CLASS temp medie; MODEL rate=temp medie/solution; RUN;

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "CLASS temp medie; MODEL rate=temp medie/solution; RUN;"

Transkript

1 Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe bakterier. Nedenstående talmateriale er hentet fra et større projekt, der har til formål at undersøge transportmetodens indvirkning på forskellige anaerobe bakteriestammers overlevelse. Her sal vi kun interessere for en enkelt bakteriestamme, to temperaturer (4 o og 22 o ) og tre transportmedier (agar, tør, stuart). For hver kombination af temperatur og medie er der foretaget to forsøg. Målingerne i tabellen er log 10 (-log 10 (overlevelsesraten)), hvor overlevelsesraten er defineret ved hjælp af den brøkdel af bakterierne til tid 0, der overlever et døgn, idet denne transformation erfaringsmæssigt gør observationerne tilnærmet normalfordelte med samme varians. Temperatur Medie agar tør Stuart 4 o o (a) Afhænger overlevelsesraten af transporttemperatur og transportmedie? Bilag: Data antages at ligge i datasættet bakterie med de tre variable temp, medie og rate. PROGRAM1: PROGRAM2 UDSKRIFT1 PROC GLM; CLASS temp medie; MODEL rate=temp medie; PROC GLM; CLASS temp medie; MODEL rate=temp medie/solution; The GLM Procedure Class Level Information Class Levels Values temp medie 3 agar stuart tor Number of observations 12 Dependent Variable: rate Sum of Source DF Squares Mean Square F Value Pr > F 1

2 Model <.0001 Error Corrected Total R-Square Coeff Var Root MSE rate Mean Source DF Type I SS Mean Square F Value Pr > F temp <.0001 medie <.0001 temp*medie , UDSKRIFT2 The GLM Procedure Sum of Source DF Squares Mean Square F Value Pr > F Model <.0001 Error Corrected Total Source DF Type I SS Mean Square F Value Pr > F temp <.0001 medie <.0001 Standard Parameter Estimate Error t Value Pr > t Intercept B <.0001 temp B <.0001 temp B... medie agar B medie stuart B <.0001 medie tor B... Ugeopgave 2.2 For 23 bilmotorer har man målt sammenhørende værdier af HC, CO og NOX i udstødningsgassen (enhed: gram pr mile). Nedenfor findes en udskrift fra SASprogrammet PROC CORR. (a) Hvilke af de tre variable er positivt og hvilke er negativt korrelede?. (b) Er der nogle af de tre variable der kan antages at være ukorrelerede? For 23 andre motorer havde man målt HC i udstødningen. Disse målinger havde et gennemsnit på og en empirisk spredning givet ved s =

3 (c) Kan disse nye målinger antages at ligge på samme niveau som de 23 første. Bilag: Data antages at ligge i datasættet motor med de fire variable gruppe, der angiver om det er første eller anden gruppe, og HC, CO og NOX. PROGRAM DATA corr; SET motor; IF gruppe=1; PROC CORR; VAR HC CO NOX; PROC TTEST DATA=motor; CLASS gruppe; VAR HC; UDSKRIFT The CORR Procedure (for gruppe 1) 3 Variables: HC CO NOX Simple Statistics Variable N Mean Std Dev Sum Minimum Maximum HC CO NOX Pearson Correlation Coefficients, N = 23, Prob > r under H0: Rho=0 HC CO NOX HC < CO <.0001 <.0001 NOX <.0001 The TTEST Procedure. Statistics Lower CL Upper CL Lower CL Upper CL Variable GRUPPE N Mean Mean Mean Std Dev Std Dev Std Dev Std Err HC HC HC Diff (1-2) T-Tests Variable Method Variances DF t Value Pr > t HC Pooled Equal HC Satterthwaite Unequal

4 Equality of Variances Variable Method Num DF Den DF F Value Pr > F HC Folded F Ugeopgave 2.3 Ved en undersøgelse af kosttilskuds indflydelse på vægt deltes 7 uger gamle rotter i 4 grupper med samme gennemsnitsvægt. Disse fik 4 forskellige kombinationer af kosttilskud. Ved forsøgets afslutning måltes rotternes vægt. I tabellen er vist antal, n, gennemsnit, x, og empirisk varians, s 2 for vægten af rotterne i de fire grupper. For x 1, x 2,..., x n er disse størrelser defineret ved x = 1 n n r=1 x r, s 2 = 1 n 1 n (x r x) 2. r=1 I det følgende kan det antages, at vægten af rotterne er normalfordelt og at rotter i samme gruppe stammer fra samme fordeling. Bemærk, at den vedlagte SASudskrift kan anvendes ved opgavebesvarelsen. Antal, gennemsnit og empirisk varians for vægt af rotter Gruppe n x s (a) Undersøg om de fire grupper kan antages at have samme varians. (b) Vis, at de fire grupper ikke kan antages at have samme middelværdi. Gruppe 1 og 3 havde fået samme kosttilskud, bortset fra at gruppe 3 også havde fået calciumtilsætning. (c) Vis, at gruppe 1 og gruppe 3 kan antages at have samme middelværdi. Også gruppe 2 og gruppe 4 havde fået samme kosttilskud, bortset fra at gruppe 4 også her havde fået calciumtilsætning. (d) Kan gruppe 2 og gruppe 4 antages at have samme middelværdi? Bilag: Data antages at ligge i datasættet rotte med de to variable gruppe, der angiver gruppe, og vgt, der angiver slutvægt. 4

5 PROGRAM: PROC GLM DATA=rotte; CLASS gruppe; MODEL vgt= gruppe /SS1 SOLUTION; MEANS gruppe/hovtest=bartlett; UDSKRIFT: General Linear Models Procedure Class Level Information Class Levels Values GRUPPE Number of observations in data set = 61 Dependent Variable: VGT Source DF Sum of Squares F Value Pr > F Model Error Corrected Total R-Square C.V. VGT Mean T for H0: Pr > T Std Error of Parameter Estimate Parameter=0 Estimate INTERCEPT B GRUPPE B B B B... 5

6 Bartlett s Test for Homogeneity of vgt Variance Source DF Chi-Square Pr > ChiSq gruppe Kilde: W.W. Daniel: Biostatistics, Wiley, 1999 Ugeopgave 2.4 I et laboratorieeksperiment, hvor man ønskede at studere virkningen af bestråling på livslængde, blev to grupper af RFM hanmus udsat for en stråledosis på 300 rad i en alder af 5-6 uger. Den først gruppe levede i almindelige laboratorieomgivelser, mens den anden gruppe levede i bakteriefrie omgivelser. Efter deres død blev musene obducerede. og det blev afgjort om de var døde af lymfom i skjoldbruskkirtlen, celle sarkom eller af andre årsager. I tabellen nedenfor er angivet overlevelsestiderne for de to grupper af mus. Dødsårsag Tid til død i dage Almindelige laboratorieomgivelser (95) Lymfom Sarkom Andre årsager Bakteriefrie omgivelser (82) Lymfom Sarkom Andre årsager (a) I SAS-udskriften nedenfor er overlevelsestiden for de mus, der er døde af lymfom i skjoldbruskirtlen sammenlignet for de to musegrupper ved et Wilcoxontest. Hvad er testets konklusion. Forklar hvorfor det ikke ville være rimeligt at bruge et t-test. (b) Diskuter om forudsætningerne for meningsfuldt at anvende Wilcoxontestet er opfyldt i den betragtede situation. 6

7 Bilag: Data antages at ligge i datasættet mus2 med de tre variable sygdom, der angiver dødsårsag, mus, der angiver hvilke omgivelser musene har levet i og tid, der angiver levetid i dage. PROGRAM: DATA temp; SET mus2; IF sygdom= lymfom ; PROC NPAR1WAY; CLASS mus; VAR tid; UDSKRIFT: The NPAR1WAY Procedure Wilcoxon Scores (Rank Sums) for Variable tid Classified by Variable mus Sum of Expected Std Dev Mean mus N Scores Under H0 Under H0 Score laboratorie bakteriefri Wilcoxon Two-Sample Test Statistic Normal Approximation Z One-Sided Pr < Z Two-Sided Pr > Z Opgave 13 I et forsøg interesserer man sig for den såkaldte syntesefraktion i kindposevæv hos hamstre. En del af dette forsøg kan beskrives på følgende måde. På samme tidspunkt (kl 10.00) injiceres et radioaktivt sporstof i en gruppe hamstre. Kl slås samtlige hamstre ned, og ved hjælp af det radioaktive sporstof bestemmes syntesefraktionen for højre og venstre kindpose for hver hamster. 7

8 (a) Undersøg ved et parret t-test, om der kan antages at være samme niveau for syntesefraktionen i højre og venstre kindpose. Diskuter testet i forhold til analysen i bilaget. Syntesefraktion i højre og venstre kindpose hos hamstre. Hamster Syntesefraktion højre venstre Bilag: Data antages at ligge i datasættet hamster med de tre variable hamster, side og fraktion. PROGRAM; UDSKRIFT PROC GLM DATA=hamster; CLASS hamster side; MODEL fraktion=hamster side; The GLM Procedure Class Level Information Class Levels Values hamster side 2 h v Number of observations 10 Dependent Variable: fraktion Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected Total R-Square Coeff Var Root MSE fraktion Mean Source DF Type I SS Mean Square F Value Pr > F hamster side

9 Opgave 1 Data i denne opgave stammer fra to eksperimenter, hvor man målte fluers reaktionstid efter de var blevet udsat for nervegas. Målingen for den enkelte flue består i den tid - reaktionstiden - der går fra fluen bringes i kontakt med giften og indtil den ikke længere kan stå på benene. I det første eksperiment blev fluerne udsat for giften i 30 sekunder og i det andet i 60 sekunder. Målingerne af reaktionstiden ses nendenfor. Reaktionstider for 31 fluer udsat for nervegas Reaktionstid i sekunder kontakttid sekunder kontakttid sekunder Det kan antages, at observationerne er uafhængige, og at logaritmen til observationstiderne er normalfordelte. (a) Vis, at fordelingen for reaktionstiden ikke afhænger af om kontakttiden er 30 eller 60 sekunder. (b) Angiv konfidensintervaller for de logaritmetransformerede observationers middelværdi og varians. (c) Angiv et skøn for reaktionstidens middelværdi. Kilde Blæsild P. og Granfeldt J. Statistik for biologer og geologer, Århus universitet 1995 Ved besvarelsen kan nedenstående SAS-udskrifter anvendes: Her antages data at ligge i datasættet reak med de to variable gruppe, der angiver kontakttid og lnreakt, der angiver logaritmen til reaktionstiden. PROGRAM1: PROC TTEST DATA=reak; CLASS gruppe; VAR lnreakt; PROGRAM2: UDSKRIFT1: PROC TTEST DATA=reak; VAR lnreakt; The TTEST Procedure Statistics 9

10 Lower CL Upper CL Lower CL Upper CL Variable gruppe N Mean Mean Mean Std Dev Std Dev Std Dev Std Err lnreakt lnreakt lnreakt Diff (1-2) T-Tests Variable Method Variances DF t Value Pr > t lnreakt Pooled Equal lnreakt Satterthwaite Unequal Equality of Variances Variable Method Num DF Den DF F Value Pr > F lnreakt Folded F UDSKRIFT2: The TTEST Procedure Statistics Lower CL Upper CL Lower CL Upper CL Variable N Mean Mean Mean Std Dev Std Dev Std Dev Std Err lnreakt T-Tests Variable DF t Value Pr > t lnreakt <

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2006. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 6 sider.

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2007. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 8 sider.

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger Øvelser til basalkursus, 5. uge Opgavebesvarelse: Knogledensitet hos unge piger I alt 112 piger har fået målt knogledensitet (bone mineral density, bmd) i 11-års alderen (baseline værdi). Pigerne er herefter

Læs mere

Regressionsanalyse i SAS

Regressionsanalyse i SAS Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Vejledende besvarelse af hjemmeopgave

Vejledende besvarelse af hjemmeopgave Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Besvarelse af opgave om Vital Capacity

Besvarelse af opgave om Vital Capacity Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, 1987. Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel)

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

2. januar 2015 Proj.nr. 2001474 Version 1 LRK/EHBR/EVO/CCM/MT. Rapport

2. januar 2015 Proj.nr. 2001474 Version 1 LRK/EHBR/EVO/CCM/MT. Rapport Rapport Projekt: Fedtkvalitet i moderne svineproduktion Betdning af jodtal for udbtter af kogeskinker Lars Kristensen, Eva Honnens de Lichtenberg Broge, Eli Vibeke Olsen, Chris Claudi- Magnussen 2. januar

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Restsaltmængdernes afhængighed af trafikken,

Restsaltmængdernes afhængighed af trafikken, Restsaltmængdernes afhængighed af trafikken, Thomas Glue, marts 2. Trafikintensitet...2 Indledende definitioner...2 Regressionsanalyser på trafikintensiteten...6 Justering af restsaltmængder i henhold

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Vejledende besvarelse af hjemmeopgave, efterår 2016

Vejledende besvarelse af hjemmeopgave, efterår 2016 Vejledende besvarelse af hjemmeopgave, efterår 2016 Udleveret 4. oktober, afleveres senest ved øvelserne i uge 44 (1.-4. november) Normal aktivitet af enzymet plasma kolinesterase er en forudsætning for

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2016

Vejledende besvarelse af hjemmeopgave, forår 2016 Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Vitamin D eksemplet. Praktisk håndtering af data. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 Sammenligning af to grupper: T-test Dimensionering af undersøgelser

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 7. februar 2017 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 7. februar 2017 1 / 96 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE Økonomisk Kandidateksamen Teoretisk Statistik Eksamenstermin: Sommer 2004, dato: 3. juni 4 timers prøve med alle hjælpemidler, besvarelse på Dansk Opgave En simpel tilfældig stikprøve på 500 udtrukket

Læs mere

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 19 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 15. december 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Basal statistik. 16. september 2008

Basal statistik. 16. september 2008 Basal statistik 16. september 2008 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation sammenligning af to grupper uparret t-test

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Normalfordelingen og Stikprøvefordelinger

Normalfordelingen og Stikprøvefordelinger Normalfordelingen og Stikprøvefordelinger Normalfordelingen Standard Normal Fordelingen Sandsynligheder for Normalfordelingen Transformation af Normalfordelte Stok.Var. Stikprøver og Stikprøvefordelinger

Læs mere

Statistik i løb Supplerende opgaver

Statistik i løb Supplerende opgaver Statistik i løb Supplerende opgaver Preben Blæsild Lars Bo Kristensen 7 SUPPLERENDE OPGAVER Opgave 7.1 Fosforindholdet i letmælk angives til at være 170 µg/100g. I en stikprøve på 20 mælkekartoner blev

Læs mere

Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat:

Basal statistik 19. september Eksempel: To metoder, som forventes at skulle give samme resultat: En- og to-stikprøve problemer, september 2006 1 Basal statistik 19. september 2006 En- og to-stikprøve problemer sammenligning af to situationer: parret t-test Wilcoxon signed rank test logaritmetransformation

Læs mere

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer.

Kvant Eksamen December 2010 3 timer med hjælpemidler. 1 Hvad er en continuous variable? Giv 2 illustrationer. Kvant Eksamen December 2010 3 timer med hjælpemidler 1 Hvad er en continuous variable? Giv 2 illustrationer. What is a continuous variable? Give two illustrations. 2 Hvorfor kan man bedre drage konklusioner

Læs mere

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger.

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger. Opgavebesvarelse, Resting metabolic rate I filen rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991 og Owen et.al., Am.

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod.

Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. 1-stikprøve t-test (Eksamen 2005 opgave 1) Opgavens formålet er at undersøge variationen mellem to laboratoriers bestemmelse af po 2 i blod. I nedenstående tabel betragtes blodprøver fra 9 patienter. Hver

Læs mere

Basal Statistik. Sammenligning af grupper. Praktisk håndtering af data. Vitamin D eksemplet. Faculty of Health Sciences

Basal Statistik. Sammenligning af grupper. Praktisk håndtering af data. Vitamin D eksemplet. Faculty of Health Sciences Faculty of Health Sciences Sammenligning af grupper Basal Statistik Sammenligning af grupper, Variansanalyse Sammenligning af to grupper: T-test Dimensionering af undersøgelser Sammenligning af flere end

Læs mere

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116

Faculty of Health Sciences. Basal Statistik. Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 12. september / 116 Faculty of Health Sciences Basal Statistik Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 12. september 2017 1 / 116 Sammenligning af grupper Sammenligning af to grupper: T-test Dimensionering

Læs mere

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B.

Følgende tabel (fra Fisher) giver forøgelsen af sovetiden i timer fra et eksperiment med 10 patienter vedrørende 2 sovemidler A og B. Modul 7: Exercises 7.1 Sovemidler......................... 1 7.2 Egetræer.......................... 2 7.3 Stofs trækstyrke..................... 3 7.4 Laboranters titreringsusikkerhed............ 5 7.5

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme

MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 22 sider. Skriftlig prøve: 13. december 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

3. SPSS Output. Descriptives. [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav

3. SPSS Output. Descriptives. [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav 3. SPSS Output DESCRIPTIVES VARIABLES=DEM DEM5 DEM10 DEM11 /STATISTICS=MEAN STDDEV MIN MAX. Descriptives [DataSet1] C:\Users\Thomas\Desktop\Eservice_i_produktgruppen_Bekldning.sav Descriptive Statistics

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen Opgavebesvarelse, Resting metabolic rate I filen T:\Basalstatistik\rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 I.2 II.1 II.2 III.1 III.2 IV.1 V.1 VI.1 VI.2 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 15. december 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

2 0.9245. Multiple choice opgaver

2 0.9245. Multiple choice opgaver Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 21 sider. Skriftlig prøve: 27. maj 2010 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance

Plot af B j + ǫ ij (Y ij µ α i )): σ 2 : within blocks variance. σb 2 : between blocks variance Plot af B j + ǫ ij (Y ij µ α i )): Program: res 4 2 0 2 B1 B2 B3 B4 B5 1. vi starter med at gennemgå opgave 3 side 513. 2. nyt: to-sidet variansanalyse 1 2 3 4 5 block σ 2 : within blocks variance σb 2

Læs mere