Geometriske tegning - Fase 2 Fremstille præcise tegninger

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Geometriske tegning - Fase 2 Fremstille præcise tegninger"

Transkript

1 Navn: Klasse: Geometriske tegning - Fase 2 Fremstille præcise tegninger Vurdering fra 1 til 5 (hvor 5 er højst) Læringsmål Selv Lærer eviser og forslag til forbedring 1. Jeg kan tegne isometrisk tegninger af genstande med et dynamisk geometriprogram (f.eks. Geogebra). 2. Jeg kan tegne perspektivtegninger af genstande med et dynamisk geometriprogram (f.eks. Geogebra). 3. Jeg kan aflæse mål på isometriske tegninger og herudfra beregne mål. 4. Jeg kan konstruere præcise tegninger ud fra givne betingelser. 5. Jeg kender til begreberne nederst. egreber/noter: 6

2

3 Tegn på isometrisk papir eller i Geogebra

4

5

6

7

8

9 flæse'mål'på'isometriske'tegninger' ' 1. SkrivlængdernefratilI.... D. E. F. G. H. I. 1

10 Tegninger 1: Tegningen viser et bord i et rum. Hvor stort er bordet? (længde og bredde) 5 m 2: Tegningen viser et bord i et rum. ordet er 240 cm langt og 120 cm bredt. ordet står præcis midt i rummet. Hvor lange er stykkerne a og b? 90 cm 4,5 m 3,50 m 90 cm 110 cm 140 cm 3 m 3: Tegningen nederst til højre viser gavlen af et hus. a: Hvor højt er huset? b: Hvor bred er døren? Du kan ikke svare præcist på de sidste spørgsmål men giv et bud: c: Hvor høj er døren? d: Hvor højt er vinduet? 4: Tegningen nederst til venstre viser enden af en garage. a: Hvor langt er stykket mærket med x? b: Hvor lange er stykkerne mærket med y? 4 m 3,25 m 2,10 m x 2,90 m 200 cm 2,50 m b a Længde: 240 cm redde: 120 cm a b 240 cm 135 cm 135 cm 170 cm 135 cm y y 7 m

11 edømmelse(af(rumlige(figurer( (

12 Tegn%følgende%opgaver%i%Geogebra% % 1. Tegnforsvindingspunktet(erne),horisontlinjen(erne)ogmidtpunktetaf enafsidernepåbygningen.geogebramågerneanvendes. 2. LavenarbejdstegningiGeogebraaffiguren.Figurenshøjdeer3cm, breddener2cmoglængdener10cm 3. Lavenarbejdstegningaflampen.Lampensskærmåbninger20cmi diameteroghalsener5cmidiameter.ndremålmåiselvvurdere. 20cm 5cm 1

13 4. Lavenisometrisktegningafenkassemedenbreddepå5,enlængdepå7 ogenhøjdepå Lavenisometrisktegningudfrafølgende: (enkvadrater1cm 2 ) 6. Lavførstenisometrisktegningaffiguren.Højdenaffigurener2og breddener3.efterskaldulaveenarbejdstegningaffiguren. 7. Tegndefireisometriskefigurer. 2

14 KOPIRK 19 KONSTRUKTION F TREKNTER 1 Konstruer hver trekant ud fra oplysningerne på skitserne. rug evt. et geometriprogram. Skriv efter hver konstruktion, om der kun findes en løsning, eller om der findes flere løsninger. En af trekanterne kan ikke konstrueres. Skriv ved denne trekant, hvorfor den ikke kan konstrueres. a b c 4 cm 4 cm 8 cm 6 cm cm 70 8 cm Én løsning. Flere løsninger. Én løsning. 8 cm d e f 30 6 cm 7 cm 60 8 cm 4 cm 5 cm 10 cm Én løsning. Flere løsninger. Trekantens sidelængder er ikke lange nok til, at de kan danne en trekant. g h i cm 40 6 cm 4 cm 4 cm Én løsning. Én løsning. Flere løsninger. 30 GEOMETRI I PLN OG RUM

15 KOPIRK 17 FIRKNTER MED ESTEMTE OMKREDSE OG RELER 1 Tegn i hvert felt en firkant, der har en omkreds på 16 cm. Firkanten skal være af den type, som står i feltet. Kvadrat Rektangel Rombe Parallelogram Trapez Ligebenet trapez 2 Tegn i hvert felt en firkant, der har et areal på 16 cm 2. Firkanten skal være af den type, som står i feltet. Kvadrat Rektangel Rombe Parallelogram Trapez Ligebenet trapez 28 GEOMETRI I PLN OG RUM

16

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Matematik på VUC Modul 2 Opgaver. Længdemål...83 Tegninger...84 Areal og omkreds...85 Målestoksforhold...89 Mønstre med mere...92

Matematik på VUC Modul 2 Opgaver. Længdemål...83 Tegninger...84 Areal og omkreds...85 Målestoksforhold...89 Mønstre med mere...92 Geometri Længdemål...83 Tegninger...84 Areal og omkreds...85 Målestoksforhold...89 Mønstre med mere...92 Udarbejdet af: Niels Jørgen Andreasen, VUC Århus nja@vucaarhus.dk Modul 2,8 - geometri Side 82 Længdemål

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade

F-dag om geometri. Fremstilling og beskrivelse af stiliserede blade F-dag om geometri Fremstilling og beskrivelse af stiliserede blade I foråret fejrede Canada at landet havde eksisteret som nation i 150 år. I den anledning blev der fremstillet et logo, der tog afsæt i

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Færdigheds- og vidensområder Evaluering. Tal: Færdighedsmål

Færdigheds- og vidensområder Evaluering. Tal: Færdighedsmål Klasse: Jorden mat Skoleår: 16/17 Eleverne arbejder med bogsystemet format, hhv. 4. og 5. klasse. Bøgerne er bygget op, så emnerne følger hinanden hele vejen, hvorfor årsplanen er opbygget efter disse.

Læs mere

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring

Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring Foreløbig udgave af læringsmål til: Kapitel 1 Regn med store tal Fælles Mål Læringsmål Forslag til tegn på læring udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om

Læs mere

brikkerne til regning & matematik geometri basis+g preben bernitt

brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri, basis+g ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering

Læs mere

Emmas og Frederiks nye værelser - maling eller tapet?

Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks nye værelser - maling eller tapet? Emmas og Frederiks familie skal flytte til et nyt hus. De har fået lov til at bestemme, hvordan væggene på deres værelser skal se ud. Emma og Frederik

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

matematik grundbog basis preben bernitt

matematik grundbog basis preben bernitt 33 matematik grundbog basis preben bernitt 1 matematik grundbog basis ISBN: 978-87-92488-27-5 2. udgave som E-bog 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Lektion 8 Geometri Når du bruger denne facitliste skal du være opmærksom på, at: - der kan være enkelte fejl. - nogle af facitterne er udeladt - bl.a. der hvor facitterne er tegninger. - decimaltal kan

Læs mere

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2

Opgave 1 A. Opgave 2 A m 2 B. 125,66 m 2 C m 2 D m 2 Opgave 1 Opgave 2 21 000 m 2 B. 125,66 m 2 C. 1200 m 2 D. 185 540 m 2 Opgave 3 Det betyder, at en centimeter på tegningen svarer til 100 cm i virkeligheden B. 22m 2 C. D. E. Hvis længdeforholdet ændres

Læs mere

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel

Mattip om. Arealer 1. Tilhørende kopier: Arealer 1, 2 og 3. Du skal lære om: De vigtigste begreber. Arealberegning af et kvadrat eller rektangel Mattip om realer 1 Du skal lære om: De vigtigste begreber Kan ikke Kan næsten Kan realberegning af et kvadrat eller rektangel Tegning/konstruktion af kvadrater og rektangler realberegning af et parallelogram

Læs mere

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Geometriske begreber: kunne sætte matematiske begreber ind i en matematisk kontekst samt kende den visuelle betydning

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.

Læs mere

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder)

Konstruktion. d: En cirkel med diameter 7,4 cm. e: En trekant med grundlinie på 9,6 cm og højde på 5,2 cm. (Der er mange muligheder) 1: Tegn disse figurer: a: Et kvadrat med sidelængden 3,5 cm. b: En cirkel med radius 4,. c: Et rektangel med sidelængderne 3,6 cm og 9,. d: En cirkel med diameter 7,. e: En trekant med grundlinie på 9,6

Læs mere

geometri basis+g brikkerne til regning & matematik preben bernitt

geometri basis+g brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri basis+g preben bernitt brikkerne til regning & matematik geometri G ISBN: 978-87-92488-15 2 1. udgave som E-bog til tablets 2012 by bernitt-matematik.dk Denne

Læs mere

Matematik Færdigheds- og vidensmål (Geometri og måling )

Matematik Færdigheds- og vidensmål (Geometri og måling ) Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere

Læs mere

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt

areal og rumfang trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik areal og rumfang trin 1 preben bernitt brikkerne til regning & matematik areal og rumfang, trin 1 ISBN: 978-87-92488-17-6 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører:

Matematik for malere. praktikopgaver. Geometri Regneregler Areal Procent. Tilhører: Matematik for malere praktikopgaver 2 Geometri Regneregler Areal Procent Tilhører: 2 Indhold: Geometri... side 4 Regneregler... side 10 Areal... side 12 Procent... side 16 Beregninger til praktikopgave

Læs mere

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 4. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier!!!* Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

Årsplan 4. Årgang

Årsplan 4. Årgang Årsplan 4. Årgang 2016-2017 Ved denne plan skal der tage der tages højde for at ændringer kan forekomme i løbet af året. Eleverne går fra engangsmaterialer til Grundbog med skrivehæfte. Det kan være en

Læs mere

MATEMATIK UDSTYKNING AF SKOLEHAVEN SIDE 1 MATEMATIK. Udstykning af skolehaven

MATEMATIK UDSTYKNING AF SKOLEHAVEN SIDE 1 MATEMATIK. Udstykning af skolehaven SIDE 1 MATEMATIK UDSTYKNING AF SKOLEHAVEN MATEMATIK Udstykning af skolehaven SIDE 2 MATEMATIK UDSTYKNING AF SKOLEHAVEN MATEMATIK UDSTYKNING AF SKOLEHAVEN 3 MATEMATIK UDSTYKNING AF SKOLEHAVEN INTRODUKTION

Læs mere

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen: Matematik Årgang: Lærer: 7. årgang Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver

Læs mere

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER LÆS OG SKRIV MATEMATIK A1 LÆS MATEMATIK Brug de tre rammer i modellen, når du skal løse en matematikopgave. Det er ikke sikkert, du skal bruge alle punkter i hver ramme til alle opgaver. Find ud af, hvilke

Læs mere

Pangea Regler & Instruktioner

Pangea Regler & Instruktioner 1.runde 2016 8. Klasse Pangea Regler & Instruktioner Svarark Fornavn, efternavn og klasse skal udfyldes med blokbogstaver. Du må bruge en kuglepen/blyant til at løse opgaverne (Vi råder deltagerne til

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse!

Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Projekt 1.5: Tagrendeproblemet en modelleringsøvelse! Det er velkendt at det største rektangel med en fast omkreds er et kvadrat. Man kan nemt illustrere dette i et værktøjsprogram ved at tegne et vilkårligt

Læs mere

OM KAPITLET PLANGEOMETRI. Elevernes egne svar eller Elevernes egne forklaringer. I

OM KAPITLET PLANGEOMETRI. Elevernes egne svar eller Elevernes egne forklaringer. I PLNGEOMETRI OM KPITLET I dette kapitel om plangeometri skal eleverne arbejde med trekanter og deres egenskaber. Eleverne skal kunne anvende deres viden om trekanter til at beregne afstande, som de ikke

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

ELEVFORUDSÆTNINGER OM KAPITLET PLANGEOMETRI

ELEVFORUDSÆTNINGER OM KAPITLET PLANGEOMETRI OM KAPITLET I dette kapitel om plangeometri arbejder eleverne med forskellige egenskaber ved plane figurer. I den første del af kapitlet arbejder eleverne med at finde areal af rektangler, parallelogrammer,

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

Forslag til løsning af Opgaver om areal (side296)

Forslag til løsning af Opgaver om areal (side296) Forslag til løsning af Opgaver om areal (side96) Opgave 1 6 0 8 Vi kan beregne arealet af 6 8 0 s 4. ved hjælp af Heron s formel: ( ) 4 4 6 4 8 4 0 6. Parallelogrammets areal er det dobbelte af trekantens

Læs mere

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet.

dynamisk geometriprogram regneark Fælles mål På MULTIs hjemmeside er der en oversigt over, hvilke Fælles Mål der er sat op for arbejdet med kapitlet. Algebra og ligninger - Facitliste Om kapitlet I dette kapitel om algebra og ligninger skal eleverne lære at regne med variable, få erfaringer med at benytte variable Elevmål for kapitlet Målet er, at eleverne:

Læs mere

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne

Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Fagårsplan 13/14 Fag: Matematik Klasse: 7.B Lærer: LBJ Fagområde/ emne Periode Mål Eleverne skal: Tal og enheder arbejde med tal og enheder, som bruges i hverdagen blive bedre til at omregne mellem enheder

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Brug af brøker. Men brøker kan også bruges til at beskrive andet end størrelser Kapitlet handler om noget af det, brøker kan bruges til at beskrive.

Brug af brøker. Men brøker kan også bruges til at beskrive andet end størrelser Kapitlet handler om noget af det, brøker kan bruges til at beskrive. Brug af brøker Brøker er tal ligesom de hele tal. På tallinjen er der uendelig mange brøker imellem de hele tal. Vi kan beskrive mange af de størrelser vi har brug for med brøker - fx længder og rumfang.

Læs mere

brikkerne til regning & matematik geometri trin 2 preben bernitt

brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

MATEMATIK SÅNING I SKOLEHAVEN SIDE 1 MATEMATIK. Såning i skolehaven

MATEMATIK SÅNING I SKOLEHAVEN SIDE 1 MATEMATIK. Såning i skolehaven SIDE 1 MATEMATIK SÅNING I SKOLEHAVEN MATEMATIK Såning i skolehaven SIDE 2 MATEMATIK SÅNING I SKOLEHAVEN MATEMATIK SÅNING I SKOLEHAVEN SIDE 3 MATEMATIK Såning i skolehaven INTRODUKTION I dette forløb skal

Læs mere

Rettevejledning, FP10, endelig version

Rettevejledning, FP10, endelig version Rettevejledning, FP10, endelig version I forbindelse med FP9, Matematik, Prøven med hjælpemidler, maj 2016, afholdes forsøg med en udvidet rettevejledning. I forbindelse med FP10 fremstiller opgavekommissionen

Læs mere

Årsplan for matematik i 5.kl. på Herborg Friskole

Årsplan for matematik i 5.kl. på Herborg Friskole Årsplan for i 5.kl. på Herborg Friskole Uge Emne Kompetenceområder/mål 32 Opstartsuge 33- Regn med store 36 tal Færdigheds-og vidensmål Læringsmål Aktiviteter og materialer Eleven kan gennemføre enkle

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).

Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på

Læs mere

Introduktion til GeoGebra

Introduktion til GeoGebra Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

11.g mat (JL) Klausur: 1. semester, 1. Klausur tirsdag, , time, kl VEKTORREGNING

11.g mat (JL) Klausur: 1. semester, 1. Klausur tirsdag, , time, kl VEKTORREGNING A Navn: 1 11.g mat (JL) Klausur: 1. semester, 1. Klausur tirsdag, 11. 11. 2008, 3. - 4. time, kl. 9.35 11.10 VEKTORREGNING HJÆLPEMIDLER Lommeregner, undervisningshæftet Vektorregning for 11. Årgang REGLER

Læs mere

Papirfoldning. en matematisk undersøgelse til brug i din undervisning.

Papirfoldning. en matematisk undersøgelse til brug i din undervisning. Papirfoldning en matematisk undersøgelse til brug i din undervisning. Når man folder og klipper figurer kan man blive irriteret over at skulle vende og dreje saksen. Hvor få klip kan man mon nøjes med?

Læs mere

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 -

Geometriopgaver. Pladeudfoldning Geometriopgaver - 1 - 2009 Geometriopgaver Pladeudfoldning Geometriopgaver Teknisk Isolering AMUSYD 06 02 2009-1 - Indholdsfortegnelse OPGAVE 1 - A, B, C, D.... 3 OPGAVE 1 A REKTANGEL DEL VED FORSØG... 3 OPGAVE 1 B PARALLELOGRAM...

Læs mere

Den pythagoræiske læresætning

Den pythagoræiske læresætning Den pythagoræiske læresætning 1. Udfyld skemaet herunder dvs. find den manglende hypotenuse ved a 2 + b 2 = c 2 : 1 20 21 2 12 35 3 28 45 4 56 33 5 119 120 6 168 95 7 52 165 8 207 224 9 315 572 10 627

Læs mere

Årsplan for matematik i 6.kl. på Herborg Friskole

Årsplan for matematik i 6.kl. på Herborg Friskole Uge Emne 32 Opstartsuge 33 - Tal på tal 38 39-40 Cirkler 41 Emneuge 42 Efterårsferie 43 - Cirkler (fortsat) Kompetenceområder/mål Færdigheds-og vidensmål Læringsmål Aktiviteter og materialer Eleverne kan

Læs mere

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse

Lærervejledning. Matematik i Hasle Bakker 4.-6. klasse Lærervejledning Matematik i Hasle Bakker 4.-6. klasse Lærervejledning I Matematik for 4.-6. klasse sendes eleverne gruppevis ud i for at løse matematikopgaver med direkte afsæt i både natur og menneskeskabte

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Indhold. Servicesider. Testsider

Indhold. Servicesider. Testsider Indhold Servicesider Isometrisk papir.................................................... kopiside - Prikpapir............................................................. kopiside - Brøkkort.............................................................

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Digitale værktøjer. FORHÅNDSVIDEN Løs opgaverne på dette opslag sammen med DIGITALE VÆRKTØJER 7 OPGAVE 2 TEORI

Digitale værktøjer. FORHÅNDSVIDEN Løs opgaverne på dette opslag sammen med DIGITALE VÆRKTØJER 7 OPGAVE 2 TEORI Digitale værktøjer I dette kapitel kan du arbejde med forskellige digitale værktøjer. Når du arbejder med digitale værktøjer i matematik, kan det enten være fordi, du benytter et digitalt værktøj som hjælp

Læs mere

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin LÆRERVEJLEDNING Matematik -6. klase Hasle bakker 4.-6.klassetrin Lærervejledningen Forord: Hasle bakker forløbet er et nyskabende undervisningsmateriale hvor teknologien, i form af mobiltelefonen og dens

Læs mere

Tegn firkanter med en diagonal på 10 cm

Tegn firkanter med en diagonal på 10 cm Tegn firkanter med en diagonal på 10 cm Klassetrin: 4. 10. 1 lektion. Kontekst: Ren matematik. Indgangstærskel: Lav. Hjælpemiddel: 1 cm 1 cm ternet papir. GeoGebra. Pr par: Et stykke karton på 1 cm gange

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

koordinatsystemer og skemaer

koordinatsystemer og skemaer brikkerne til regning & matematik koordinatsystemer og skemaer basis preben bernitt brikkerne til regning & matematik Koordinatsystemer og skemaer, basis 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Emne Tema Materialer

Emne Tema Materialer 32 36 Uge 35 Fag: Matematik Hold: 20 Lærer: Trine Koustrup Undervisningsmål 9. klasse Læringsmål Faglige aktiviteter Emne Tema Materialer Målsætningen med undervisningen er at eleverne udvikler deres kunnen,opnår

Læs mere

Pædagogisk vejledning til. Materialesæt. Pro-Bot. http://via.mitcfu.dk/99872734. VIA Center for Undervisningsmidler

Pædagogisk vejledning til. Materialesæt. Pro-Bot. http://via.mitcfu.dk/99872734. VIA Center for Undervisningsmidler Pædagogisk vejledning til Materialesæt Pro-Bot http://via.mitcfu.dk/99872734 Pædagogisk vejledning til materialesættet Pro-Bot Materialesættet kan lånes hos og evt. hos andre CFU er i Danmark. Se her:

Læs mere

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål

Kapitel 1: Tal. Tegn på læring. Delforløb Fælles mål Læringsmål 5. klasse Årsplan Kapitel 1: Tal Eleven Talsystem Regnestrategier Fase 1: Eleven kan udføre beregninger med de fire regningsarter inden for naturlige tal, herunder beregninger vedrørende hverdagsøkonomi

Læs mere

IHHHHHHHHHHHHHfli. lll!lp : ~ * i Pff'Pr'i 1. lllll^^ i I 11 > 11< 1' I i 111

IHHHHHHHHHHHHHfli. lll!lp : ~ * i Pff'Pr'i 1. lllll^^ i I 11 > 11< 1' I i 111 IHHHHHHHHHHHHHfli : lll!lp : ~ * i Pff'Pr'i 1 111 11 i I 11 > 11< 1' I i 111 lllll^^ Elever fra 9. A sælger kaffe ved en skolefest. De sælger et lille bæger.kaffe for 6 kr. og et stort bæger kaffe for

Læs mere

Udforskningsopgaver. Hvor lang kan stangen højst blive, hvis den består af 4 metalstænger?

Udforskningsopgaver. Hvor lang kan stangen højst blive, hvis den består af 4 metalstænger? r 2015 Videre arbejde med opgaverne Udforskning af opgaverne Disse opgaver bygger videre på udvalgte opgaver fra Kænguruen og lægger op til, at klassen sammen kan diskutere og udforske opgaverne. Opgavenumrene

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden.

En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden. En perspektivtegning er en tegning, der forsøger at efterligne, hvordan øjet ser virkeligheden. Når man tegner perspektivtegninger, er der forskellige finter til at lave de rigtige størrelsesforhold. Nedenfor

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik

Læs mere

Matematik på VUC Modul 3c Opgaver

Matematik på VUC Modul 3c Opgaver Blandede opgaver (1) 1: Tegningen viser tre byggegrunde, der skal sælges. a: Find arealet af grund nr. 1. b: Find arealet af grund nr. 2 c: Find arealet af grund nr. 3 d: Find omkredsen af hver af de tre

Læs mere

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning

fsa 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole 5 Sammenhænge i kvadrater Matematisk problemløsning fsa Folkeskolens Afgangsprøve Matematisk problemløsning Maj 2011 Som bilag til dette opgavesæt er vedlagt et svarark 1 For lidt eller for meget søvn? 2 Til sundhedsplejerske 3 Erobre flaget 4 På efterskole

Læs mere

Digitale værktøjer FORHÅNDSVIDEN

Digitale værktøjer FORHÅNDSVIDEN Digitale værktøjer Når du i matematik arbejder med digitale værktøjer, kan det enten være fordi, du benytter et digitalt værktøj som hjælp til at løse et matematisk problem eller fordi, du bruger et digitalt

Læs mere

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri

7 Trekanter. Faglige mål. Linjer i trekanter. Ligedannethed. Pythagoras. Trigonometri 7 Trekanter Faglige mål Kapitlet Trekanter tager udgangspunkt i følgende faglige mål: Linjer i trekanter: kende til højde, vinkelhalveringslinje, midtnormal og median, kunne tegne indskrevne og omskrevne

Læs mere

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3

Den lille hjælper. Positionssystem...3. Positive tal...3. Negative tal...3. Hele tal...3. Potenstal...3. Kvadrattal...3 Den lille hjælper Positionssystem...3 Positive tal...3 Negative tal...3 Hele tal...3 Potenstal...3 Kvadrattal...3 Parentes...4 Parentesregler...4 Primtal...4 Addition (lægge sammen) også med decimaltal...4

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

Projekt 3.7. Pythagoras sætning

Projekt 3.7. Pythagoras sætning Projekt 3.7. Pythagoras sætning Flere beviser for Pythagoras sætning... Bevis for Pythagoras sætning ved anvendelse af ensvinklede trekanter... Opgave 1: Et kinesisk og et indisk bevis for Pythagoras sætning...

Læs mere

ALGEBRA OG LIGNINGER. Opgave 11

ALGEBRA OG LIGNINGER. Opgave 11 A. 12 B. 40 2 4 2 C. 8 x 416 A. 9,5a B. 2a + 5b A. 0 A. B. Elevforklaring 1 A. B. Elevforklaring 2 A. Omkreds: 2 3a + 2 a = 8a B. Areal: a 3a =3a 2 B. = 4 cm 3 A. Fx A. 4x = 120 m B. 30 m C. D. 245,92

Læs mere

ØVEHÆFTE FOR MATEMATIK C GEOMETRI

ØVEHÆFTE FOR MATEMATIK C GEOMETRI ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere