Susanne Ditlevsen Institut for Matematiske Fag susanne

Størrelse: px
Starte visningen fra side:

Download "Susanne Ditlevsen Institut for Matematiske Fag susanne"

Transkript

1 Statistik og Sandsynlighedsregning 1 STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag susanne 7. undervisningsuge, mandag 1

2 Estimation og konfidensintervaller Antag X Bin(n, p), og at vi har observeret X = x hvor n er givet. Sidste uge lærte vi at estimere p: ˆp = x n og at konstruere et approksimativt 95% konfidensinterval for vores estimat: ( ˆp 1.96sˆp ; ˆp sˆp ) hvor vi estimerer spredningen af estimatoren til sˆp = ˆp(1 ˆp) n 2

3 Antag for eksempel at n = 18 og at vi observerer X = ˆp 1.96 sˆp 0.45 ˆp 2/3 ˆp sˆp 0.88 } {{ } 95% CI 1 p Antag nu at vi har en hypotese om at p = p 0. Naturligt spørgsmål: Er data foreneligt med vores hypotese? 3

4 Hvad nu hvis vores hypotese er p = 0.5? Er data foreneligt med vores hypotese? 0 ˆp 1.96 sˆp 0.45 p 0 ˆp 2/3 ˆp sˆp 0.88 } {{ } 95% CI 1 p 4

5 Hvad nu hvis vores hypotese er p = 0.25? Er data foreneligt med vores hypotese? 0 ˆp 1.96 sˆp 0.45 ˆp 2/3 ˆp sˆp 0.88 p 0 }{{} 1 p 95% CI 5

6 Eksempel Produktsammenligning ved partest. Kan en forsøgsperson kende forskel mellem type A og type B af et produkt? Lad sandsynligheden for at personen udpeger det korrekte produkt være p. Hvad svarer p = 1 /2 til? 6

7 Eksempel Produktsammenligning ved partest. Kan en forsøgsperson kende forskel mellem type A og type B af et produkt? Lad sandsynligheden for at personen udpeger det korrekte produkt være p. Hvad svarer p = 1 /2 til? Hvad svarer p = 1 til? 6

8 Eksempel Produktsammenligning ved partest. Kan en forsøgsperson kende forskel mellem type A og type B af et produkt? Lad sandsynligheden for at personen udpeger det korrekte produkt være p. Hvad svarer p = 1 /2 til? Hvad svarer p = 1 til? Hvad svarer p < 1 /2 til? 6

9 Antag nu at forsøget gentages n = 8 gange, og at de enkelte forsøg er uafhængige (er det en rimelig antagelse?). Lad X betegne antallet af gange personen udpeger det korrekte produkt. Antag nu at personen udpeger det korrekte produkt alle 8 gange: X = 8. Kan vi konkludere at personen kan smage forskel? 7

10 Antag nu at forsøget gentages n = 8 gange, og at de enkelte forsøg er uafhængige (er det en rimelig antagelse?). Lad X betegne antallet af gange personen udpeger det korrekte produkt. Antag nu at personen udpeger det korrekte produkt alle 8 gange: X = 8. Kan vi konkludere at personen kan smage forskel? For at svare på det antager vi at personen ikke kan smage forskel: p 0 = 1 /2 7

11 Antag nu at forsøget gentages n = 8 gange, og at de enkelte forsøg er uafhængige (er det en rimelig antagelse?). Lad X betegne antallet af gange personen udpeger det korrekte produkt. Antag nu at personen udpeger det korrekte produkt alle 8 gange: X = 8. Kan vi konkludere at personen kan smage forskel? For at svare på det antager vi at personen ikke kan smage forskel: p 0 = 1 /2 Under denne hypotese hvad er da sandsynligheden for det udfald, vi har observeret? 7

12 Vi har under antagelsen om at p = 1 /2 at P (X = 8) = = = Med andre ord: Hvis personen ikke kan kende forskel og vi gentager dette eksperiment 1000 gange (hver gang prøver personen 8 gange), forventer vi at ca 4 gange ud af de 1000 ville personen udpege det korrekte produkt alle 8 gange. Er det på den baggrund plausibelt at p = 1 /2? 8

13 Definition 4.9 En hypotese (eller nulhypotese) i en statistisk model er et simplificerende udsagn om modellen, typisk om modellens ukendte parametre. Hypotesen betegnes oftest H 0. Til enhver testsituation hører også en alternativ hypotese H A som vil være gyldig hvis nulhypotesen er falsk. Som regel er den alternative hypotese blot negationen af H 0, dvs H 0 er ikke sand. Hvad betyder simplificerende udsagn om modellen? Hvis H 0 er sand, da gælder en model, der er en delmodel af den oprindelige model. 9

14 Eksempel 4.16 fortsat Her er nulhypotesen at personen ikke kan kende forskel, dvs mens den alternative hypotese er H 0 : p = 1 2 H A : p > 1 2 Formålet med et statistisk test er at undersøge om data understøtter eller modsiger H 0 - hertil udregnes en teststørrelse. 10

15 Definition 4.10 Antag at vi har observationer X 1,..., X n fra en statistisk model, og at H 0 og H A er henholdsvis en nulhypotese og en alternativ hypotese om modellen. En teststørrelse for H 0 er en stokastisk variabel af formen T = g(x 1,..., X n ) der måler hvor godt data passer til nulhypotesen H 0 i forhold til alternativet H A. Fordelingen af T under H 0 skal kunne beregnes, enten eksakt eller approksimativt. P -værdien for testet baseret på en observeret værdi T obs er lig sandsynligheden for værdier af T som er mindst lige så kritiske (som T obs ) for H 0 i forhold til H A, hvor sandsynligheden udregnes i fordelingen af T under H 0. 11

16 Eksempel 4.16 fortsat Her anvendtes som teststørrelse blot det observerede antal korrekte svar: T = X Hvad betyder i dette tilfælde værdier af T der er mere kritiske end T obs? Under H 0 er p = 1 /2, under H A er p > 1 /2 Hvis X/n > 1 /2 er kritiske værdier T T obs. Hvis X/n 1 /2 er alle værdier af T mindst lige så kritiske som T obs. 12

17 Da X/n = 8/8 = 1 > 1 /2 er kritiske værdier T T obs = 8, dvs kun punktet {8}, da T = X {0, 1,..., 8}. Da T = X er fordelingen af teststørrelsen under H 0 kendt: T Bin(8, 1 /2) Vi får P værdi = P (T T obs ) = P (T = 8) =

18 Hvad siger P -værdien? Hvis H 0 er sand, er T fordelt efter en kendt fordeling. Vi sammenholder vores (afledte) observation T obs med denne fordeling. Hvis et udfald som T obs er meget usandsynligt i denne fordeling er det svært at tro på at H 0 er sand, og at dette udfald blot var ren tilfældighed = vi afviser hypotesen. Hvis et udfald som T obs er sandsynligt i denne fordeling kan vi ikke afvise at H 0 er sand; dette udfald kunne blot være ren tilfældighed = vi accepterer hypotesen. 14

19 Hvad betyder en lav P -værdi? Definition 4.11 Et udfald af et statistisk test kaldes signifikant på signifikansniveau α, hvor 0 α 1, hvis P -værdien er α. Signifikansniveau: risikoen for at drage en fejlslutning på basis af tilfældigheder. Hvornår er noget signifikant? 15

20 Eksempel 4.16 fortsat Antag nu at forsøgspersonen kun kunne udpege 6 korrekte produkttyper ud af 8, dvs T = X = 6. Hvordan beregner vi P -værdien? Udfald som er mere kritiske for H 0 i forhold til H A er {X = 7} og {X = 8}: de er længere væk fra nulhypotesen end det observerede. 16

21 Vi har P værdi = P (X X obs ) = P (X 6) = P (X = 6) + P (X = 7) + P (X = 8) = ( 8 6 ) (8 6) + ( 8 7 ) (8 7) + ( 8 8 ) (8 6) = = 0.14 Fortolkning? 17

22 6 7 8 Ö Ò Ò Ò Ö ÐÐÙ ØÖ Ö Ø ÙÖ º º ÖÑ Ö Ù Ð Ø X = 6 Ò ÒØ Ø P > 0.05) Ú Ð Ø Ú Ò Ò Ú Ú Ø Ö Ú X = 6 ÆË º Å Ø ÒÓÒ¹ Ò ÒØ Ù Ð Ò Ú ÓÖ Ø ÝÔÓØ Ò Ø p = 1/2 Ó Ø ÓÑÑ Ö Ò Ö ÐØ Ò Ò ÓÖ Ð Ô ØÓ ÔÖÓ Ù Ø Öº Ø ÓÑÑ Ö Ò ÐÐ Ú Ð Ù Ö Ø Ò Ø Ò ÚÖ Ò Ø Ð Ð º ÑÖ Ñ Ð ÖØ Ø Ú ÓÐÙØ Ò ÓÒ ÐÙ Ö Ø p = 1/2º Í Ð Ø ÙÒÒ Ó Ù ÑÖ Ø Ø ÑÑ Ñ Ø p = 0.6 ÐÐ Ö p = 0.7 ܺ f(x) ¼º ¼º¾ ¼º½ Ò(8, 1 2 ) X Ó ºº P {}}{ ¼ ¼ ½ ¾ ÒØ Ð Ö Ø x ÙÖ º ÒÓÑ Ð ÓÖ Ð Ò (8, 1/2) = ÓÖ Ð Ò Ò ÙÒ Ö À 0 Ø Ø Ø ÖÖ Ð Ò X ÓÖ Ô ÖØ Ø Ò ÑÔ Ð º½ Ó Ö Ò Ò P ¹ÚÖ Ú Ó ÖÚ Ö Ø ÚÖ X Ó = 6º ÓÖ Ô ÖØ Ø ÑÔ Ð º½ º½ ÒÝØØ Ú Ò ÐØ ÖÒ Ø Ú ÝÔÓØ À : p > 1/2º ÖÙÒ Ð Ò ÓÖ Ø ÖÒ ÐØ ÖÒ Ø Ú Ø Ø Ð p¹úö Ö > 1/2 Ø Ø ÓÖ ÐÐ p¹úö Ö 1/2 Ú Ö Ø Ú Ò Ø ÙÒ Ö ÓÑ ÓÑÑ Ö Ò ÓÚ Ö ÓÚ Ø ÙÒÒ Ò ÓÖ Ð Ô ØÓ ÔÖÓ Ù Ø Ö Ó Ø Ø Ð Ð Ø p < 1/2 Ú Ö Ú Ò Ð Ø Ø ÓÖ Ø ÒÒ ØÝÔ ÓÖ Ó Ñ ÙÒÒ 18 ØÝ Ô Ø Ö Ú Ö Ø Ò Ð ÓÖ Øº ÀÚ Ñ Ò Ö ÒÓ Ò Ô Ð ÒØ Ö ÐÐ Ö ÓÖ Ò Ú Ò ÓÑ ØÙ Ø ÓÒ Ò ÒÖ

23 H 0 accepteres H 0 afvises H 0 er sand OK Type I fejl sandsynlighed 1 α α (signifikansniveau) H 0 er falsk Type II fejl OK sandsynlighed β 1 β (styrke) 19

24 Definition 4.12 Betragt en statistisk model hvori der er givet en nulhypotese H 0, en alternativ hypotese H A og en teststørrelse T for H 0 mod H A. Testet T kaldes et ensidet test hvis de kritiske værdier er et interval enten af formen {T t} eller af formen {T t}, altså at enten store værdier eller små værdier af T er kritiske. Testet T kaldes et tosidet test hvis de kritiske værdier er af form som en foreningsmængde {T t 1 } {T t 2 }, altså at både store og små værdier af T er kritiske. 20

25 Definition 4.13 Betragt en statistisk model med en hypotese H 0, en tilhørende teststørrelse T og en observeret værdi T obs. P -værdien for testets udfald beregnes, alt efter om testet er ensidet eller tosidet, efter følgende retningslinier: 1. Ensidet test. Hvis det kritiske område er af formen {T t} (dvs store værdier er kritiske), er P = P (T T obs ). Hvis det kritiske område er af formen {T t} (dvs små værdier er kritiske), er P = P (T T obs ). 2. Tosidet test. P = 2 min{p (T T obs ), P (T T obs )}. I begge tilfælde udregnes sandsynlighederne i fordelingen af T under H 0. 21

26 Ensidet test: H 0 : p = 1/2 og H A : p > 1/2 ; P = P (T T obs ) Bin(8,1/2) f(x) X obs } {{ } } {{ } P (T T obs ) P (T T obs ) 22

27 Ensidet test: H 0 : p = 1/2 og H A : p < 1/2 ; P = P (T T obs ) Bin(8,1/2) f(x) X obs } {{ } } {{ } P (T T obs ) P (T T obs ) 23

28 Tosidet test: H 0 : p = 1/2 og H A : p 1/2 ; P = 2 min{p (T T obs ), P (T T obs )} Bin(8,1/2) f(x) X obs } {{ } } {{ } P (T T obs ) P (T T obs ) 24

29 Tosidet test: H 0 : p = 1/2 og H A : p 1/2 ; P = 2 min{p (T T obs ), P (T T obs )} Bin(8,1/2) f(x) X obs }{{} P (T T obs ) }{{} P (T T obs ) 25

30 Test i binomialfordelingen Lad X Bin(n, p). Vi estimerer ˆp = X /n. Vi ønsker at teste hypotesen: hvor p 0 (0, 1) er et kendt tal. H 0 : p = p 0 Teststørrelse: observationen X. Beregning af P -værdi for udfaldet X obs afhænger af den alternative hypotese: H A : p > p 0 : P = P (X X obs ) H A : p < p 0 : P = P (X X obs ) 2P (X X obs ) for ˆp p 0 H A : p p 0 : P = 2P (X X obs ) for ˆp < p 0 26

31 Beregning af P -værdi (testsandsynlighed) P (X x) = P (X x) = x ( n i n ( n i i=0 i=x ) p i 0(1 p 0 ) (n i) ) p i 0(1 p 0 ) (n i) Hvis n er stor er det besværligt at regne ud. Man kan bruge normalfordelingsapproksimationen: ( ) x np 0 P (X x) Φ np0 (1 p 0 ) ( ) x 0.5 np 0 P (X x) 1 Φ np0 (1 p 0 ) 27

32 Eksempel Nedarvning hos fluer Krydsningsforsøg med fluer: i en afkomstgeneration på 176 individer var 46 mutanter af en bestemt type. En genetisk hypotese forudsiger at forholdet mellem normale og muterede individer er 3 : 1. Er det i overensstemmelse med data? Statistisk model: X Bin(n, p) Her er n = 176 og p = mutationssandsynligheden. Vi estimerer ˆp = 46/176 = Nulhypotese: H 0 : p 0 = Alternativ hypotese: H A : p Teststørrelse: X Testsandsynlighed: P (X 46) (da ˆp > p 0 ). 28

33 P (X 46) = 1 P (X 45) = 1 45 i=0 ( 176 = = Alternativt kan denne sandsynlighed approksimeres: i ) 0.25 i (1 0.25) (176 i) P (X 46) 1 Φ ( = 1 Φ(0.261) = = Se også Tabellen E.1 side 304 i MS. ) (1 0.25) 29

34 Note 4.9 Maximum likelihood metoden er en standardmetode til at estimere parametrene i en model. Det er en generel metode, der (i princippet) giver en løsning automatisk udfra modellen. På samme vis findes en generel (automatisk) metode til at konstruere en teststørrelse ud fra den statistiske model og hypotesen: 30

35 Antag at vi har en model med parameter θ og en hypotese H 0. Lad ˆθ være maximum likelihood estimatet for θ i modellen, dvs L(ˆθ) L(θ) for alle θ i parameterrummet, hvor L(θ) er likelihoodfunktionen. Lad ˆθ 0 være maximum likelihood estimatet for θ i den reducerede model givet ved H 0, dvs L(ˆθ 0 ) L(θ) for alle θ i nulhypotesen. (For nu lad ˆθ 0 = θ 0 ). 31

36 Teststørrelsen Q = L(ˆθ 0 ) L(ˆθ) kaldes kvotientteststørrelsen eller likelihood ratio teststørrelsen. Den kan antage værdier mellem 0 og 1. (Hvorfor det?) 32

37 Teststørrelsen Q = L(ˆθ 0 ) L(ˆθ) kaldes kvotientteststørrelsen eller likelihood ratio teststørrelsen. Den kan antage værdier mellem 0 og 1. (Hvorfor det?) Jo mindre Q er, jo mere strider data mod hypotesen (Hvorfor det?) 32

38 Teststørrelsen Q = L(ˆθ 0 ) L(ˆθ) kaldes kvotientteststørrelsen eller likelihood ratio teststørrelsen. Den kan antage værdier mellem 0 og 1. (Hvorfor det?) Jo mindre Q er, jo mere strider data mod hypotesen (Hvorfor det?) Dvs testet er et ensidet test, hvor små værdier af Q er kritiske. P -værdien eller testsandsynligheden ɛ(x) ved kvotienttestet er hvor Q(x) = Q obs. P værdi = ɛ(x) = P (Q(X) Q(x)) 32

39 Test i binomialfordelingen Hypotese: Test ved kvotientteststørrelsen: H : p = p 0 Q(x) = L(x, p 0) L(x, ˆp) 33

40 Test i binomialfordelingen Hypotese: H : p = p 0 Test ved kvotientteststørrelsen: Q(x) = L(x, p 0) L(x, ˆp) = ( n x ) p x 0 (1 p 0 ) n x ( n x )ˆpx (1 ˆp) n x 33

41 Test i binomialfordelingen Hypotese: H : p = p 0 Test ved kvotientteststørrelsen: Q(x) = L(x, p 0) L(x, ˆp) = ( n x ) p x 0 (1 p 0 ) n x ( n x )ˆpx (1 ˆp) n x = p x 0(1 p 0 ) n x ) x ( 1 x n ( x n ) n x 33

42 Q x Q(x) ved test af p = 0.5 i binomialfordeling med n =

43 Q x Q(x) ved test af p = 0.5 i binomialfordeling med n =

44 Q x Q(x) ved test af p = 0.5 i binomialfordeling med n =

45 Testsandsynlighed ɛ(x) = P p0 (Q(X) Q(x)) 37

46 Q x x = 10 38

47 Q x x = 10; Q(10) = 1 39

48 Q x (x E : Q(x ) Q(10)) 40

49 Q x P ( Q(X) Q(10) ) = 1 41

50 Q x x = 8 42

51 Q x x = 8; Q(8) =

52 Q x (x E : Q(x ) Q(8)) 44

53 Q x P ( Q(X) Q(8) ) < 1 45

54 Q P ( Q(X) Q(15) ) < P ( Q(X) Q(8) ) x 46

55 Beregning af testsandsynlighed ɛ(x) = P p0 (Q(X) Q(x)) = {x {0,1,...,n}:Q(x ) Q(x)} ( ) n x p x 0 (1 p 0 ) n x 47

56 Beregning af testsandsynlighed ɛ(x) = P p0 (Q(X) Q(x)) = = {x {0,1,...,n}:Q(x ) Q(x)} {x {0,1,...,n}:Q(x ) Q(x)} ( ) n x p x 0 (1 p 0 ) n x ( ) n (1 x 2 ) n (hvis p 0 = 1/2) 47

57 Beregning af testsandsynlighed ɛ(x) = P p0 (Q(X) Q(x)) = = = {x {0,1,...,n}:Q(x ) Q(x)} {x {0,1,...,n}:Q(x ) Q(x)} ( ) n x p x 0 (1 p 0 ) n x ( ) n (1 x 2 ) n (hvis p 0 = 1/2) {x {0,1,...,x,n x,...n}} ( n x )( 1 2) n (hvis x < n/2) 1 (hvis x = n/2) ( n )( 1 n {x {0,1,...,n x,x,...n}} x 2) (hvis x > n/2) 47

58 Beregning af testsandsynlighed Hvis n er stor er det besværligt at regne ud. Heldigvis kan vi approksimere for 0 < p 0 < 1 og n stor (og np 0 5 og n(1 p 0 ) 5): ɛ(x) 1 F χ 2 1 ( 2 log Q(x)) 48

59 F χ 2(x) ( 2log Q) 1 F χ x Q 49

60 Beregning af testsandsynlighed Hvis n er stor er det besværligt at regne ud. Heldigvis kan vi approksimere for 0 < p 0 < 1 og n stor (og np 0 5 og n(1 p 0 ) 5): ɛ(x) 1 F χ 2 1 ( 2 log Q(x)) 50

61 Beregning af testsandsynlighed Hvis n er stor er det besværligt at regne ud. Heldigvis kan vi approksimere for 0 < p 0 < 1 og n stor (og np 0 5 og n(1 p 0 ) 5): ɛ(x) 1 F χ 2 1 ( 2 log Q(x)) Eksempel: p 0 = 1/2, n = 20, x = 8 (NB: n er ikke stor) Q(x) = ( 8 20 ( 1 2 )20 ) 8 ( ) 20 8 =

62 Beregning af testsandsynlighed Hvis n er stor er det besværligt at regne ud. Heldigvis kan vi approksimere for 0 < p 0 < 1 og n stor (og np 0 5 og n(1 p 0 ) 5): ɛ(x) 1 F χ 2 1 ( 2 log Q(x)) Eksempel: p 0 = 1/2, n = 20, x = 8 (NB: n er ikke stor) ( 1 2 )20 Q(x) = ( 8 ) 8 ( ) = F χ 2 1 ( 2 log Q(x)) = 1 F χ 2 1 ( 2 log(0.6685)) =

63 Beregning af testsandsynlighed Hvis n er stor er det besværligt at regne ud. Heldigvis kan vi approksimere for 0 < p 0 < 1 og n stor (og np 0 5 og n(1 p 0 ) 5): ɛ(x) 1 F χ 2 1 ( 2 log Q(x)) Eksempel: p 0 = 1/2, n = 20, x = 8 (NB: n er ikke stor) ( 1 2 )20 Q(x) = ( 8 ) 8 ( ) = F χ 2 1 ( 2 log Q(x)) = 1 F χ 2 1 ( 2 log(0.6685)) = ( ) 20 (1 ) 20 ɛ(x) = = x 2 {x [0,8] [12,20]} 50

64 Beregning af testsandsynlighed ɛ(x) 1 F χ 2 1 ( 2 log Q(x)) Eksempel: p 0 = 1/2, n = 1000, x = 450 (NB: n er stor) ( 1 2 )1000 Q(x) = ( 450 ) 450 ( ) = F χ 2 1 ( 2 log Q(x)) = 1 F χ 2 1 ( 2 log( )) = ( ) 1000 (1 ) 1000 ɛ(x) = = x 2 {x [0,450] [550,1000]} 51

65 1 F χ 2 ( 2log Q) approksimation n=8 n = 20 n = 100 n = Q 52

Estimation og konfidensintervaller

Estimation og konfidensintervaller Statistik og Sandsynlighedsregning STAT kapitel 4.4 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Estimation og konfidensintervaller Antag X Bin(n,

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Statistik og Sandsynlighedsregning 1. IH kapitel 6

Statistik og Sandsynlighedsregning 1. IH kapitel 6 Statistik og Sandsynlighedsregning 1 IH kapitel 6 Overheads til forelæsninger. Uge 41/2005 1 Test i Polynomialfordelingen Forsøg: n uafhængige gentagelse af forsøg med m udfald. Vi observerer x = x 1,...,

Læs mere

ÇÚ Ö Ø ½ ¾ ÅÓØ Ú Ö Ò ÑÔ Ð Ø Ñ ØÓÖ ÓÖ Ú Ö Ò Ö χ 2 ¹ ÓÖ Ð Ò Ò ÃÓÒ Ò ÒØ ÖÚ Ð ÓÖ Ò Ú Ö Ò ÀÝÔÓØ Ø Ø Ú Ö Ò Ö Ì Ø Ò Ú Ö Ò Ì Ø ØÓ Ú Ö Ò Ö F ¹ ÓÖ Ð Ò Ò ÀÝÔÓØ Ø

ÇÚ Ö Ø ½ ¾ ÅÓØ Ú Ö Ò ÑÔ Ð Ø Ñ ØÓÖ ÓÖ Ú Ö Ò Ö χ 2 ¹ ÓÖ Ð Ò Ò ÃÓÒ Ò ÒØ ÖÚ Ð ÓÖ Ò Ú Ö Ò ÀÝÔÓØ Ø Ø Ú Ö Ò Ö Ì Ø Ò Ú Ö Ò Ì Ø ØÓ Ú Ö Ò Ö F ¹ ÓÖ Ð Ò Ò ÀÝÔÓØ Ø ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò ÁÒ Ö Ò ÓÖ Ú Ö Ò Ö Ô µ Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù

Læs mere

ÇÚ Ö Ø ½ ÈÖ Ø ÁÒ ÓÖÑ Ø ÓÒ ¾ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ËÓ ØÛ Ö Ê Ö Ú Ò Ø Ø Ø Æ Ð Ø Ð Ö Ö Ñ Ø ÐÐ Ò Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð

ÇÚ Ö Ø ½ ÈÖ Ø ÁÒ ÓÖÑ Ø ÓÒ ¾ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ËÓ ØÛ Ö Ê Ö Ú Ò Ø Ø Ø Æ Ð Ø Ð Ö Ö Ñ Ø ÐÐ Ò Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò ½ ÁÒØÖÓ Ó Ö Ú Ò Ø Ø Ø Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½¼ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ

Læs mere

ÇÚ Ö Ø ½ ¾ ÀÝÔÓØ Ø Ø ¹ Ò Ö Ô Ø Ø ÓÒ ÀÝÔÓØ Ø Ø Ó ÓÒ Ò ÒØ ÖÚ ÐÐ Ö ËØÝÖ Ó Ø ÔÖ Ú Ø ÖÖ Ð ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø ÑÔ Ð ½ Ò Ö Ð ÓÖÑÙÐ Ö Ò Å Ò Ø Ú Ö Ò Å Ù Ò

ÇÚ Ö Ø ½ ¾ ÀÝÔÓØ Ø Ø ¹ Ò Ö Ô Ø Ø ÓÒ ÀÝÔÓØ Ø Ø Ó ÓÒ Ò ÒØ ÖÚ ÐÐ Ö ËØÝÖ Ó Ø ÔÖ Ú Ø ÖÖ Ð ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø ÑÔ Ð ½ Ò Ö Ð ÓÖÑÙÐ Ö Ò Å Ò Ø Ú Ö Ò Å Ù Ò ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò Ã Ô Ø Ð Ó ËØ Ø Ø ÓÖ ØÓ ÒÒ Ñ Ò Ø º ¹ º º½¹ º µ Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd

I dag. Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik (SaSt) Eksempel: kobbertråd I dag Statistisk analyse af en enkelt stikprøve med kendt varians Sandsynlighedsregning og Statistik SaSt) Helle Sørensen Først lidt om de sidste uger af SaSt. Derefter statistisk analyse af en enkelt

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag susanne

Susanne Ditlevsen Institut for Matematiske Fag     susanne Statistik og Sandsynlighedsregning 1 Repetition MS kapitel 1 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Hvad er sandsynlighed? - beskriver systemer

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º º º º º º º º º º º º º º º º º

ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º º º º º º º º º º º º º º º º º ËÎÆ Ò Ë e Î e Æ Å ÒÙØ ÆÓØ Ø Ø Ð Å ¾ ÖÙÒ Î Ú Ð ÖÚ ¼ Ñ º Ùº ÁÅ Ë Í Ç Ò º ÒÓÚ Ñ Ö ¾¼¼ ÁÒ ÓÐ ½ ÇÔÖ Ø Ò ÖÙÔÔ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½ ÑÖ º º º º º º

Læs mere

Tidlige eksempler. Susanne Ditlevsen Institut for Matematiske Fag susanne

Tidlige eksempler. Susanne Ditlevsen Institut for Matematiske Fag    susanne Statistik og Sandsynlighedsregning Repetition Statistik Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne New England Journal of Medicine gav i 2000 et

Læs mere

ËÓÑ ³ Ü ³ ÚÐ ÖÓÙÔº ËÓÑ ³ Ü ³ ÚÐ Ñ Ö Ò ÐÐ Ö Ú Ö Ú Ö Ö Ø Ó ÔÖÓ ÔÐÓØ Ø Ù ÖºÞ Ð ÞÓ ÔÐÓØ Ñ Ö Ò ÖÓÙÔ» Ü Ü ½ Ú Ü Ü ¾ Ö Ñ Ü ½ Ó Ø µ Ð Ð À µ Ú ÐÙ À ¾µ Ñ ÒÓÖ ÆÇ

ËÓÑ ³ Ü ³ ÚÐ ÖÓÙÔº ËÓÑ ³ Ü ³ ÚÐ Ñ Ö Ò ÐÐ Ö Ú Ö Ú Ö Ö Ø Ó ÔÖÓ ÔÐÓØ Ø Ù ÖºÞ Ð ÞÓ ÔÐÓØ Ñ Ö Ò ÖÓÙÔ» Ü Ü ½ Ú Ü Ü ¾ Ö Ñ Ü ½ Ó Ø µ Ð Ð À µ Ú ÐÙ À ¾µ Ñ ÒÓÖ ÆÇ ÇÔ Ú Ú Ö Ð Ú Ö Ò Ò ÐÝ ÇÔ º½ Ð Ö Ú Ò Ø Ö Ú Ö Ø Ò º º Ð Ø Ù ÖºÞ Ð ÞÓ ÒÔÙØ ÖÓÙÔ Ñ Ö Ò Ø Ð Ò Ø Ú º¼¼ Ø Ú º ¼ Ø Ú º Ø Ú ½¼º¼¼ Ø Ú ½ º¼¼ Ø Ú º ¼ Ô Ú ½½º¼¼ Ô Ú ½¼º¼¼ Ô Ú ½¼º¼¼ Ô Ú ½½º Ô Ú ½¼º ¼ Ô Ú ½ º¼¼ Ò Ò

Læs mere

ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½

ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½ ÒØÖÓÔÝ Ó Ò Ò ÂÈ Ø ÐÐ Ñ ÓÑÔÖ ÓÒ Â Ò ÎÓ Ð Ò Ë ÔØ Ñ Ö ¼Ø ¾¼½½ ½» ½ ÒÓ Ò Ò Ò Ö Ð ÒÓ Ò Ò Ò Ö Ð ¾» ½ ÖÓÑ Ù ÑÔÐ Ò ÌÖ Ò ÓÖÑ Ø ÓÒ ÒØÓ ³ Ö ÓÐÓÖ Ô» ½ ÖÓÑ Ù ÑÔÐ Ò ÌÖ Ò ÓÖÑ Ø ÓÒ ÒØÓ ³ Ö ÓÐÓÖ Ô Ê ÙØ ÓÒ Ó Ô Ø Ð Ö ÓÐÙØ

Læs mere

deta = A = deta = a 11 deta 11 a 12 det A 12 + a 13 deta 13 deta = deta = 1(0 2) 5(0 0) + 0( 4 0) = 2 deta = a i,j deta i,j

deta = A = deta = a 11 deta 11 a 12 det A 12 + a 13 deta 13 deta = deta = 1(0 2) 5(0 0) + 0( 4 0) = 2 deta = a i,j deta i,j Ä Ò Ò ØÖ Ø ÓÖ Ñ Ò ÓÔ Ú Ö Ä Ú Ø ÓÖÑ Ð Ø Ö Ó Ì ÓÑ Â Ò Ò ÓÒØ ÒØ ½ Ø ÖÑ Ò ÒØ Ö ½º½ Í Ú Ð Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º½ ÑÔ Ð Í Ú Ð Ò Ø ÓÖ

Læs mere

½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ Ö Ò µ ÔÖÓ Ö Ñ ÐÓ ÓÙØÔÙØ Ú Ò Ù Ö Ö ÔÖÓ Ù Ö ÖØ Ò ÐØ Ø Ó ÙÑ ÒØ Ö Ë Ë Æ Ä ËÌ Ñ ÒÙ» Ñ ¹ÓÖ ÒØ Ö Ø ÓÚ Ö Ý Ò Ò Ö Ú Ö Ó Ö Ö ÔÖÓ Ö ÑÑ

½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ Ö Ò µ ÔÖÓ Ö Ñ ÐÓ ÓÙØÔÙØ Ú Ò Ù Ö Ö ÔÖÓ Ù Ö ÖØ Ò ÐØ Ø Ó ÙÑ ÒØ Ö Ë Ë Æ Ä ËÌ Ñ ÒÙ» Ñ ¹ÓÖ ÒØ Ö Ø ÓÚ Ö Ý Ò Ò Ö Ú Ö Ó Ö Ö ÔÖÓ Ö ÑÑ Ð Ø Ø Ø ¾º ÔØ Ñ Ö ¾¼¼ ÄÝÒ ÙÖ Ù Ë Ë Ò ÐÝ Ø ÁÒ Ð Ò Ò Ø Ð ÔÖÓ ÙÖ Ö Ö Ò Ù ØÞ¹Â Ö Ò Ò Ó Ø Ø Ø Ð Ò ÁÒ Ø ØÙØ ÓÖ ÓÐ ÙÒ Ú Ò Ã Ò ÚÒ ÍÒ Ú Ö Ø Ø ¹Ñ Ð Ó Ø Øº Ùº ØØÔ»» Ø ºÔÙ ÐØ º Ùº»» м ¾ ½ Ë Ë ÔÐ Ý Ñ Ò Ö ÔÖÓ Ö ÑÑ

Læs mere

Hypotesetests, fejltyper og p-værdier

Hypotesetests, fejltyper og p-værdier Hypotesetests, fejltyper og p-værdier Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet October 25, 2018 Søren Højsgaard Institut for Matematiske Fag, Aalborg Hypotesetests, Universitet

Læs mere

Dagens program. Praktisk information:

Dagens program. Praktisk information: Dagens program Praktisk information: Husk hjemmeopgaven i statistik Hypoteseprøvning kap. 11.2,11.3 og 11.8 Eksempel på test Styrkefunktionen kap. 11.2 Stikprøvens størrelse kap. 11.3 Likelihood ratio

Læs mere

ŠРº Â Ö Ò Ò À ÖØÞ ÔÖÙÒ ¹ÊÙ ÐÐ Ö Ñ Ö Ñ Ò ÔÖÓ Ø Ì Ò Ö ÙÖ Ø ÓØÓÑ ØÖ ÃÙ Ð Ó Ñ Ö ¾¼¼ ÈÖ Á Ø ÖØ Ò ½ ¼¼ Ø ÐÐ Ø Ú ØÖÓÒÓÑ Ö Ò Ð Ø Ð Ú Ø ÙØÖÓÐ Ø Ñ Ò ÑÐ Ò Ö Ø ÖÒ Ö Ò Ö ÓÑ Ö Ö Ð Ø Ú Ñ Ò ØÙ Ô ØÖ Ð Ð Ö Ø Ò Ó ÔÓ

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse

Trin 1: Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H 0 : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede fordelinger (kap. 4) Middelværdi og varians (kap. 3-4) Fordelingsresultater

Læs mere

Et statistisk test er en konfrontation af virkelighenden (data) med en teori (model).

Et statistisk test er en konfrontation af virkelighenden (data) med en teori (model). Hypotesetests, fejltyper og p-værdier og er den nu også det? Søren Højsgaard Institut for Matematiske Fag, Aalborg Universitet (updated: 2019-03-17) 1 / 40 Statistisk test Et statistisk test er en konfrontation

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Indledende om Signifikanstest Boldøvelser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Indledende om Signifikanstest Boldøvelser 1 Påstand: Et nyt præparat M virker mod migræne. Inden præparatet kan markedsføres, skal denne påstand

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

Test i polynomialfordelingen

Test i polynomialfordelingen Statisti og Sadsylighedsregig STAT apitel 4.4 Test i polyomialfordelige Lad X (X,..., X ) Poly (, p). Observatio: (,..., ) der agiver atal udfald, 2,..., Susae Ditlevse Istitut for Matematise Fag Email:

Læs mere

Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ Ñ

Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ Ñ Ë Ö ØÐ Ñ Ò ÙØÓÑ ØØ ÓÖ Ó Ö Ò Ð Å½ µ ÁÒ Ø ØÙØ ÓÖ Å Ø Ñ Ø ² Ø ÐÓ ËÝ Ò ÍÒ Ú Ö Ø Ø ß Ç Ò ÍÒ Ú Ö Ø Ø Ä Ö Ò ½ º ÒÙ Ö ¾¼¼ ÐÐ Ú ÒÐ ÐÔ Ñ Ð Ö Ð Ö Ó ÒÓØ Ø Ö Øºµ ÑØ ÖÙ ÐÓÑÑ Ö Ò Ö Ö Ø ÐРغ Ñ Ò ØØ Ø Ø Ö ÓÔ Ú Ö Ô ÒÙÑÑ

Læs mere

ÇÚ Ö Ø ½ ¾ ÃÓÒØ ÒÙ ÖØ ËØÓ Ø Ú Ö Ð Ó ÓÖ Ð Ò Ö ÌØ ÙÒ Ø ÓÒ ÓÖ Ð Ò ÙÒ Ø ÓÒ Å ÐÚÖ Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð Î Ö Ò Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð ÍÒ ÓÖÑ ÓÖ Ð Ò Ò ÑÔ Ð

ÇÚ Ö Ø ½ ¾ ÃÓÒØ ÒÙ ÖØ ËØÓ Ø Ú Ö Ð Ó ÓÖ Ð Ò Ö ÌØ ÙÒ Ø ÓÒ ÓÖ Ð Ò ÙÒ Ø ÓÒ Å ÐÚÖ Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð Î Ö Ò Ò ÓÒØ ÒÙ ÖØ ØÓ Ø Ú Ö Ð ÍÒ ÓÖÑ ÓÖ Ð Ò Ò ÑÔ Ð ÃÙÖ Ù ¼¾ ¼ ÁÒØÖÓ Ù Ø ÓÒ Ø Ð ËØ Ø Ø ÓÖ Ð Ò Ò Ã Ô Ø Ð ÃÓÒØ ÒÙ ÖØ ÓÖ Ð Ò Ö Â Ò ÃÐÓÔÔ Ò ÓÖ Å ÐÐ Ö ÌÍ ÁÒ ÓÖÑ Ø Ý Ò Ò ¼ ¹ ÖÙÑ ¾½ ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Ø ¾ ¼¼ ÄÝÒ Ý ÒÑ Ö ¹Ñ Ð Ñ ÑѺ ØÙº Â Ò Ãº Å ÐÐ Ö Ñ ÑѺ ØÙº µ ÁÒØÖÓ

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Mat2SS Vejledende besvarelse uge 11

Mat2SS Vejledende besvarelse uge 11 MatSS Vejledende besvarelse uge Eksamen V99/00 opg. a Kønsfordelingen 996 den samme for de tre skoler Mænd Kvinder I alt København 5 = n x 56 = x 8 = n Odense 9 = n x 06 = x 5 = n Århus 0 = n x 40 = x

Læs mere

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t.

t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program ( ): 1. repetition: fordeling af observatorer X, S 2 og t. t-fordeling Boxplot af stikprøve (n=20) fra t(2)-fordeling Program (8.15-10): 1. repetition: fordeling af observatorer X, S 2 og t. 2. konfidens-intervaller, hypotese test, type I og type II fejl, styrke,

Læs mere

ÁÒØÖÓ Ù Ø ÓÒØ Ð Ö Ó Ø Ò ÐÐÙ ØÖ Ø ÓÒ ÖÑ Å Ø ÈÓ Ø ÓÖ Ö Ã¹ÌÍ ÅÓÖØ ÒÀ Ö ½¾º ÔÖ Ð¾¼¼¼ ½ ÀÚ ÖÅ Ø ÈÓ Ø Å Ø ÈÓ Ø Ö ØÔÖÓ Ö ÑÑ Ö Ò ÔÖÓ ¹ Ö ØÔÅ Ø ÓÒغ ØÅ Ø ÈÓ Ø¹ÔÖÓ Ö Ñ Ö ÒÓÔ Ö ØØ Ð Ø Ò Ö Ö Ò ÐÐ Ö Ö ÙÖ Öº Å Ø ÈÓ

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser Uge 36 Velkommen tilbage Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl. -2 i Kirkesalen, Studiestræde 38 Øvelser Hold -4 og 6: mandag og onsdag kl. 8-; start 3. september Hold 5: tirsdag

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

q 1 q 2 x 1 x 2. E(x, p, X, P) = 1 2M P x X.

q 1 q 2 x 1 x 2. E(x, p, X, P) = 1 2M P x X. ÁÒ Ð Ò Ò ËØ Ð Ø Ø Ý ÑÓ ÐÐ Ö Â Ò È Ð Ô ËÓÐÓÚ Å Ò ÙÐÐ Ñ ØÖÓ Ø Ø Ö Ò Ú Ö ÓÖ Ö Ö Ñ ÒÖ Ñ Ò ÓÑ Ø Ö Ø Ó Ø Ö Ð Ú Ö Ø ÐÐ Ø Ô Ö ÑÐ Ø Ò Ù ÓÖ Ð Ö Ú Ù ÒØÐ ÓÖ Ö Ø Ö Ó Ö Ø Ø Ø Ö Ö ÒÓ Ø Ò ÓÖ Ö ÐÐ Ö Ú Ð Ò ÓÖØÐÐ Ú Ø Ö Ñ

Læs mere

StatDataN: Test af hypotese

StatDataN: Test af hypotese StatDataN: Test af hypotese JLJ StatDataN: Test af hypotese p. 1/69 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

Nanostatistik: Konfidensinterval

Nanostatistik: Konfidensinterval Nanostatistik: Konfidensinterval JLJ Nanostatistik: Konfidensinterval p. 1/37 Fraktilpåmindelse u p : Φ(u p ) = p, Φ( z ) = 1 Φ( z ) t p [f] : F t[f] (t p [f]) = p, F t[f] ( t ) = 1 F t[f] ( t ) F-fordeling:

Læs mere

ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼

ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ ÌÖ È Ö Ò ÓÖ Ó Ë Ð Ø ÓÒ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼ Ê Ò Ö Ï Ð ÐÑ ÍÒ Ú Ö ØØ Ë ÖÐ Ò Û Ð ÐÑ ºÙÒ ¹ º ½ º Þ Ñ Ö ¾¼¼ Ó Ò Ö Ø ÓÒ Ê Ð Ñ Ò Ò Ø Ó ØÖ Ø Ñ Ò Ê Ø Ö Ñ Ò Ä Ñ Ø Ö ÓÙÖ Ö Ø Ö Ñ ÑÓÖݵ Ü ÛÓÖ Þ ËØÓÖ Ö Ö Ý ÁÒØÖ ÔÖÓ ÓÖ Ô Ö ÐРРѺ È Ò Ó Ò Ö Ø ÓÒ Ó Ð Ø ÓÒ Ð Ø Ò

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff

Oversigt. Kursus Introduktion til Statistik. Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

ÌÖÝ Ø ÁÅÅ ÌÍ

ÌÖÝ Ø ÁÅÅ ÌÍ Ö ÑÑ Ò Ò Ò ØÚÖ Ò Ö Å Ò À Ò Ò ½ Ä Æ ¾¼¼ ÃË Å ÆËÈÊÇ ÃÌ Æʺ ½»¼ ÁÅÅ ÌÖÝ Ø ÁÅÅ ÌÍ ÓÖÓÖ ØØ ÔÖÓ Ø Ö Ö Ú Ø ÓÑ ÐÙØØ Ò ÔÖÓ Ø ÓÖ ÓÔÒ Ð Ú Ð Ò Ò ¹ Ö Ö Ò Ö ÒÑ Ö Ì Ò ÍÒ Ú Ö Ø Øº ÇÔ Ú Ò Ö Ù ÖØ Ô ÁÒ Ø ØÙØ ÓÖ ÁÒ ÓÖÑ Ø

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau...

1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ Teststatistik P-værdi Signifikansniveau... Indhold 1 Statistisk inferens: Hypotese og test 2 1.1 Nulhypotese - alternativ.................................. 2 1.2 Teststatistik........................................ 3 1.3 P-værdi..........................................

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Nanostatistik: Test af hypotese

Nanostatistik: Test af hypotese Nanostatistik: Test af hypotese JLJ Nanostatistik: Test af hypotese p. 1/50 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

ÇÚÖ Ø ½ ¾ ÁÒØÖÓ ÃÓÒÒ ÒØÖÚÐ ÓÖ Ò ÒÐ ÑÔÐ ½ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ Ò ÒÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÐ ÑÔÐ ¾ ÀÝÔÓØ Ø Ø ÓÖ Ö ÒÐ ÑÔÐ ¾

ÇÚÖ Ø ½ ¾ ÁÒØÖÓ ÃÓÒÒ ÒØÖÚÐ ÓÖ Ò ÒÐ ÑÔÐ ½ ØÑÑÐ ØÔÖÚ ØÖÖÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ Ò ÒÐ ÑÔÐ ½ ¹ ÓÖØ Ø ÀÝÔÓØ Ø Ø ÓÖ ØÓ ÒÐ ÑÔÐ ¾ ÀÝÔÓØ Ø Ø ÓÖ Ö ÒÐ ÑÔÐ ¾ ÃÙÖ Ù ¼¾¼ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÁÒÖÒ ÓÖ ÒÐ ÔØÐ ½¼µ ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÂÙÒ ¾¼½½ ½» ÇÚÖ Ø

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Løsning til eksaminen d. 29. maj 2009

Løsning til eksaminen d. 29. maj 2009 DTU Informatik 02402 Introduktion til Statistik 20-2-01 LFF/lff Løsning til eksaminen d. 29. maj 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Nogle anvendelser af programmel R, bl.a. til hypotesetest

Nogle anvendelser af programmel R, bl.a. til hypotesetest Frank Bengtson 2013 ÖÒºÒØ ÓÒÑкÓÑ Nogle anvendelser af programmel R, bl.a. til hypotesetest R er specielt egnet til statistik og simulering og kan frit installeres på egen pc. R udfører en programlinje

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok

Vejledende besvarelse af eksamen i Statistik for biokemikere, blok Opgave 1 Vejledende besvarelse af eksamen i Statistik for biokemikere, blok 2 2006 Inge Henningsen og Niels Richard Hansen Analysevariablen i denne opgave er variablen forskel, der for hver af 10 kvinder

Læs mere

Vejledende besvarelser til opgaver i kapitel 14

Vejledende besvarelser til opgaver i kapitel 14 Vejledende besvarelser til opgaver i kapitel 14 Opgave 1 a) Det første trin i opstillingen af en hypotesetest er at formulere to hypoteser, hvoraf den ene støtter den teori vi vil teste, mens den anden

Læs mere

Dagens program. Praktisk information: Husk evalueringer af kurset

Dagens program. Praktisk information: Husk evalueringer af kurset Dagens program Praktisk information: Husk evalueringer af kurset Hypoteseprøvning kap. 11.1-11.3 Fokastelsesområdet kap. 11.1 Type I og Type II fejl kap. 11.1 Styrkefunktionen kap. 11.2 Stikprøvens størrelse

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Estimation ved momentmetoden. Estimation af middelværdiparameter

Estimation ved momentmetoden. Estimation af middelværdiparameter Statistik og Sadsylighedsregig 1 STAT kapitel 4.2 4.3 Susae Ditlevse Istitut for Matematiske Fag Email: susae@math.ku.dk http://math.ku.dk/ susae Estimatio ved mometmetode Idimellem ka det være svært (eller

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup)

Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Kursus 02402 Introduktion til Statistik Forelæsning 5: Kapitel 7: Inferens for gennemsnit (One-sample setup) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske

Læs mere

w j p j 1 w j / p / = 1

w j p j 1 w j / p / = 1 ÆÝ Ö Ö ÙÐØ Ø Ö Ò Ò ÓÖ ÔÖÓ Ð Ñ Ø Ë ÙÐ Ö Ò Ñ Ö Ú Ð Ø Ö Ô Ò ÐØ¹Ñ Ò Öº Ò Ö Ð ¹ÈÓÚÐ Ò ² Æ ÓÐ Ò Ò ½¼º ÒÙ Ö ¾¼¼ ÁÒ ÓÐ ½ ÁÒØÖÓ Ù Ø ÓÒ ¾ ÈÖÓ Ð Ñ Ø Ð ÓÖ ØÑ Ö º½ Ã Ö Ø º º º º º º º º º º º º º º º º º º º º º º

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt)

I dag. Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) I dag Statistisk analyse af en enkelt stikprøve: LR test og t-test, modelkontrol, R Sandsynlighedsregning og Statistik (SaSt) Helle Sørensen Repetition vha eksempel om dagligvarepriser Analyse med R: ttest

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1 Tag-hjem prøve 1. juli 2010 24 timer Alle hjælpemidler er tilladt. Det er tilladt at skrive med blyant og benytte viskelæder,

Læs mere

xi ; ˆσ 2 =, s/ n t(n 1)

xi ; ˆσ 2 =, s/ n t(n 1) ÃÙÖ Ù ¼¾¼¾ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø ÓÖÐ ÒÒ ÃÔØÐ ÀÝÔÓØ Ø Ø ÓÖ ÒÒÑ ÒØ ÓÒ¹ ÑÔÐ ØÙÔµº º¹º ÂÒ ÃÐÓÔÔÒÓÖ ÅÐÐÖ ÌÍ ÁÒÓÖÑØ ÝÒÒ ¼ ¹ ÖÙÑ ¾½ ÒÑÖ ÌÒ ÍÒÚÖ ØØ ¾¼¼ ÄÝÒÝ ÒÑÖ ¹ÑÐ ÑÑѺØÙº ÂÒ Ãº ÅÐÐÖ ÑÑѺØÙºµ ÁÒØÖÓÙØÓÒ ØÐ ËØØ Ø

Læs mere

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter

Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx)

Projektopgave til Mat2SS. Espen Højsgaard (CPR xxxx) Rune Højsgaard (CPR xxxx) Projektopgave til MatSS Espen Højsgaard (CPR 04038-xxxx) Rune Højsgaard (CPR 090678-xxxx) 1 1 Samme sandsynlighed for drengefødsel Vi har som udgangspunkt for løsning af opgaven brugt følgende tabeller,

Læs mere

ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ

ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ ÁÒ ØÖÙØ ÓÒ Ë Ø Ö Ø ØÙÖ ÁÒØÖÓ ÙØ ÓÒ ÁÒ ØÖÙØ ÓÒ Ë Ø ÁÒØ Ö ØÛ Ò Ó ØÛ Ö Ò Ö Û Ö Ú Ð ØÓ ÔÖÓ Ö ÑÑ Ö ËØ Ô ØÓ Ò ÁÒ ØÖÙØ ÓÒ Ë Ø ÓÖ Ú Ò Óѹ ÔÙØ Ö Û Ø Ø Ú Ð Ð ÐØ ÖÒ Ø Ú Ò ØÓ ÐØ ÖÒ Ø Ú Ò ÕÙ ÒØ Ø Ú Ñ Ø Ó ÓÛ Ó Ø ÓÑÔ

Læs mere

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser

Motivation. Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Motivation Konfidensintervaller og vurdering af usikkerhed på estimerede størrelser Rasmus Waagepetersen October 26, 2018 Eksempel: En landmåler får til opgave at måle længden λ fra A til B. Entreprenøren

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Basal statistik. 6. februar 2007

Basal statistik. 6. februar 2007 Basal statistik 6. februar 2007 Statistisk inferens Sandsynligheder Fordelinger Modeller Statistisk analyse Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Afsluttes juni 2019 Institution Campus Vejle Uddannelse Fag og niveau Lærer Hold HHX Matematik B Jebbe Lukas

Læs mere

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136

Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 136 Supplement til kapitel 7: Approksimationen til normalfordelingen, s. 36 Det er besværligt at regne med binomialfordelingen, og man vælger derfor ofte at bruge en approksimation med normalfordeling. Man

Læs mere

Basal statistik. 6. februar 2007

Basal statistik. 6. februar 2007 Basal statistik 6. februar 2007 Statistisk inferens Sandsynligheder Fordelinger Modeller Statistisk analyse Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm

Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik ekstrom@sund.ku.dk Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2002 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 8.7, 8.8 og 8.10 Momenter af gennemsnit og andele kap. 8.7 Eksempel med simulationer Den centrale grænseværdisætning (Central Limit Theorem) kap. 8.8 Simulationer Normalfordelte

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere