Basal Statistik - SPSS

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Basal Statistik - SPSS"

Transkript

1 Faculty of Health Sciences APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides Basal Statistik - SPSS Den generelle lineære model. Lene Theil Skovgaard 24. oktober 2017 Biokemisk iltforbrug, transformationer, s Udglatning og polynomie-fit, s Lineære splines, s Ikke-lineær regression, s. 9, 16 Vitamin D, GLM, s Interaktioner, s Blodtryk og fedme, s / 28 2 / 28 Data vedr. biokemisk iltforbrug Omstrukturering, fortsat, samt figur Slide 7-8 Omstrukturering fra 6 linier med oplysning om alle 4 flasker den pågældende dag til 24 linier med kun en enkelt måling af iltforbrug pr. linie: Benyt /data/restructure og afkryds Restructure selected variables into cases, klik Next. Under How many variable groups? afkrydses One, klik Next, Under Case Group Identification skiftes til Use selected variable, og days sættes over i Variable. Slide 7-8 Herefter går man ind i Variables to be Transposed, skriver boc i Target Variable og sætter boc1, boc2, boc3 og boc4 i det store felt, hvorefter der klikkes Next. Endelig går man i Create index variable og sætter kryds ved None og klikker Next, og under Variables to Cases: Options klikkes blot Finish Figuren slide 8 Benyt Graphs/Chart Builder og vælg Scatter (det simple længst til venstre), og dobbeltklik det op i det store felt. Sæt days over på X-aksen og boc over på Y-aksen. 3 / 28 4 / 28

2 Analyse af biokemisk iltforbrug Regressionsanalyse med transformerede variable Slide 11 Definition af nye variable: Først skal vi logaritmetransformere iltforbruget. Dette gøres under Transform/Compute, hvor man som Target Variable sætter det nye variabelnavn, her logboc, og i feltet Numeric Expression skriver Ln(boc) Dernæst skal vi udregne den reciprokke tid, igen under Transform/Compute, hvor man som Target Variable sætter invdays, og i feltet Numeric Expression skriver 1/days Derefter følger man opskriften på simpel lineær regression, se de næste sider Slide 11 Gå ind i menuen Analyze/Regression/Linear, og i boksen sættes logboc som Dependent og invdays som Independent(s) Man skal efterfølgende huske at gå ind i Statistics og afkrydse Parameter Estimates og Confidence intervals 5 / 28 6 / 28 Plot med regressionslinie Tilbagetransformeret fit Slide 12 Først laves plottet ved at gå ind i Graph/Chart Builder/Scatter og i den fremkomne boks trækker man logboc over på Y-aksen, og invdays over på X-aksen. For at tegne linien dobbeltklikker man efterfølgende på grafen og klikker på ikonet Add Fit Line at Total og derefter i Properties-boksen afkrydse Linear og klikke Apply. Man kan endvidere vælge, om man vil have liniens ligning skrevet på linien eller ej (flueben ved Attach label to line kan fjernes) Farven på linien kan vælges under Lines: klik på farven og Apply/Close 7 / 28 Slide I regressionsopsætningen fra s. 7 klikkes på Save, hvorefter man under Predicted Values vælger Unstandardized, som så kommer til at ligge i datasættet under navnet PRE_1. Disse tilbagetransformeres til oprindelig skala ved at benytte Transform/Compute og som Target Variable sætte f.eks. predikteret og i Numeric Expression skrive exp(pre_1). Gå nu ind i Graph/Chart Builder, vælg Scatter, og træk i den fremkomne boks predikteret over på Y-aksen og days over på X-aksen. Dobbeltklik på den fremkomne graf og klik på ikonet Add Fit Line at Total og derefter i Properties-boksen afkrydse Spline og klikke Apply. Det er formentlig meget besværligt (eller umuligt) at få såvel kurve som observationer på samme figur... 8 / 28

3 Ikke-lineær regression Plot af ikke-lineært fit Slide 16 Her benyttes Analyze/Regression/Nonlinear Regression, hvor man sætter boc i Dependent og i Model Expression skriver selve det ikke-lineære udryk gamma*exp(-beta/days). Herefter klikker man i Parameters og tilføjer Name: gamma, Starting Value: 228 Add Name: beta, Starting Value: 0,8 Add og til sidst: Continue Jeg kan dog ikke pt få det korrekte resultat... Slide 17 Hvis proceduren s. 9 fungerede korrekt, ville man benytte Save og gemme de predikterede værdier ved at afkrydse i Predicted Values. Herefter benyttes Graphs/Chart Builder/Scatter (det simple længst til venstre), days sættes på X-aksen og PRED_1 på Y-aksen. Efterfølgende dobbeltklikkes på grafen, og man vælger Add Interpolation Line, hvorefter man afkrydser i Spline. Det ser dog ikke umiddelbart ud til at være muligt at få usikkerheder på disse prediktioner, så grænserne må man undvære. Ligeledes kommer selve observationerne heller ikke med på figuren. 9 / / 28 Udglattet kurve, en såkaldt Loess-kurve Polynomiale fit Slide 22 Her skal vi begrænse det datamateriale, vi ser på. Dette gøres i Data/Select Cases, hvor der afkrydses i If og skrives 5<age<20 & sex= male. Herefter laver vi en tegning med Graphs/Chart Builder, hvor vi vælger det simple Scatter. Sæt age over på X-aksen og sigf1 over på Y-aksen. Ved efterfølgende at dobbeltklikke på grafen, kan man lægge en udglattet kurve på ved at klikke på Add Fit Line at Total og derefter i Properties-boksen afkrydse Loess/Apply: Farven på kurven kan vælges under Lines: klik på farven og Apply/Close 11 / 28 Slide 26 De 3 forskellige polynomier (af grad hhv 1,2 og 3) kan formentlig kun (på rimelig simpel vis) tegnes hver for sig. Ellers skal man til at have flere versioner af datasættet sat i forlængelse af hinanden... Først laver vi en tegning med Graphs/Chart Builder, hvor vi vælger det simple Scatter, sætter age over på X-aksen og sigf1 over på Y-aksen. Ved efterfølgende at dobbeltklikke på grafen, og videre på Add Fit Line at Total kan man i Properties-boksen afkrydse enten Linear, Quadratic eller Cubic Farven på kurverne kan vælges under Lines: klik på farven og Apply/Close 12 / 28

4 Lineære splines Illustration af fit med lineære splines Slide Definition af nye variable: Benyt Transform/Compute, hvor man som Target Variable sætter det nye variabelnavn, her f.eks. extra_age12, og i feltet Numeric Expression skriver max(age-12,0) Ligeledes med de 3 øvrige variable. Fit derefter en model med disse 4 ekstra kovariater, sammen med den oprindelige age ved at benytte menuen Analyze/Regression/Linear, og i boksen sættes ssigf1 som Dependent og age samt alle 4 extra-variable i Independent(s) Man skal efterfølgende huske at gå ind i Statistics og afkrydse Parameter Estimates og Confidence intervals Slide 29 Det er nok virkelig indviklet (eller umuligt?) at få data og splines på samme figur... Her er man nødt til først at gemme de predikterede værdier ved at benytte Save og vælge Predicted Values. De kommer til at hedde PRE_1 i datasættet. Herefter går man i Herefter laver vi en tegning med Graphs/Chart Builder, hvor vi vælger Lines (det simple længst til venstre), og dobbeltklik det op i det store felt. Sæt PRED_1 over på Y-aksen og age over på X-aksen. 13 / / 28 Alternativ parametrisering af lineære splines Ikke-lineær regression så man i stedet får estimater for hældningerne i de enkelte aldersintervaller Slide Definition af de alternative variable: Benyt Transform/Compute, hvor man som Target Variable sætter det nye variabelnavn, her f.eks. ny_age12, og i feltet Numeric Expression skriver min(extra_age12,1) Ligeledes med de 3 øvrige variable: min(age,10), min(extra_age10,2) og min(extra_age13,2) og ny_age15=extra_age15 Fit derefter en model med disse 5 kovariater, i analogi med den beskrevne fremgangsmåde på forrige side. 15 / 28 Slide Her benyttes Analyze/Regression/Nonlinear Regression, hvor man sætter konc i Dependent og i Model Expression skriver selve det ikke-lineære udryk beta*(1-exp(-gamma*tid)). Herefter klikker man i Parameters og tilføjer Name: gamma, Starting Value: 0,05 Add Name: beta, Starting Value: 2000 Add og til sidst: Continue Mht figur af fit, se s / 28

5 ANOVA, sammenligning af D-vitamin i 4 lande Model med bmi som kovariat, ANCOVA Slide 46 Først skal vi udregne 2-tals logaritmen af vitamin D. Dette gøres under Transform/Compute, hvor man som Target Variable sætter det nye variabelnavn, her lvitd, og i feltet Numeric Expression skriver LG10(vitd)/LG10(2) Til variansanalysen benyttes Analyze/General Linear Model/Univariate, hvor vi sætter lvitd i Dependent Variable og country i Fixed Factor(s). Her kan vi vælge at se parameterestimater under Options, hvor vi afkrydser Parameter estimates) Slide 49 Til kovariansanalyse benyttes Analyze/General Linear Model/Univariate, hvor vi sætter lvitd i Dependent Variable, country i Fixed Factor(s) og bmi i Covariate(s) For at undgå at få interaktionen med i modellen, klikkes nu på Model, hvorefter man vælger Custom, markerer begge kovariater, skifter fra Interaction til Main Effects og klikker på pilen og Continue. Husk også i Options at vælge Parameter Estimates 17 / / 28 Model med 4 kovariater Modelkontrol for model med 4 kovariater Slide Selve analysen foregår som skitseret på s. 19, altså: Benyt Analyze/General Linear Model/Univariate, hvor vi sætter lvitd i Dependent Variable, country og sunexp i Fixed Factor(s) og såvel bmi som lvitdintake i Covariate(s) For at undgå at få interaktionen med i modellen, klikkes nu på Model, hvorefter man vælger Custom, markerer alle kovariater, skifter fra Interaction til Main Effects og klikker på pilen og Continue. Husk også i Options at vælge Parameter Estimates Slide Den automatiske modelkontrol i SPSS er ikke særlig god... Brug i stedet nedenstående: I regressionsopsætningen fra s. 20 klikkes på Save, hvorefter man typisk vil vælge Under Predicted Values: vælg Unstandardized, som så kommer til at ligge i datasættet under navnet PRE_1 Under Residuals er der 5 muligheder, f.eks. Unstandardized: De sædvanlige, altså observeret minus forventet, kaldet RES_1 i datasættet Studentized deleted: Normerede Press-residualer (altså hvor den pågældende observation er udeladt ved fit af modellen), kaldet SDR_1 i datasættet 19 / / 28

6 Modelkontrol, II Slide Ud fra det udbyggede datasæt dannet s. 21 kan vi nu lave diverse figurer: Benyt Graph/Chart Builder, vælg Scatter, klik Unstandardized Predicted Values over på X-aksen og Unstandardized Residuals over på Y-aksen. Vælg Analyze/Descriptive Statistics/Q-Q Plots og sæt Unstandardized Residuals over i Variables. Benyt Graph/Chart Builder, vælg Histogram og klik det ønskede residual (f.eks. RES_1) ned på X-aksen. Klik så på Distribution Curve og afkryds Normal, klik Apply og Close Evt. yderligere check af varianshomogenitet, se i appendix fra regression, s / 28 Udeladelse af flere kovariater samtidig Slide Det er ikke så let at gennemskue, hvordan sette foregår i SPSS... Hvis alle kovariater var kvantitative (altså i en multipel regressiosanalyse) kan man i Analyze/Regression/Linear definere flere modeller på en gang og få dem sammenlignet med et F-test. Men når vi som her også har kategoriske kovariater, er vi nødt til bruge Analyze/General Linear Model/Univariate, og denne opsætning tillader ikke definition af flere modeller på en gang. I så fald er man nødt til at lave sine kategoriske variable om til dummy-variable, f.eks. skal country så blive til 3 dummy-variable / 28 Interaktionen sunexp*lvitdintake Interaktionen country*sunexp Slide 70 Slide Følg opskriften fra s.20 men i Model markeres sunexp og lvitdintake samtidig, der skiftes fra Main Effects til Interaction og klikkes på pilen og Continue. For at få de enkelte effekter af lvitdintake skal denne udelades af Model, medens interaktionen bibeholdes. Følg opskriften fra s.20 men i Model markeres sunexp og country samtidig, der skiftes fra Main Effects til Interaction og klikkes på pilen og Continue. For at få de enkelte effekter af sunexp skal denne udelades af Model 23 / / 28

7 Interaktionen country*lvitdintake Blodtryk vs. fedme Slide 74 Følg opskriften fra s.20 men i Model markeres country og lvitdintake samtidig, der skiftes fra Main Effects til Interaction og klikkes på pilen og Continue. For at få de enkelte effekter af lvitdintake skal denne udelades af Model, medens interaktionen bibeholdes. Sammenligning af mænd og kvinder, figurer Slide 79 Selve figuren laves i Graph/Chart Builder, hvor man vælger Scatter plot (nr. 2 fra venstre), og i den fremkomne boks trækker man log10bp over på Y-aksen, log10obese over på X-aksen og sex over i Set Color For at tegne individuelle regressionslinier dobbeltklikker man efterfølgende på grafen og klikker på ikonet Add Fit Line at Subgroups og derefter i Properties-boksen afkrydse Linear og klikke Apply. Disse linier vil ikke blive parallelle, og er ikke vist i forelæsningsnoterne. 25 / / 28 Blodtryk vs. fedme og køn: Kovariansanalyse Slide 80 Her benyttes Analyze/General Linear Model/Univariate, hvor vi sætter log10bp over i Dependent Variable, sex i Fixed Factor(s) og log10obese i Covariate(s) For at undgå at få interaktionen med i modellen, klikkes nu på Model, hvorefter man vælger Custom, markerer begge kovariater, skifter fra Interaction til Main Effects og klikker på pilen og Continue. Husk også i Options at vælge Parameter Estimates 27 / 28 ANCOVA-plot, med parallelle linier Slide 81 Her er man nødt til først at gemme de predikterede værdier ved at benytte Save og vælge Predicted Values. De kommer til at hedde PRE_1 i datasættet. Herefter går man i igen ind i Graph/Chart Builder/Scatter, vælger Scatter plot (nr. 2 fra venstre), og i den fremkomne boks udskiftes log10bp med PRE_1. For at tegne individuelle regressionslinier dobbeltklikker man efterfølgende på grafen og klikker på ikonet Add Fit Line at Subgroups og derefter i Properties-boksen afkrydse Linear og klikke Apply. Desværre får man ikke samtidig selve observationerne på figuren... Og de to lodrette linier er heller ikke forsøgt indtegnet. 28 / 28

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Kovariansanalyse. Lene Theil Skovgaard 3. oktober 2017 1 / 12 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides Bland-Altman plot,

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Multipel regression. Lene Theil Skovgaard 10. oktober 2017 1 / 12 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides Figurer: s.

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Begreber. Parrede sammenligninger. Lene Theil Skovgaard 5. september 2017 1 / 16 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides

Læs mere

SPSS appendix SPSS APPENDIX. Box plots. Indlæsning. Faculty of Health Sciences. Basal Statistik: Sammenligning af grupper, Variansanalyse

SPSS appendix SPSS APPENDIX. Box plots. Indlæsning. Faculty of Health Sciences. Basal Statistik: Sammenligning af grupper, Variansanalyse Faculty of Health Sciences SPSS APPENDIX SPSS appendix Basal Statistik: Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 12. september 2017 med instruktioner til SPSS-analyse svarende til

Læs mere

Faculty of Health Sciences. SPSS appendix. Basal Statistik: Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 22.

Faculty of Health Sciences. SPSS appendix. Basal Statistik: Sammenligning af grupper, Variansanalyse. Lene Theil Skovgaard. 22. Faculty of Health Sciences SPSS appendix Basal Statistik: Sammenligning af grupper, Variansanalyse Lene Theil Skovgaard 22. januar 2018 1 / 20 SPSS APPENDIX med instruktioner til SPSS-analyse svarende

Læs mere

Faculty of Health Sciences. Basal Statistik. Overlevelsesanalyse. Lene Theil Skovgaard. 12. marts 2018

Faculty of Health Sciences. Basal Statistik. Overlevelsesanalyse. Lene Theil Skovgaard. 12. marts 2018 Faculty of Health Sciences Basal Statistik Overlevelsesanalyse Lene Theil Skovgaard 12. marts 2018 1 / 12 APPENDIX vedr. SPSS svarende til diverse slides: Kaplan-Meier kurver, s. 3 Kumulerede incidenser

Læs mere

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger.

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger. Opgavebesvarelse, Resting metabolic rate I filen rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991 og Owen et.al., Am.

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2017

Vejledende besvarelse af hjemmeopgave, forår 2017 Vejledende besvarelse af hjemmeopgave, forår 2017 På hjemmesiden http://publicifsv.sund.ku.dk/~lts/basal17_1/hjemmeopgave/hjemmeopgave.txt ligger data fra 400 fødende kvinder. Der er tale om et uddrag

Læs mere

Opgavebesvarelse, korrelerede målinger

Opgavebesvarelse, korrelerede målinger Opgavebesvarelse, korrelerede målinger I 18 familier bestående af far, mor og 3 børn (i veldefinerede aldersintervaller, med child1 som det ældste barn og child3 som det yngste) har man registreret antallet

Læs mere

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017 Faculty of Health Sciences Basal statistik Den generelle lineære model mv. Lene Theil Skovgaard 14. marts 2017 1 / 96 Den generelle lineære model mv. Ikke-lineære sammenhænge Opbygning af modeller Sammenligning

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

SPSS introduktion Om at komme igang 1

SPSS introduktion Om at komme igang 1 SPSS introduktion Om at komme igang 1 af Henrik Lolle, oktober 2003 Indhold Indledning 1 Indgang til SPSS 2 Frekvenstabeller 3 Deskriptive statistikker gennemsnit, standardafvigelse, median osv. 4 Søjlediagrammer

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Faculty of Health Sciences. Basal Statistik. Regressionsanalyse. Lene Theil Skovgaard. 26. september 2017

Faculty of Health Sciences. Basal Statistik. Regressionsanalyse. Lene Theil Skovgaard. 26. september 2017 Faculty of Health Sciences Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 26. september 2017 1 / 85 Simpel lineær regression Regression og korrelation Simpel lineær regression Todimensionale

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Modelkontrol i Faktor Modeller

Modelkontrol i Faktor Modeller Modelkontrol i Faktor Modeller Julie Lyng Forman Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for Biokemikere 2003 For at konklusionerne på en ensidet, flersidet eller hierarkisk

Læs mere

INTRODUKTION TIL dele af SAS

INTRODUKTION TIL dele af SAS INTRODUKTION TIL dele af SAS Der er flere forskellige angrebsvinkler ved statistiske analyser i SAS. Vi skal her kun beskæftige os med to af disse, nemlig Direkte programmering. Brug af SAS ANALYST Hvilken

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger.

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger. Opgavebesvarelse, Resting metabolic rate I filen rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991 og Owen et.al., Am.

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences Faculty of Health Sciences Simpel lineær regression Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 21. februar 2017 Regression og korrelation Simpel lineær regression Todimensionale normalfordelinger

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Regressionsanalyse i SAS

Regressionsanalyse i SAS Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016

Faculty of Health Sciences. Basal Statistik. Begreber. Parrede sammenligninger. Lene Theil Skovgaard. 6. september 2016 Faculty of Health Sciences Basal Statistik Begreber. Parrede sammenligninger. Lene Theil Skovgaard 6. september 2016 1 / 88 APPENDIX Programbidder svarende til diverse slides: Indlæsning af vitamin D datasæt,

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer Program Simpel og multipel lineær regression Helle Sørensen E-mail: helle@math.ku.dk Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

Introduktion til SPSS

Introduktion til SPSS Introduktion til SPSS Øvelserne på dette statistikkursus skal gennemføres ved hjælp af det såkaldte SPSS program. Det er erfaringsmæssigt sådan, at man i forbindelse af øvelserne på statistikkurser bruger

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Program. Indhold af kursus i overskrifter. Farlighed af GM-majs? (Ingeniøren Generel lineær model/multipel regression

Program. Indhold af kursus i overskrifter. Farlighed af GM-majs? (Ingeniøren Generel lineær model/multipel regression Program Indhold af kursus i overskrifter 1. overblik over kursus (opgaver fra sidst samt huspriser som eksempler). 2. p-værdi 3. uformel evaluering 1. sandsynlighedsregning sandsynlighedsfordelinger (normal,

Læs mere

Easy Guide i GallupPC

Easy Guide i GallupPC Easy Guide i GallupPC Version. 6.00.00 Gallup A/S Masnedøgade 22-26 DK 2100 København Ø Telefon 39 27 27 27 Fax 39 27 50 80 Indhold SÅDAN KOMMER DU I GANG MED AT ANVENDE GALLUPPC... 2 TILFØJELSE AF UNDERSØGELSER

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Faculty of Health Sciences. Basal statistik. Lille SAS Manual. Lene Theil Skovgaard. 31. januar 2017

Faculty of Health Sciences. Basal statistik. Lille SAS Manual. Lene Theil Skovgaard. 31. januar 2017 Faculty of Health Sciences Basal statistik Lille SAS Manual Lene Theil Skovgaard 31. januar 2017 1 / 42 Selve sproget Siderne 9-18 Indlæsning (9-12) Definition af nye variable (13) Missing values / Manglende

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Multipel regression 22. Maj, 2012

Multipel regression 22. Maj, 2012 Data: Det færøske kviksølv-studie Simpel linær regression Confounding Multipel lineær regression Fortolkning af parametre Vekselvirkning Kollinearitet Modelkontrol Multipel regression 22. Maj, 2012 Esben

Læs mere

Basal statistik. Selve sproget. Grafik. Basale procedurer. Faculty of Health Sciences. Lille SAS Manual

Basal statistik. Selve sproget. Grafik. Basale procedurer. Faculty of Health Sciences. Lille SAS Manual Faculty of Health Sciences Selve sproget Basal statistik Lille SAS Manual Lene Theil Skovgaard 5. september 2017 Siderne 9-18 Indlæsning (9-12) Definition af nye variable (13) Missing values / Manglende

Læs mere

Vejledende besvarelse af hjemmeopgave

Vejledende besvarelse af hjemmeopgave Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin

Læs mere

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25. Hjemmeopgave Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.-27 marts) Garvey et al. interesserer sig for sammenhængen mellem

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

Vejledning i at tegne boksplot i Excel 2007

Vejledning i at tegne boksplot i Excel 2007 Vejledning i at tegne boksplot i Excel 2007 Indhold Tegning af boksplot. Man kan ikke tegne flere boksplot på samme figur i Excel 2007, men man kan sammenligne to boksplot ved at tegne dem hver for sig

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Øvelser til basalkursus, 2. uge

Øvelser til basalkursus, 2. uge Øvelser til basalkursus, 2. uge Opgave 1 Vi betragter igen Sundby95-materialet, og skal nu forbedre nogle af de ting, vi gjorde sidste gang. 1. Gå ind i ANALYST vha. Solutions/Analysis/Analyst. 2. Filen

Læs mere

Klasseaktiviteter Dag 4

Klasseaktiviteter Dag 4 Klasseaktiviteter Dag 4 Bemærk at jeg i denne løsning ikke altid har output med. Tanken er, at I skal se løsningen og selv prøve at køre kommandoerne (og dermed undgår jeg også at dette dokument bliver

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Vester Kopi A/S - Plotservice

Vester Kopi A/S - Plotservice Vester Kopi A/S - Plotservice Vejledning til AutoCad 2000 i forbindelse med plotservice Indhold: Plotter konfiguration i AutoCad 2000 1 Indstillinger i AutoCad 2000 4 Farveplot 6 Plotfiler i AutoCad 2000

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

3 Tilføj printer "HP-GL/2 devices, ADI 4.3 - for Autodesk by HP" 5 Klik "Printer ikonet" - Print/Plot configuration

3 Tilføj printer HP-GL/2 devices, ADI 4.3 - for Autodesk by HP 5 Klik Printer ikonet - Print/Plot configuration Plot filer fra AutoCad 14. 1 Åben Autocad 14 2 Klik "Filer" og vælg "Printer setup" 3 Tilføj printer "HP-GL/2 devices, ADI 4.3 - for Autodesk by HP" 4 Klik "Ok" 5 Klik "Printer ikonet" - Print/Plot configuration

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Besvarelse af opgave om Vital Capacity

Besvarelse af opgave om Vital Capacity Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, 1987. Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel)

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

Hvorfor SAS Kort intro til SAS

Hvorfor SAS Kort intro til SAS Hvorfor SAS Kort intro til SAS Efterår 2015 Janne Petersen Judith L Jacobsen Lene Theil Skovgaard Kan alt Alle ph.d. studerende har gratis adgang Fra universitetet eller hospitalerne Kode --- hjælp fra

Læs mere

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen Opgavebesvarelse, Resting metabolic rate I filen T:\Basalstatistik\rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Regressionsanalyse i SurveyBanken

Regressionsanalyse i SurveyBanken Først vælges datasættet De Kommunale Nøgletal. Klik på Variable Description og derefter De Kommunale Nøgletal 2010. De enkelte variable i datasættet bliver nu oplistet og kan vælges. Klik herefter på Analysis

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling Faculty of Health Sciences Regressionsanalyse Simpel lineær regression, 28-2-2013 Lene Theil Skovgaard Biostatistisk Afdeling 1 / 67 Simpel lineær regression Regression og korrelation Simpel lineær regression

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Introduktion til TI-Interactive!

Introduktion til TI-Interactive! Introduktion til TI-Interactive! TI-Interactive! er et program, som befinder sig i grænseområdet mellem almindelig tekstbehandling, regneark og egentlige tunge matematikprogrammer. Man kan gøre mange af

Læs mere

Kort intro til SAS. Efterår 2015. Janne Petersen Judith L Jacobsen Lene Theil Skovgaard

Kort intro til SAS. Efterår 2015. Janne Petersen Judith L Jacobsen Lene Theil Skovgaard Kort intro til SAS Efterår 2015 Janne Petersen Judith L Jacobsen Lene Theil Skovgaard 1 Hvorfor SAS Kan alt Alle ph.d. studerende har gratis adgang Fra universitetet eller hospitalerne Kode --- hjælp fra

Læs mere