrattal a 2 + b 2, da går p op i både a og b. BEVIS: Antag at a 2 + b 2 0 (mod p), og at a ikke er delelig med p. Da findes en invers a 1 til a modulo p, og dermed har vi Dette giver a 2 (a 1 ) 2 + b 2 (a 1 ) 2 0 (mod p). 1 + (ba 1 ) 2 0 (mod p), hvilket er en modstrid da 1 ikke er kvadratisk rest modulo p. Derfor må p gå op i a og dermed også i b. 3.3 Korollar Et specialtilfælde af sætningen er at et primtal p på formen p = 4m + 3 ikke kan skrives som sum af to kvadrattal. Primtal på formen p = 4m + 1 kan derimod altid skrives som sum af to kvadrattal, og det skal vi se nærmere på om lidt.

4 Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde Opgave Om et helt tal n oplyses at n er kvadratfrit, og at samtlige primfaktorer i n er på formen 4m + 3.(At et tal er kvadratfrit betyder at alle primtal i primfaktoropløsningen indgår i 1. potens.) Vis at n ikke kan skrives som sum af to kvadrattal. 3.5 Opgave Vis at n ikke er et kubiktal for noget naturligt tal n. (Vink: Udnyt ovenstående teori samt at m = (m + 1)(m 2 m + 1).) For at bevise at primtal på formen p = 4m + 1 kan skrives som sum af to kvadrater, har vi brug for følgende sætning. 3.6 Thues sætning Lad n være et helt tal større end 1, og lad k være det mindste hele tal så k > n, dvs. at k 1 n. Antag at a er et tal som er primisk med n. Da findes hele tal x og y, x, y {1, 2,..., k 1}, så ay x (mod n) eller ay x (mod n). BEVIS. Betragt alle tal på formen ay + x hvor x, y {0, 1, 2,..., k 1}. Da der er k 2 > n par x, y, findes ifølge skuffeprincippet mindst to par så ay + x har samme rest modulo n. Der findes altså x 1, x 2, y 1, y 2 {0, 1, 2,..., k 1}, så a(y 1 y 2 ) x 2 x 1 (mod n), hvor x 1 x 2 eller y 1 y 2. Antag at x 1 = x 2. Da vil n gå op i a(y 1 y 2 ), og da (a, n) = 1 vil n gå op i y 1 y 2, dvs. y 1 = y 2 da y 1, y 2 {0, 1, 2,..., k 1}. Hvis vi antager at y 1 = y 2, får vi tilsvarende at x 1 = x 2. Dermed er 0 < x 1 x 2, y 1 y 2 k 1. Sæt nu y = y 1 y 2 og x = x 1 x 2. Da er 3.7 Opgave ay x (mod n) eller ay x (mod n). Lad p være et primtal på formen p = 4m + 1. Udnyt Thues sætning samt at 1 er kvadratisk rest modulo p, til at vise at p kan skrives som sum af to kvadrater. 3.8 Opgave Hvilke positive hele tal n kan skrives som sum af to kvadrater? (Bemærk at nul også regnes for et kvadrat)

5 Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 5 4 Løsninger Opgave 1.3 Hvis p er et primtal, gælder ifølge Wilsons sætning at (p 1)! 1 (mod p), dvs. p går op i (p 1)! + 1. Hvis n ikke er et primtal, findes et primtal p som går op i n, hvor p < n. Da p går op i (n 1)!, kan p og dermed heller ikke n gå op i (n 1)! + 1. Opgave 1.4 Vi viser indirekte at svaret er nej. Antag at mængden S = {n, n+1,..., n+9} kan deles i to disjunkte mængder S 1 og S 2 således at produkterne π 1 og π 2 af henholdsvis elementerne i S 1 og S 2 er ens. Blandt ti på hinanden følgende tal kan højst et være deleligt med 11, men hvis et af tallene var deleligt med 11, ville de to produkter ikke være ens. Tallene i S repræsenterer således restklasserne 1, 2,..., 10 modulo 11. Ifølge Wilsons sætning gælder nu at π 2 1 = π 1 π 2 (11 1)! 1 (mod 11). Men der er ingen rester modulo 11 der opfylder ligningen x 2 1 (mod 11), hvilket er en modstrid. Dermed er antagelsen forkert. Opgave 2.7 Da (m, 10) = 1, gælder ifølge Euler-Fermat at 10 φ(m) 1 (mod m). Dermed går m op i 10 φ(m) 1 = }{{ }, og da (m, 3) = 1, må m gå op i φ(m) }{{ }. φ(m) Opgave 2.8 Ifølge Sætning 2.5 ved vi at hvis a m 1 (mod n), da er a (m,φ(n)) 1 (mod n). Hvis m er det mindste naturlige tal som opfylder a m 1 (mod n), må (m, φ(n)) = m. Dermed er m divisor i φ(n). Opgave 2.9 Bemærk først at a n + 1 = 2(a n 1 + 1) = 2 2 (a n 2 + 1) = = 2 n (a 0 + 1) = 2 n m + 2 n. Dermed er a n = 2 n m + 2 n 1. Da gcd(m, 2) = 1, er 2 φ(m) 1 mod m. For n = kφ(m) er a n = 2 n m + 2 n 1 (2 φ(m) ) k = 0 mod m. Dermed er der uendelige mange tal i følgen som er delelige med m. Opgave 2.10 Hvis p ikke er et primtal, er vi færdige. Antag derfor at p er et primtal. Da (p, k) = 1, gælder ifølge Euler-Fermats sætning at q = nk (kn 1) + 1 = (p k n )k p n k p (mod p). Da k, n 2, er q = nk (kn 1) + 1 > n + k n = p. Heraf følger at q ikke er et primtal. Opgave 2.11 Hvis n er lige, er 3 n = 2 (mod 4), og dermed er 3 n + 1 ikke delelig med n.

6 Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 6 Antag nu at n er ulige, og at 3 n + 1 er delelig med n 2. Det er klart at n = 1 opfylder betingelsen, så vi antager yderligere at n > 1. Lad p være den mindste primdivisor i n. Ifølge antagelsen går p op i 3 2n 1 = (3 n + 1)(3 n 1), og ifølge Euler-Fermat går p op i 3 p 1 1. Fra Sætning 2.5 ved vi nu at p går op i 3 (2n,p 1) 1 = = 8, hvilket er en modstrid. (Bemærk at (2n, p 1) = 2 da p er den mindste primdivisor i n). Dermed er n = 1 den eneste løsning. Opgave 3.4 Antag at a 2 + b 2 = n, og lad n = p 1 p 2... p s. Da er a 2 + b 2 0 (mod p i ) for alle i = 1, 2,..., s. Ifølge Sætning 3.2, må p i gå op i både a og b, dvs. at n går op i a og b hvilket er en modstrid. Opgave 3.5 Antag at n = m 3. Hvis man betragter ligningen modulo 8, ser man ved at gennemgå de mulige restklasser for n og m at n må være lige samt at m har rest 3 modulo 4. Ifølge antagelsen er n = m = (m + 1)(m 2 m + 1). Desuden er m 2 m (mod 4), dvs. at der findes en primdivisor p i m 2 m + 1 som har rest 3 modulo 4. Dermed er n (mod p), og ifølge Sætning 3.2 må p gå op i 2. Dette er en modstrid, og dermed er antagelsen forkert. Opgave 3.7 Vi ved at der findes et helt tal z så z (mod p). Da (z, p) = 1, findes ifølge Thues sætning hele tal x og y, 0 < x, y < p, så zy x (mod p) eller zy x (mod p). Da z (mod p), må (yz) 2 + y 2 0 (mod p), og dermed Da 0 < x 2 + y 2 < 2p, må x 2 + y 2 = p. x 2 + y 2 0 (mod p). Opgave 3.8 De tal der kan skrives som sum af to kvadrater, er netop tal med primfaktoropløsning n = 2 m p α 1 1 pα 2 2 pαr r q β 1 1 qβ 2 2 qβs s, hvor p i 1 (mod 4), q j 3 (mod 4), og hvor β 1,..., β s er lige. Først bemærker vi at hvis to tal kan skrives som sum af to kvadrater, da kan deres produkt også skrives som sum af to kvadrater: (a 2 + b 2 )(c 2 + d 2 ) = a 2 c 2 + a 2 d 2 + b 2 c 2 + b 2 d 2 = (ac + bd) 2 + (ad bc) 2. Da 2, alle primtal på formen 4m + 1 samt alle kvadrater kan skrives som sum af to kvadrater, kan alle tal på ovenstående form dermed skrives som sum af to kvadrater. Antag at n = a 2 +b 2, og at primfaktoropløsningen for n indeholder et primtal q hvor q 3 (mod 4). Da q går op i en sum af to kvadrater, vil q ifølge sætning 3.2 gå op i både a og b. Dermed vil q 2 gå op i a 2 + b 2 = n. Vi reducerer nu n, a 2 og b 2 med q 2 og får a b2 1 = n 1. Hvis n 1 er delelig med q, kan vi gentage proceduren en gang til og se at q 2 vil gå op i n 1. På denne måde indses at q indgår i primfaktoropløsningen for n i en lige potens.

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

TALTEORI Ligninger og det der ligner.

TALTEORI Ligninger og det der ligner. Ligninger og det der ligner, december 006, Kirsten Rosenkilde 1 TALTEORI Ligninger og det der ligner. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

2. Gruppen af primiske restklasser.

2. Gruppen af primiske restklasser. Primiske restklasser 2.1 2. Gruppen af primiske restklasser. (2.1) Setup. I det følgende betegner n et naturligt tal større end 1. Den additive gruppe af restklasser modulo n betegnes Z/n, og den multiplikative

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi)

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) 1. Klassiske krypteringsmetoder 1.1 Terminologi klartekst kryptotekst kryptering dekryptering 1.2 Monoalfabetiske kryptosystemer 1.3 Additive

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på bagsiden).

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen. Talteori. Georg Mohr-Konkurrencen

Tip til 1. runde af Georg Mohr-Konkurrencen. Talteori. Georg Mohr-Konkurrencen Tip til 1. runde af Georg Mohr-Konkurrencen Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal går op i et andet helt tal. Derfor spiller primtallene en helt central rolle i talteori,

Læs mere

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik. Vinderseminar 2007. Diskret matematik. Kirsten Rosenkilde. 1 1 Paritet Diskret matematik. I mange matematikopgaver er det en god ide at se på paritet dvs. hvornår en bestemt størrelse er henholdsvis lige

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polynomier, Kirsten Rosenkilde, Marts 2006 1 Polynomier Disse noter giver en kort introduktion til polynomier, og de fleste sætninger nævnes uden bevis. Undervejs er der forholdsvis nemme opgaver,

Læs mere

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden.

er et helt tal. n 2 AB CD AC BD (b) Vis, at tangenterne fra C til de omskrevne cirkler for trekanterne ACD og BCD står vinkelret på hinanden. Opgave Heltalligt Bestem alle hele tal, n >, for hvilke n + n er et helt tal. Opgave Trekantet I en spidsvinklet trekant ABC skærer vinkelhalveringslinien fra A siden BC i punktet L og den omskrevne cirkel

Læs mere

Projekt 7.9 Euklids algoritme, primtal og primiske tal

Projekt 7.9 Euklids algoritme, primtal og primiske tal Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80) Opgave 1 Vi skal tegne alle de linjestykker, der forbinder vilkårligt valgte punkter blandt de 4 punkter. Gennem forsøg finder

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. lemma: Hvis a, b og c er heltal så gcd(a, b) = 1 og a bc da vil a c. lemma: Hvis p er et primtal og p a 1 a 2 a n hvor hvert

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

Ringe og Primfaktorisering

Ringe og Primfaktorisering Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

83 - Karakterisation af intervaller

83 - Karakterisation af intervaller 83 - Karakterisation af intervaller I denne opgave skal du bevise, at hvis A er en delmængde af R med følgende egenskab: x, y, z R : x, y A og x < z < y z A (1) så er A enten et interval eller en mængde

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

Talteori: Euklids algoritmer, modulær aritmetik

Talteori: Euklids algoritmer, modulær aritmetik Talteori: r, modulær aritmetik Videregående algoritmik Cormen et al. 31.1 31.4 Tirsdag den 6. januar 2009 1 1 2 Restklasseringene modulo n Grupper og undergrupper Modulær division Divisorer De hele tal

Læs mere

10. Nogle diofantiske ligninger.

10. Nogle diofantiske ligninger. Diofantiske ligninger 10.1 10. Nogle diofantiske ligninger. (10.1). I dette kapitel betragtes nogle diofantiske ligninger, specielt nogle af de ligninger, der kan behandles via kvadratiske talringe. Ligningerne

Læs mere

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4 Indhold 1 Vindermængde og tabermængde 2 2 Kopier modpartens træk 4 3 Udnyt modpartens træk 5 4 Strategityveri 6 5 Løsningsskitser 7 Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende

Læs mere

Matematik 2AL, vinteren

Matematik 2AL, vinteren EO 1 Matematik 2AL, vinteren 2002 03 Det er tilladt at skrive med blyant og benytte viskelæder, så længe skriften er læselig, og udviskninger foretages grundigt. Overstregning trækker ikke ned og anbefales

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Facitliste til nyere eksamensopgaver

Facitliste til nyere eksamensopgaver Facitliste Facitliste til nyere eksamensopgaver Listen indeholder facit (eller vink) til eksamensopgaverne (i MatAL, Alg og ) fra sommeren 003 og fremefter. Bemærk, at de facitter, der står på listen,

Læs mere

Opgaver. Kapitel 1 fra Bogen. Georg Mohr-Konkurrencens vinderseminar 1. udgave 2. oplag 2007

Opgaver. Kapitel 1 fra Bogen. Georg Mohr-Konkurrencens vinderseminar 1. udgave 2. oplag 2007 Opgaver Kapitel 1 fra Bogen Georg Mohr-Konkurrencens vinderseminar 1. udgave 2. oplag 2007 Dette kapitel indeholder opgaver af ret varierende sværhedsgrad. De letteste ligger i forlængelse af, hvad der

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den knesske restklassesætnng, december 2006, Krsten Rosenklde 1 TALTEORI Følger og den knesske restklassesætnng Dsse noter forudsætter et grundlæggende kendskab tl talteor som man kan få Maranne

Læs mere

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk)

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk) Kryptologi og RSA Jonas Lindstrøm Jensen (jonas@imf.au.dk) 1 Introduktion Der har formodentlig eksisteret kryptologi lige så længe, som vi har haft et sprog. Ønsket om at kunne sende beskeder, som uvedkommende

Læs mere

Kvadratiske matricer. enote Kvadratiske matricer

Kvadratiske matricer. enote Kvadratiske matricer enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 24. august 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede

Læs mere

Algebra. Anders Thorup. Matematisk Afdeling Københavns Universitet

Algebra. Anders Thorup. Matematisk Afdeling Københavns Universitet Algebra Anders Thorup Matematisk Afdeling Københavns Universitet Anders Thorup, e-mail: thorup@math.ku.dk Algebra, 3. udgave Matematisk Afdeling Universitetsparken 5 2100 København Ø ISBN 87-91180-28-7

Læs mere

Facitliste 1 MAT 2AL. 5. f (x) er irreducibel i Z 5 [X].

Facitliste 1 MAT 2AL. 5. f (x) er irreducibel i Z 5 [X]. Facitliste 1 Facitliste til eksamensopgaver Facit til de første 14 opgavesæt er blevet til paa basis af Jonas B. Rasmusssens facitliste. Han regnede størstedelen af opgaverne, medens han fulgte kurset,

Læs mere

ElmTal Primtallene 1.1

ElmTal Primtallene 1.1 Primtallene.. Primtallene. (.) Setup. Et tal p kaldes som bekendt et primtal, hvis p 2 og p kun har trivielle divisorer, dvs hvis de eneste (positive) divisorer i p er og p. De første primtal er tallene

Læs mere

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1. Diskret matematik Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2006 1 Diskret matematik Disse noter er en introduktion til skuffeprincippet, grafteori, spilstrategier samt opgaver der kan løses ved farvelægning.

Læs mere

Matematiske metoder - Opgavesæt

Matematiske metoder - Opgavesæt Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller

Læs mere

Additionsformlerne. Frank Villa. 19. august 2012

Additionsformlerne. Frank Villa. 19. august 2012 Additionsformlerne Frank Villa 19. august 2012 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

MM05 - Kogt ned. kokken. Jacob Aae Mikkelsen. 23. januar 2007

MM05 - Kogt ned. kokken. Jacob Aae Mikkelsen. 23. januar 2007 MM05 - Kogt ned Jacob Aae Mikkelsen kokken 23. januar 2007 1 INDHOLD 1 ARITMETIK I Z Indhold 1 Aritmetik i Z 2 2 Kongruens i Z 4 3 Ringe 6 4 Aritmetik i F[x] 9 5 Kongruens i F[x] og kongruensklasse aritmetik

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

Projekt 0.6 RSA kryptering

Projekt 0.6 RSA kryptering Projekt 0.6 RSA kryptering 1. Introduktion. Nøgler til kryptering Alle former for kryptografi prøver at løse følgende problem: En afsender, A ønsker at sende en mdelelse til en modtager, M, såles at den

Læs mere

Baltic Way opgavesæt Sorø 2005 Løsninger

Baltic Way opgavesæt Sorø 2005 Løsninger Baltic Way opgavesæt Sorø 005 Løsninger 1. Lad r > 1 være et reelt tal og lad a n være givet ved a n = 1 ( r n 1 ) n r n for n 1. Bevis at a n+1 > a n for alle n 1. Løsning: Vi har følgende serie af biimplikationer:

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj 2007 1 Diskret matematik Disse noter er en introduktion til skuffeprincippet, grafteori, spilstrategier samt opgaver der kan løses ved farvelægning.

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

6. RSA, og andre public key systemer.

6. RSA, og andre public key systemer. RSA 6.1 6. RSA, og andre public key systemer. (6.1). A skal sende en meddelelse til B. Denne situation forekommer naturligvis utallige gange i vores dagligdag: vi kommunikerer, vi signalerer, vi meddeler

Læs mere

OM KAPITLET ELEVFORUDSÆTNINGER LÆS OG SKRIV MATEMATIK. 6. Det vil derfor være relativt nyt for de fleste elever, at

OM KAPITLET ELEVFORUDSÆTNINGER LÆS OG SKRIV MATEMATIK. 6. Det vil derfor være relativt nyt for de fleste elever, at OM KAPITLET I dette kapitel om tal i mængder skal eleverne arbejde med de naturlige tal N, de hele tal Z og de rationale tal Q. Eleverne skal ligeledes erfare, at der er brug for endnu flere tal end de

Læs mere

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen Introduktion til Kryptologi Mikkel Kamstrup Erlandsen Indhold 1 Introduktion 2 1.1 Om Kryptologi.......................... 2 1.2 Grundlæggende koncepter.................... 2 1.3 Bogstaver som tal........................

Læs mere

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Disposition 1 PKI - Public Key Infrastructure Symmetrisk kryptografi Asymmetrisk kryptografi 2 Regning med rester Indbyrdes primiske tal

Læs mere

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder: Geometrinoter, januar 009, Kirsten Rosenkilde 1 Geometrinoter Disse noter omhandler sætninger om trekanter, trekantens ydre røringscirkler, to cirklers radikalakse samt Simson- og Eulerlinjen i en trekant.

Læs mere

Algebra2 Obligatorisk opgave

Algebra2 Obligatorisk opgave Algebra2 Obligatorisk opgave Anders Bongo Bjerg Pedersen, 070183 Eksamensnummer 45 23. maj 2005 Opgave 1 Vi har: σ = σ 6 5 = (σ 3 ) 2 (σ 5 ) 1 = (1 3 5 2 4)(8 7 6). b) Ordnen af en p-cykel er (jfr. 2.18)

Læs mere

1 Sætninger om hovedidealområder (PID) og faktorielle

1 Sætninger om hovedidealområder (PID) og faktorielle 1 Sætninger om hovedidealområder (PID) og faktorielle ringe (UFD) 1. Introducér ideal, hovedideal 2. I kommutativt integritetsområde R introduceres primelement, irreducibelt element, association 3. Begrebet

Læs mere

DM72 Diskret matematik med anvendelser

DM72 Diskret matematik med anvendelser DM72 Diskret matematik med anvendelser En hurtig gennemgang af de vigtigste resultater. (Dvs. ikke alle resultater). Logik Åbne udsagn 2 + 3 = 5 Prædikater og kvantorer P (x) := x er et primtal x N : n

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Foredrag i Eulers Venner 30. nov. 2004

Foredrag i Eulers Venner 30. nov. 2004 BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen matjph@imf.au.dk

Læs mere

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion Transformationsgeometri: Inversion. Kirsten Rosenkilde, august 2007 1 Inversion Inversion er en bestemt type transformation af planen, og ved at benytte transformation på en geometrisk problemstilling

Læs mere

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Dis1 2008-09 Ugeopgave 1

Dis1 2008-09 Ugeopgave 1 Dis1 2008-09 Ugeopgave 1 Rasmus Sylvester Bryder 20. februar 2009 1 F08 opgave 1 (i) Der skal gøres rede for at [2] er en primisk restklasse i Z/49, og den inverse dertil skal ndes. Altså skal gælde, at

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Det Platon mener, er... Essay om matematikken bag Epinomis 990 c 5 ff

Det Platon mener, er... Essay om matematikken bag Epinomis 990 c 5 ff Det Platon mener, er... Essay om matematikken bag Epinomis 990 c 5 ff af Christian Marinus Taisbak Illustrationer: Claus Glunk Platons tekst i Erik Ostenfelds oversættelse Motto (Ian Mueller in memoriam):

Læs mere

DIOFANTISKE LIGNINGER FERMATS SIDSTE SÆTNING

DIOFANTISKE LIGNINGER FERMATS SIDSTE SÆTNING DIOFANTISKE LIGNINGER FERMATS SIDSTE SÆTNING JOHAN P. HANSEN Resumé. Under den historiske indføring forklares, hvad der menes med en Diofantisk ligning. Der gøres rede for formulering af Fermats Store

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Martin Geisler Mersenne primtal. Marin Mersenne

Martin Geisler Mersenne primtal. Marin Mersenne Martin Geisler Mersenne primtal Marin Mersenne 3. årsopgave Aalborghus Gymnasium 22. 29. januar 2001 Forord Denne opgave skal handle om Mersenne primtal, men kommer også ind på meget andet. Da de forskellige

Læs mere

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier

Spilstrategier, Kirsten Rosenkilde, september 2007 1. Spilstrategier Spilstrategier, Kirsten Rosenkilde, september 2007 1 1 Spilstrategier Spilstrategier De spiltyper vi skal se på her, er spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Note om endelige legemer

Note om endelige legemer Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på

Læs mere

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse

Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse 1 Løsningsforslag til Tal, algebra og funktioner 1.-6. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien

Læs mere

Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet

Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet Oversigt Hvad er et stort problem i matematik Eksempler fra 1900 og fra 2000 Problemer om tal perfekte tal, primtal. Meget store

Læs mere

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering

Algebra med Bea. Bea Kaae Smit. nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Algebra med Bea Bea Kaae Smit nøgleord andengradsligning, komplekse tal, ligningsløsning, ligningssystemer, nulreglen, reducering Indhold 1 Forord 4 2 Indledning 5 3 De grundlæggende regler 7 3.1 Tal..........................

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

Anders Thorup. Elementær talteori. Algebra og talteori, F2001

Anders Thorup. Elementær talteori. Algebra og talteori, F2001 Anders Thorup Elementær talteori Algebra og talteori, F2001 1. Primtallene... 1 2. Gruppen af primiske restklasser... 15 3. Cirkeldelingspolynomier. Endelige legemer... 21 4. Reciprocitetssætningen...

Læs mere

Elementær Matematik. Tal og Algebra

Elementær Matematik. Tal og Algebra Elementær Matematik Tal og Algebra Ole Witt-Hansen 0 Indhold Indhold.... De naturlige tal.... Regneregler for naturlige tal.... Kvadratsætningerne..... Regningsarternes hierarki...4. Primtal...4 4. Nul

Læs mere

Diskrete Matematiske Metoder. Jesper Lützen

Diskrete Matematiske Metoder. Jesper Lützen Diskrete Matematiske Metoder Jesper Lützen Juni 2013 ii Indhold Introduktion. ix 0.1 Den aksiomatisk-deduktive metode................. ix 0.2 Diskret matematik; hvad er det?.................. x 1 Tal,

Læs mere

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere