Statistik og sandsynlighed

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Statistik og sandsynlighed"

Transkript

1 Statistik og sandsynlighed Statistik handler om at beskrive og analysere en stor mængde data. som I eller andre har indsamlet. Det kan fx være tal, der fortæller om, hvor mange lynnedslag der er i Danmark på et år INTRO Sandsynlighedsregning handler om at vurdere chancer eller risici. Det kan fx vurderes, hvor stor risikoen er for lynnedslag i forskellige områder af Danmark. / For at vurdere denne sandsynlighed er der brug for statistiske oplysninger Statistik og sandsynlighed hænger altså sammen. Kapitlet handler især om sammenhængen mellem statistik og sandsynlighed, men det handler også om, hvordan nogle sandsynligheder kan beregnes ved hjælp af andre redskaberend statistik.

2 MUNDTLIG REDSKABER TIL SANDSYNLIGHEDSREGNING D Hyppighedstabel B Pindediagram Fravær på 100 skoledage i en. klasse. Summen i 100 kast med to terninger Antal fraværende eller flere Antal dage Der er forskellige former for sandsynlighedsregning. Nogle sandsynligheder kan I beregne på baggrund af statistik. Eksempel 1 og 2 øverst viser to forskellige statistikker Hyppighedstabellen er lavet ud fra protokollen for en. klasse. Den viser noget om fraværet i klassen i løbet af det første halve skoleår Man kan fx se, at i 20 af de 100 skoledage varder ingen fraværende. Eksempel 2 er et pindediagram, som er lavet ved hjælp af et simuleringsprogram. Det viser resultatet af en simulering af 100 kast med to terninger I hvert kast er summen fundet. ee 1 Klassen i eksempel 1 regner med, at deres fravær vil fortsætte på samme måde i sidste halvdel af klasse. Hvad er sandsynligheden for at alle i klassen er i skole en tilfældig dag i foråret? 2 Hvad er sandsynligheden for at alle i jeres klasse er i skole en tilfældig dag i foråret? 3 Hvilke andre sandsynligheder kan I beskrive ud fra hyppighedstabellen? 4 Hvad viser simuleringen om sandsynligheden for at få a summen 8 i et kast med to terninger? b summen 4 eller 10 i et kast med to terninger? 5 Hvilke andre sandsynligheder kan I beregne ud fra pindediagrammet? 15 STATISTIK OC SANDSYNLIGHED

3 o Tabel Summer i kast med to terninger Tælletræ Antal af mulige udfald med to terninger Nogle sandsynligheder kan I beregne uden statistik. Det gælder fx sandsynligheden for at få summen 8 i et kast med to terninger Eksempel 3 og 4 viser to redskaber der kan bruges til beregningerne. Hvordan kan I beregne sandsynligheden for at få summen 8 ved at bruge a tabellen? b tælletræet? Hvilke andre sandsynligheder kan I beregne ud fra tabellen og tælletræet? 8 Beregningerne ved hjælp af statistik, tabel og tælletræ giver ikke alle samme sandsynlighed for at få summen 8. Hvilket resultat giver den bedste vurdering af sandsynligheden for at få 8? Hvorfor? hold og mål I dette kapitel skal I arbejde med at udvikle og bruge forskellige metoder til at beregne sandsynligheder Målet er at I lærer at finde sandsynligheder ved hjælp af statistik. lærer at finde sandsynligheder ved hjælp af chancetræer. får flere erfaringer med at finde sandsynligheder ved hjælp af tabeller og tælletræer får flere erfaringer med at løse problemer der handler om sandsynlighed. I får erfaringer med at simulere ekspe- I rimenter på computer STATISTIK OG SANDSYNLIGHED 15

4 PROBLEM TERNINGSPILLET..ELLEVE' Spillet kan spilles af to eller flere personer Hver spiller skal bruge to terninger og 30 tændstikker Vinder er den spiller der har flest tændstikker når én af modstanderne ikke har flere tændstikker tilbage. Spillet begynder med, at alle spillere lægger to tændstikker i en pulje på midten af bordet. Herefter skiftes spillerne til at kaste med to terninger og finde summen af øjentallene. Hvis en spiller får summen 2-10, lægges (11 - summen) tændstikker i puljen. Eksempel: ved summen 9 lægges (11-9 = 2) tændstikker i puljen. 11, får spilleren hele puljen, og alle skal igen lægge 2 tændstikker i puljen. 12, skal spilleren lægge lige så mange tændstikker i puljen, som der allerede ligger i puljen. 1 Spil spillet Elleve" flere gange. 2 Undersøg sandsynligheden for at få summen 11 og sandsynligheden for at få summen 12 ved hjælp af et simuleringsprogram. Hvad ser hver sandsynlighed ud til at være, hvis 1 simulerer a b c 10 kast? 100 kast? 1000 kast? 3 Undersøg sandsynligheden for at få summen 11 og sandsynligheden for at få summen 12 ved hjælp af a en tabel over summen af to terningkast. b et tælletræ. 4 Hvilke(n) af jeres undersøgelser a gør det lettest at finde sandsynlighederne? b giver den bedste vurdering af sandsynlighederne? Hvorfor? 158 STATISTIK OG SANDSYNLIGHED

5 TERNINGSPILLET..BORDTENNIS PROBLEM Spillet spilles af to personer 1 skal bruge to terninger en spilleplade (kopiark ) og en brik som bold". Vinder er den spiller der først når 11 point. 1. runde: Spiller 1 server ved at slå 8. Bolden hopper derfor over på den modsatte sides 'erfelt. Spiller 1 Reglerne er næsten som i bordtennis. Et terningkast svarer til at slå til bolden. Summen af de to terninger viser hvor langt bolden kommer og dermed, hvor den rammer bordet. Det gælder om at slå bolden" over på modstanderens halvdel og om at undgå at slå bolden" i nettet eller ud over bordet. I skiftes til at serve to gange hver NET I får 1 point, hvis modstanderen server eller slår bolden" i nettet. slår bolden" ud over bordet. rammer sin egen banehalvdel først (gælder også, når man server). 1 Spil spillet Bordtennis" flere gange. 2 Brug et simuleringsprogram, en tabel eller et tælletræ. Undersøg sandsynligheden for at Spiller 2 2. runde: Spiller 2 returnerer bolden ved at slå. Spiller 1 a serve bolden" i nettet. b ramme sin egen banehalvdel, når man server c slå bolden" ud over bordet, når bolden" er på felt 4. NET 1 Spiller 2 STATISTIK OG SANDSYNLIGHED 159

6 PROBLEM STATISTIK, SANDSYNLIGHED OG ÆBLER Nogle æbler sælges i poser med 1 kg. Det er lidt forskelligt, hvor mange æbler der er i hver pose - og det er ikke altid, at vægten er præcis 1 kg. Oles familie køber tit æbler Når de køber ind, tager de altid en tilfældig pose med 1 kg æbler Ole har talt og vejet æblerne i de sidste 30 poser de har købt. Du kan se resultatet i hyppighedstabellerne til venstre. Antal æbler 8 Vægt i gram ] 950:95] ]95;1000] 11000: :10501 Antal poser 8 1 Antal poser Hvad viser Oles statistik om sandsynligheden for at en tilfældig pose æbler indeholder a æbler? b æbler? c 8 æbler? 2 Intervallet ]95;1000] betyder større end 95 og mindre end eller lig med Hvad betyder intervallet 1000:1025]? 1025:1050]? 3 Hvad viser Oles statistik om sandsynligheden for at en tilfældig pose æbler indeholder a mere end 1 kg? b mindre end 1 kg? 4 Synes du, at Ole og hans familie skal klage over poserne med æbler? Hvorfor? Hvorfor ikke? 10 STATISTIK OG SANDSYNLIGHED

7 STATISTIK, SANDSYNLIGHED OG FORSINKELSER PROBLEM Oles mor tager toget til arbejde hver morgen. Hun synes, at toget ofte er forsinket. I en periode har hun hver morgen tjekket, om hendes tog kørte til tiden. Resultatet ses i hyppighedstabellen. 1 Hvor mange togafgange var med i undersøgelsen? 2 a DSB opfatter afgange, der er mere end 2 minutter efter køreplanen, som forsinkede. Hvor stor en brøkdel af togene var forsinkede efter DSB's opfattelse? b Hvor stor en brøkdel af togene kørte mere end 1 minut efter køreplanen? c Synes du, at DSB's opfattelse af forsinkelse er rimelig? 3 Hvad er ifølge undersøgelsen, sandsynligheden for at toget en tilfældig morgen er forsinket a mere end 2 minutter? b 1 minut eller mindre? c mere end 10 minutter? Minutter efter køreplanen [0:1 [ [i;2[ [2:3 [ I3:4[ [4:5 [ [5:10[ [10;15l 15 eller mere Antal afgange Hvor god er Oles mors undersøgelse til at vurdere sandsynligheder? Hvad kunne hun gøre for at vurdere mere sikkert? STATISTIK OG SANDSYNLIGHED 11

8 MUNDTLIG CHANCETRÆER O Træk to centicubes med lukkede øjne - en ad gangen. Se på farven. 1. trækning 2. trækning 1 eksperimentet øverst skal I lægge centicuben tilbage i glasset, når 1 har noteret farven. 1 Hvorfor er sandsynligheden for at trække en rød centicube \ i både første og anden trækning? 1 skal finde sandsynligheden for at få en rød centicube i begge trækninger Det kan I bl.a. gøre ved hjælp af et chancetræ. Chancetræer ligner tælletræer men hver gren" i et chancetræ viser en sandsynlighed. Øverst er et chancetræ, som viser sandsynlighederne i første og anden trækning. De røde grene viser at sandsynligheden for at trække en rød er ^ i første trækning og ] i anden trækning. også give en rød centicube. Sandsynligheden for en rød centicube i begge trækninger er halvdelen af en halv. Derfor kan sandsynligheden beregnes som I 4' 2 Brugchancetræet til at finde sandsynligheden for at begge centicubes i eksperimentet er grønne. 3 Hvorfor er sandsynligheden for at trække en rød og en grøn centicube i eksperimentet ^? 4 Undersøg, hvad sandsynligheden er for at trække tre røde centicubes i træk. Brug et chancetræ. I halvdelen af tilfældene vil første trækning give en rød centicube, og i halvdelen af disse tilfælde vil næste trækning 12 STATISTIK OG SANDSYNLIGHED

9 B Træk tre centicubes med lukkede øjne - en ad gangen. Se på farven. J % 1. trækning 2. trækning 3. trækning I eksperimentet øverst skal 1 ikke lægge centicuben tilbage i glasset, når I har noteret farven. 5 Hvorfor er sandsynligheden for at trække en rød centicube i første trækning? Chancetræet viser at sandsynligheden for at trække en rød centicube i anden trækning kan være eller. Hvorfor? Brugchancetræet til at finde sandsynligheden for a at trække tre røde centicubes i træk. b at trække to grønne og en rød centicube. STATISTIK OG SANDSYNLIGHED 13

10 SAMME KAST FLERE GANGE I TRÆK? Herunder er beskrevet to eksperimenter Eksperiment 1: Kast en terning to gange. Eksperiment 2: Kast en mønt fem gange. Du skal undersøge, om der er størst chance for af få to seksere i træk i det første eksperiment - eller om der er størst chance for at få krone fem gange i træk i det andet eksperiment. Sffi 1 Brug et simuleringsprogram til at simulere de to eksperimenter Gentag simuleringen mindst 50 gange for hvert eksperiment. Hvad viser simuleringen om sandsynlighederne? 2 Brug et chancetræ til at finde sandsynligheden for hvert eksperiment. 3 Sammenlign for hvert eksperiment sandsynligheden, du har fundet ved hjælp af simuleringsprogrammet og sandsynligheden, du har fundet ved hjælp af chancetræet. Er du overrasket over forskellen? Hvorfor? Hvorfor ikke? 14 STATISTIK OG SANDSYNLIGHED

11 UHELDIG FLERE GANGE I TRÆK? PROBLEM Familien Aagaard er i sommerhus i tre dage. Hver dag trækker familiens tre børn lod om, hvem der skal vaske op. 1 Søren, Thomas og Lise har lige stor risiko for at tabe lodtrækningen. Hvad er sandsynligheden for at Søren skal vaske op den første dag? 2 Brug et chancetræ til at beregne sandsynligheden for at Søren skal vaske op a de to første dage i træk. b alle tre dage. 3 Hvad er sandsynligheden for, at Lise a slet ikke kommer til at vaske op i sommerhuset? b kommer til at vaske op netop én gang? 4 Hvad er sandsynligheden for at de tre børn kommer til at vaske op én gang hver? STATISTIK OC SANDSYNLIGHED 15

12 FÆRDIGHED 1 Et eksperiment går ud på at kaste en mønt 10 gange i træk og tælle antallet af krone. 3 Et eksperiment går ud på at kaste en terning tre gange i træk og tælle antallet af seksere. a Hvor mange gange vil du forvente, at mønten viser krone i eksperimentet? Hvorfor? b Vil der altid komme det samme antal krone, hvis eksperimentet gentages? Hvorfor? Hvorfor ikke? 2 Pindediagrammet viser resultatet fra en simulering af 1000 terningkast. a Chancetræet viser at sandsynligheden for ikke at få en sekser i første kaster 1. Hvorfor er den det? b Brug lommeregner Hvad er sandsynligheden for at få tre seksere i træk? c Brug lommeregner Hvad er sandsynligheden for slet ikke at få en sekser i de tre kast? a Lav en hyppighedstabel, der viser hyppigheden af hvert udfald. Udfald Hyppighed (ca.) Hvad viser hyppighedstabellen om sandsynligheden for hvert udfald? Cirka hvor mange af hvert udfald ville du forvente i eksperimentet? Hvordan passer dine forventninger med simuleringen? 4 Et eksperiment går ud på at kaste en terning tre gange i træk og se, om terningen viser et lige eller et ulige antal øjne. est a Hvad er sandsynligheden for at terningen viser et lige antal øjne i første kast? et ulige antal øjne i første kast? b Tegn et chancetræ, der viser eksperimentet. c Hvad er sandsynligheden for, at terningen viser et lige antal øjne tre gange i træk? Et ulige antal øjne tre gange i træk? 1 STATISTIK OG SANDSYNLIGHED

13 STATISTIK, SANDSYNLIGHED OG PLANTEFRØ PROBLEM Hvert år planter Henry 100 solsikkefrø i sin have. Det er ikke alle 100 frø, der bliver til planter Herunder kan du se, hvor mange planter der er kommet op i hvert af de sidste 10 år Henry siger at i gennemsnit bliver 80 af de 100 solsikkefrø til planter Hvordan har han regnet det ud? 2 Sandsynligheden for at et solsikkefrø bliver til en plante, er altså ^ = 0.80 = 80 %. Tegn et chancetræ, som vist til højre, og skriv sandsynligheder på hver gren. 00,8 3 Henrys barnebarn vil plante lidt solsikkefrø. Chancetræet kan bruges til at forudsige, hvor mange planter der kommer op, hvis hun planter tre frø. Beregn sandsynligheden for at de tre frø bliver til a O planter b 1 plante, c 2 planter d 3 planter STATISTIK OG SANDSYNLIGHED 1

14 POINTER HVAD VED DU NU OM.? Tjeklisten Udfyld din elektroniske logbog med følgende færdigheder Finde sandsynligheder ved hjælp af en hyppighedstabel Finde sandsynligheder ved hjælp af et tælletræ Finde sandsynligheder ved hjælp af en tabel Skriv om dit arbejde med kapitlet. Brug evt. din elektroniske logbog. Her er forslag tit, hvad du kan komme ind på: Lav en hyppighedstabel. Forklar hvad den viser Vis en simulering af et eksperiment på computer Forklar hvad den viser Giv et eksempel, hvor du bruger en tabel til at finde sandsynligheder Giv et eksempel på et chancetræ. Forklar hvad det viser og hvordan det bruges. Simulere et eksperiment på computer Fortæl om et spil eller en situation, hvor du har haft brug for at vurdere sandsynligheder Finde sandsynligheder ved hjælp af et chancetræ Tegne et chancetræ m H ^^i Udfald Kl K2 K3 K4 K5 K PI P2 P3 P4 P5 P Hyppighed 18 STATISTIK OG SANDSYNLIGHED

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed

Mattip om. Statistik 2. Tilhørende kopier: Statistik 3, 4 og 5. Du skal lære om: Faglig læsning. Chance og risiko. Sandsynlighed Mattip om Statistik Du skal lære om: Faglig læsning Kan ikke Kan næsten Kan Chance og risiko Sandsynlighed Observationer, hyppighed og frekvens Gennemsnit Tilhørende kopier: Statistik, og mattip.dk Statistik

Læs mere

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434)

Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Forslag til løsning af Opgaver til sandsynlighedsregning (side 434) Opgave Vi kan selv vælge, om vi vil arbejde med ordnet eller uordnet udtagelse, hvis vi blot sikrer, at vi er konsekvente i vores valg,

Læs mere

Taldata 1. Chancer gennem eksperimenter

Taldata 1. Chancer gennem eksperimenter Taldata 1. Chancer gennem eksperimenter Indhold 1. Kast med to terninger 2. Et pindediagram 3. Sumtabel 4. Median og kvartiler 5. Et trappediagram 6. Gennemsnit 7. En statistik 8. Anvendelse af edb 9.

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Enkeltobservationer: kunne skabe overblik over statistisk materiale og anvende udvalgte

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Simpel sandsynlighed... 94 Kombinatorik... 95 Sandsynlighed og kombinatorik... 97 Kombinatorik og kugletrækning... 97 Kombinatorik og sandsynlighedsregning Side 93 Sandsynlighedsregning

Læs mere

Lidt historisk om chancelære i grundskolen

Lidt historisk om chancelære i grundskolen Lidt historisk om chancelære i grundskolen 1976 1.-2.klassetrin Vejledende forslag til læseplan:.det tilstræbes endvidere at eleverne i et passende talmaterialer kan bestemme for eksempel det største tal,

Læs mere

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former.

SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. SANDSYNLIGHEDSREGNING Hvad er sandsynlighed for noget? Umiddelbart kan vi inddele sandsynlighed i tre former. Statistisk sandsynlighed Her finder man sandsynligheden for en hændelse ved at kigge på en

Læs mere

Sandsynlighed og kombinatorik

Sandsynlighed og kombinatorik Sandsynlighed og kombinatorik Indholdsfortegnelse... 1 Simpel sandsynlighed... 2 Kombinatorik... 4 Sandsynlighed ved hjælp af kombinatorik... 7 Udregningsark... 8 side 1 Simpel sandsynlighed 1: Du kaster

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24.

10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. 10. 10.1 Et lykkehjul består af 24 lige store felter med numre fra 1 til 24. Bestem udfaldsrummet for lykkehjulet. 10.2 En tegnestift Du putter en tegnestift i et raflebæger, ryster det godt og smider

Læs mere

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant.

FP9. 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet af en firkant. FP9 9.-klasseprøven Matematisk problemløsning December 2014 Et svarark er vedlagt til dette opgavesæt 1 Esters fritidsjob 2 Katrine maler 3 Backgammon 4 Halvmaratonløb 5 Babyloniernes formel for arealet

Læs mere

Allan C. Malmberg. Terningkast

Allan C. Malmberg. Terningkast Allan C. Malmberg Terningkast INFA 2008 Programmet Terning Terning er et INFA-program tilrettelagt med henblik på elever i 8. - 10. klasse som har særlig interesse i at arbejde med situationer af chancemæssig

Læs mere

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren

Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren Allan C. Malmberg LÆR OM CHANCER! Sanne og Malene går på opdagelse med computeren INFA 2005 Forord Denne INFA-publikation giver en indføring i arbejdet med begreber fra sandsynlighedernes verden. Den henvender

Læs mere

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2

fx 8 Sandsynligheden for at slå en 4 er med en 6-sidet 1 terning 2 Logik Udsagn Reduktion Ligninger Uligheder Regnehistorier I en trekant er den største vinkel 0 større end den næststørste og denne igen 0 større end den mindste. Find vinklernes gradtal. = og Lig med og

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Pangea-Dysten. Opgavebog. Forrunde Klasse

Pangea-Dysten. Opgavebog. Forrunde Klasse Pangea-Dysten Opgavebog Forrunde 2015 8. Klasse Pangea-Dysten kan nu findes på de sociale medier. Følg os på de forskellige sociale medier. Følg os for at de nyeste informationer. I kan finde os på Facebook

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Statistik og sandsynlighedsregning

Statistik og sandsynlighedsregning Statistik og sandsynlighedsregning DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC Indhold og mål Mål At I får får overblik over statistik og sandsynlighed som fagområde i folkeskolen får indblik i didaktiske

Læs mere

Kombinatorik og Sandsynlighedsregning

Kombinatorik og Sandsynlighedsregning Kombinatorik Teori del 1 Kombinatorik er en metode til at tælle muligheder på. Man kan f.eks. inden for valg til en bestyrelse eller et fodboldhold, kodning af en lås, valg af pinkode eller telefonnummer,

Læs mere

Deskriptorspil. Navn Klasse Dato Statistik og sandsynlighed

Deskriptorspil. Navn Klasse Dato Statistik og sandsynlighed 9.0 Deskriptorspil Klip de 6 brikker ud, og del dem ligeligt. Læg kortene foran jer i en bunke med bagsiden opad. Tag hver det øverste kort fra bunken. Den ældste begynder med at vælge kategori fx typetal.

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik

Tip til 1. runde af Georg Mohr-Konkurrencen Kombinatorik Tip til 1. runde af - Kombinatorik, Kirsten Rosenkilde. Tip til 1. runde af Kombinatorik Her er nogle centrale principper om og strategier for hvordan man tæller et antal kombinationer på en smart måde,

Læs mere

64.1 ØVEARK. Hvor mange søskende? Har du. Har du. Har du. Har du. Har du. Har du. 0? x. 1? x. 1? x. 1? x. 2? x. 2? x. Har du. Har du. Har du.

64.1 ØVEARK. Hvor mange søskende? Har du. Har du. Har du. Har du. Har du. Har du. 0? x. 1? x. 1? x. 1? x. 2? x. 2? x. Har du. Har du. Har du. 64.1 Hvor mange søskende? x x x x x x x x x x x x Hvor mange søskende? 1 2 3 FORSLAG TIL LÆRINGSMÅL: Eleverne kan omsætte enkle data fra spørgeskemaundersøgelser til tabeller og stolpediagrammer. Eleverne

Læs mere

9 Statistik og sandsynlighed

9 Statistik og sandsynlighed Side til side-vejledning 9 Statistik og sandsynlighed Faglige mål Kapitlet Statistik og sandsynlighed tager udgangspunkt i følgende faglige mål: Deskriptorer: kunne gennemføre og beskrive en statistisk

Læs mere

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster?

Tal og algebra. I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Oplæg I hvilke situationer kan det være motiverende at gengive et talmønster som et geometrisk mønster? Hvordan ser I mulighederne i at stimulere elevernes tænkning og udvikle deres arbejdsmåde, når de

Læs mere

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien:

Spil. Chancer gennem tællemetoder. Chancelære: MI 82 INF. INFA-Chancelæreserien: INFA-Chancelæreserien: Chancer gennem eksperimenter Chancer gennem optællinger CHANCETRÆ - Chancer gennem beregninger SPIL - Chancer gennem tællemetoder LOD - Chancer gennem simuleringer KUGLE - Chancer

Læs mere

TRIX. Træningshæfte 2 FACITLISTE. Side 1. Side 2 Side 3. FACIT, side 1-3 Trix, Træningshæfte 2 Alinea. Byg og tegn

TRIX. Træningshæfte 2 FACITLISTE. Side 1. Side 2 Side 3. FACIT, side 1-3 Trix, Træningshæfte 2 Alinea. Byg og tegn TRIX Træningshæfte Side J a o u - - - - - - e t u r i g v b n Fra oven p FACITLISTE Forfra Fra siden Jubii Side Side Femkanter Veksle mønter Farv rødt Farv gult Jubii Positionssystemet Øverst: Eksperimenter

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge

Læs mere

T-1.24; Spil læg 3 til.

T-1.24; Spil læg 3 til. T-1.24; Spil læg 3 til. Faglige mål: Addition. At SPØRGE og SVARE i, med, om matematik. At omgås SPROG og REDSKABER i matematik. Lektionsmål: * Kan adderer med 2 og 3. * Stiller spørgsmål, der er relevante

Læs mere

Brug af brøker. Men brøker kan også bruges til at beskrive andet end størrelser Kapitlet handler om noget af det, brøker kan bruges til at beskrive.

Brug af brøker. Men brøker kan også bruges til at beskrive andet end størrelser Kapitlet handler om noget af det, brøker kan bruges til at beskrive. Brug af brøker Brøker er tal ligesom de hele tal. På tallinjen er der uendelig mange brøker imellem de hele tal. Vi kan beskrive mange af de størrelser vi har brug for med brøker - fx længder og rumfang.

Læs mere

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder

Sandsynligheder. Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder Mængder Hændelser Sandsynligheder Regler for sandsynligheder Sandsynligheder En sandsynlighed er et kvantitativt mål for usikkerhed et mål der udtrykker styrken af vores tro på forekomsten

Læs mere

TØ-opgaver til uge 45

TØ-opgaver til uge 45 TØ-opgaver til uge 45 Først laver vi en liste over de ligninger med mere i [IPT], der skal bruges: [1]: Ligning (2.5) på side 4. [2]: Ligning (2.6) på side 5. [3]: Sætning 3.1, ligning (3.3) på side 7.

Læs mere

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse

OM KAPITLET DIGITALE VÆRKTØJER. egne svar eller Elevernes egne forklaringer. I disse OM KPITLET I dette kapitel om digitale værktøjer skal eleverne arbejde med anvendelse og vurdering af forskellige digitale værktøjer, som kan bruges til at løse opgaver og matematiske problemstillinger.

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

EMMA*-Tema: Chancetræer

EMMA*-Tema: Chancetræer EMMA*-Tema: Chancetræer Indhold 1. Vi tegner et chancetræ 2. Lidt om programmet TRÆ 3. Udtagelse med tilbagelægning 4. Programmet ÆSKE 5. Opgaver 6. Reducerede chancetræer 7. Hvor sikker er diagnosen?

Læs mere

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015

WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 WORKSHOP 2C, DLF-kursus, Krogerup, 26. november 2015 At I får overblik over statistik og sandsynlighed som fagområde i folkeskolen indblik i didaktiske forskeres anbefalinger til undervisningen i statistik

Læs mere

Matematik 2. klasse Årsplan. Årets emner med delmål

Matematik 2. klasse Årsplan. Årets emner med delmål Matematik 2. klasse Årsplan Årets emner med delmål Regn (side 1 14 + kopisider) opnå større fortrolighed med plus og minus anvende plus og minus til antalsbestemmelse anvende forskellige metoder til løsning

Læs mere

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger

Oversigt. Introduktion til Statistik. Forelæsning 2: Stokastisk variabel og diskrete fordelinger Introduktion til Statistik Forelæsning 2: og diskrete fordelinger Oversigt 1 2 3 Fordelingsfunktion 4 Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800

Læs mere

Øvelser til forhånd og baghånd

Øvelser til forhånd og baghånd Øvelser til forhånd og baghånd Forhånd og baghånd kan integreres i de fleste øvelser. Her er en masse øvelser, som giver mulighed for at lege forhånd og baghånd ind. En øvelse har altid et fagligt formål,

Læs mere

Ketcheropvarmning: Stafetter: Afleverer bolden til næste i køen!

Ketcheropvarmning: Stafetter: Afleverer bolden til næste i køen! DROP IN Der er 3 baner til rådighed, og jeg forestiller mig, at hvis der kun er 2 Drop-in-tovholdere, så er der en bane, hvor der gives instruktion til øvelser + emne (fx serv og så evt. have udskrevet

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

Tabeltræning på mange måder

Tabeltræning på mange måder Tabeltræning på mange måder - med afsæt i MI og læringsstile Snoreleg (3 tabellen) 10 elever sidder i en rundkreds. Eleverne nummereres 0, 1, 2.osv. op til 30. Hver elev får altså 3 numre (fx 1, 11 og

Læs mere

Kapitel 2: Statistik og Sandsynlighed

Kapitel 2: Statistik og Sandsynlighed Kapitel : Statistik og Sandsynlighed.1 Middelværdi og spredning Hvis man foretager eksperimenter i laboratoriet eller går ud og gør observationer i naturen eller samfundet, vil resultaterne af disse eksperimenter

Læs mere

Regning med brøk, decimaltal og procent

Regning med brøk, decimaltal og procent Regning med brøk, decimaltal og procent I kan få brug for at kunne regne med andre tal end de naturlige tal både i jeres hverdag, i jeres uddannelse og i jeres arbejdsliv. På en varedeklaration kan der

Læs mere

MAteMAtik For LærerStUDerenDe

MAteMAtik For LærerStUDerenDe JOhN schou kristine JEss hans christian hansen JEppE skott MAteMAtik For LærerStUDerenDe stokastik 1. 10. klasse Joh n Schou, Kristine Jess, Hans Christian Hansen og Jeppe Skott Matematik for lærerstuderende

Læs mere

2-6 SPILLERE. FORMÅL MED SPILLET At blive sidste spiller tilbage, efter at alle andre er gået bankerot.

2-6 SPILLERE. FORMÅL MED SPILLET At blive sidste spiller tilbage, efter at alle andre er gået bankerot. Hvis du kender Monopoly og vil spille lidt hurtigere: 1. Start med, at bankøren blander ejendomskortene og giver to til hver spiller. Spillerne betaler med det samme prisen for grundene, de modtager, til

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Umulige figurer Periode Mål Eleverne skal: At opdage muligheden for og blive fascineret af gengivelse af det umulige. At få øvelse

Læs mere

Nordisk Matematikkonkurrence Danmarks Matematiklærerforening Skoleåret 2010-2011 Opgaver ved semifinalen

Nordisk Matematikkonkurrence Danmarks Matematiklærerforening Skoleåret 2010-2011 Opgaver ved semifinalen Opgave 1 Sum af produkter i en trekant Antag at der i et koordinatsystem er en trekant hvis vinkelspidser ligger i punkterne ( 2, 1), (3, 3) og (4, 3). Find alle de punkter inden i trekanten hvis koordinater

Læs mere

3. KLASSE UNDERVISNINGSPLAN MATEMATIK!

3. KLASSE UNDERVISNINGSPLAN MATEMATIK! Lærer: Sussi Sønnichsen Forord til matematik i 3. klasse Vi vil arbejde med bogsystemet Matematrix 3A & 3B, Alinea, samt kopiark til systemet. Jeg vil differentiere undervisningen og vil foruden de stillesiddende

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Brugen af RiBAY er typisk en iterativ proces, hvor trin 4-6 gentages et antal gange for at kortlægge og forstå risiko.

Brugen af RiBAY er typisk en iterativ proces, hvor trin 4-6 gentages et antal gange for at kortlægge og forstå risiko. Kom godt i gang med RiBAY Risikostyring ved hjælp af RiBAY består af følgende seks trin: 1. Indtastning af systemvariable og budgettal 2. Indtastning af Køb og salg 3. Kalibrering af udgangspunktet for

Læs mere

Årsplan for 2. kl. matematik

Årsplan for 2. kl. matematik Undervisningen i 2. kl. tager primært udgangspunkt i matematikbøgerne Kolorit 2A og 2B. Årets emner med delmål Gange (kopiark) ræsonnerer sig frem til multiplikationsalgoritmen i teams, ved hjælp af additionsalgoritmer.

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER G Y L D E N D A L F I N N H. K R I S T I A N S E N 2 KUGLE SIMULATIONER G Y L D E N D A L Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge mellem variable og kunne diskutere rækkevidde af sådanne modeller.

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Kapitel 4: Diskrete fordelinger Hypergeometrisk fordeling, Afsnit 4.3 Multinomial fordeling, Afsnit 4.8 Geometrisk fordeling og Negativ binomialfordeling (Inverse Sampling), Afsnit 4.4 Approksimation

Læs mere

Mattip om. Division 1. Tilhørende kopier: Division 1, 2 og 3. Du skal lære om: De vigtigste begreber. Dividend og divisor.

Mattip om. Division 1. Tilhørende kopier: Division 1, 2 og 3. Du skal lære om: De vigtigste begreber. Dividend og divisor. Mattip om Division 1 Du skal lære om: De vigtigste begreber Kan ikke Kan næsten Kan Dividend og divisor Divisionsmanden Division med rest Tilhørende kopier: Division 1, 2 og 3 2016 mattip.dk 1 Division

Læs mere

2011.09.20 lth@campus.dk

2011.09.20 lth@campus.dk 2011.09.20 lth@campus.dk Intro Læseplan Beskrivende Statistik Sandsynligheder Ordet kommer fra Latin.: statisticum (statsrådgiver) Italiensk.: statistica (statsmand / politiker) Hvorfor statistik? Træk

Læs mere

KOPIARK. Format 2.klasse Kopiside

KOPIARK.  Format 2.klasse Kopiside KOPIARK Format 2.klasse Kopiside nr. 1 Stranden Strimler til at skrive navne i. A4 A3 Format 3. klasse Kopiark Elevbog side 5 Format bh. kl. Alinea Kopiark Elevbog side 7 Stranden nr. 2 Søjler til registrering

Læs mere

2. KLASSE UNDERVISNINGSPLAN MATEMATIK!

2. KLASSE UNDERVISNINGSPLAN MATEMATIK! 2014-15 2. KLASSE UNDERVISNINGSPLAN MATEMATIK Lærer: Sussi Sønnichsen Forord til matematik i 2. Klasse. Vi vil arbejde med bogsystemet Matematrix 2A & 2B, Alinea, samt kopiark til systemet. Jeg vil differentiere

Læs mere

SPIL HURTIGERE MONOPOLY PÅ TID

SPIL HURTIGERE MONOPOLY PÅ TID SPIL HURTIGERE BRAND Hvis du kender MONOPOLY og vil spille lidt hurtigere: 1. Start med, at bankøren blander ejendomskortene og giver 2 til hver spiller. Spillerne betaler med det samme prisen for ejendommene,

Læs mere

Lærervejledning. Beskriv ideen med spillet i plenum, herunder dets funktion og de tre vigtigste pointer med spillet:

Lærervejledning. Beskriv ideen med spillet i plenum, herunder dets funktion og de tre vigtigste pointer med spillet: Lærervejledning Få ord på trafikken! Har jeres skole en trafikpolitik? Hvis ikke, kan et spil TrafikPanik være det første skridt. Her kan du læse om spillet, og hvordan du bruger det i trafikundervisningen.

Læs mere

Årsplan for matematik 2.b (HSØ)

Årsplan for matematik 2.b (HSØ) Årsplan for matematik 2.b (HSØ) Bøger, supplerende materiale og andet relevant I undervisningen bruger vi Kolorit. Der suppleres med kopiark fra den tilhørende kopimappe + andre kopiark, som passer til

Læs mere

Sandsynlighedsregning

Sandsynlighedsregning Mogens Bladt www2.imm.dtu.dk/courses/02405 7. September, 2007 Hvad er sandsynlighedsregning? Formel matematisk måde til at håndtere tilfældigheder. Dybest set en formalisering af udregninger med proportioner.

Læs mere

Indhold. Servicesider. Testsider

Indhold. Servicesider. Testsider Indhold Servicesider Isometrisk papir.................................................... kopiside - Prikpapir............................................................. kopiside - Brøkkort.............................................................

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Simulering af chancer. Aktivitet Emne Klassetrin Side. Vejledning til Simulering af chancer 2-11

Simulering af chancer. Aktivitet Emne Klassetrin Side. Vejledning til Simulering af chancer 2-11 VisiRegn ideer 6 Simulering af chancer Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Simulering af chancer 2-11 Elevaktiviteter til Simulering af chancer

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen Statistik og Sandsynlighedsregning 1 MS kapitel 3 Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Definition 3.2.1 Lad X 1, X 2,..., X n være uafhængige

Læs mere

QIANBALL DOUBLE REGLER REGLER FOR QIANBALL DOUBLE KAMPE. KFUMs Idrætsforbund.

QIANBALL DOUBLE REGLER REGLER FOR QIANBALL DOUBLE KAMPE. KFUMs Idrætsforbund. KFUMs IDRÆTSFORBUND PRÆSENTERER REGLER FOR QIANBALL DOUBLE KAMPE Sidste års medalje vindere. Udarbejdet af KFUMs Idrætsforbund. KFUMs IDRÆTSFORBUND Revideret januar 2008. Danske double spilleregler for

Læs mere

Gæt og kast 1 MATERIALER. Dette værksted handler om at gætte på resultatet af kast med terninger. Læs hele værkstedet før I begynder.

Gæt og kast 1 MATERIALER. Dette værksted handler om at gætte på resultatet af kast med terninger. Læs hele værkstedet før I begynder. Gæt og kast 1 Dette værksted handler om at gætte på resultatet af kast med terninger. Læs hele Kast 10 terninger, og læg øjnene sammen. 10 terninger Hvad er det mindste resultat, I kan få? Hvad er det

Læs mere

Filtmåtter med de 120 hyppige ord

Filtmåtter med de 120 hyppige ord VEJLEDNING TIL Fodspor Filtmåtter med de 120 hyppige ord Med bogen På sporet af ordet fang tyven, opgaveæsken og app en På sporet af ordet, Turbo-ord, sækkekort, Læs Lydret bøgerne, gulvtæppet og filtmåtterne

Læs mere

Årsplan i matematik for 1. klasse

Årsplan i matematik for 1. klasse Årsplan i matematik for 1. klasse Der arbejdes med bogsystemet Multi 1A og 1B Periode Emne/ Målet for forløbet er, at eleverne: Handleplan Evaluering fokuspunkt Uge 33-36 Tal bliver fortrolige med matematikbogens

Læs mere

SANDSYNLIGHED FACIT SIDE 154-155

SANDSYNLIGHED FACIT SIDE 154-155 SIDE 154-155 Opgave 1 A. Data (x) h(x) f(x) 2 1 0,042 3 3 0,125 4 6 0,25 5 3 0,125 6 4 0,16 7 1 0,042 8 2 0,0833 9 1 0,042 10 2 0,0833 11 1 0,042 B. C. Diagrammet (et søjlediagram) er lavet ud fra hyppigheden,

Læs mere

Format FACITLISTE I I I I I I I I I. Træningshæfte 1. klasse. Side 3. Facit, side 1-3. Format, Træningshæfte 1.1. Alinea. Fx. Fx. Fx. Fx. Fx. Fx. Fx.

Format FACITLISTE I I I I I I I I I. Træningshæfte 1. klasse. Side 3. Facit, side 1-3. Format, Træningshæfte 1.1. Alinea. Fx. Fx. Fx. Fx. Fx. Fx. Fx. Side Format Træningshæfte klasse Tæl ting Side FCITLISTE Side Skriv tallene Talforståelse. Marker med krydser antallet af blomster og deres blade, bier og deres vinger samt biller og deres ben. I I I.

Læs mere

statistik og sandsynlighed

statistik og sandsynlighed brikkerne til regning & matematik statistik og sandsynlighed trin 1 preben bernitt brikkerne statistik og sandsynlighed 1 1. udgave som E-bog ISBN: 978-87-92488-19-0 2004 by bernitt-matematik.dk Kopiering

Læs mere

Uge Emne Formål Faglige mål Evaluering

Uge Emne Formål Faglige mål Evaluering Uge Emne Formål Faglige mål Evaluering (Der evalueres løbende på følgende hovedpunkter) 33-36 Regneregler Vedligeholde og udbygge forståelse og færdigheder inden for de fire regningsarter Blive fortrolig

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 5 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning Opmærksomhedspunkt Eleven kan anvende ræsonnementer i undersøgende arbejde

Læs mere

Spilleregler. Et konkurrence-spil med en kombination af kreativitet, viden og spændeing

Spilleregler. Et konkurrence-spil med en kombination af kreativitet, viden og spændeing Spilleregler Et konkurrence-spil med en kombination af kreativitet, viden og spændeing Tænk Design Et spil, der udvikler hukommelsen, kreativiteten og viden om design. Fra 4-12 personer. Alder: fra ca.

Læs mere

Allan C. Malmberg CHANCE OG RISIKO. Kan det virkelig passe?

Allan C. Malmberg CHANCE OG RISIKO. Kan det virkelig passe? Allan C. Malmberg CHANCE OG RISIKO Kan det virkelig passe? INFA 2006 Allan C. Malmberg CHANCE OG RISIKO Kan det virkelig passe? Faglige udfordringer med løsninger INFA 2006 Seneste publikationer af samme

Læs mere

Årsplan Matematrix 3. kl. Kapitel 1: Jubii

Årsplan Matematrix 3. kl. Kapitel 1: Jubii Årsplan Matematrix. kl. A Første halvår Kapitel : Jubii I bogens første kapitel får eleverne mulighed for at repetere det faglige stof, som de arbejdede med i. klasse. Dette er samtidig et redskab for

Læs mere

Indhold. Kopisider til evaluering. Kopisider til kurser og temaer

Indhold. Kopisider til evaluering. Kopisider til kurser og temaer Indhold Kopisider til evaluering Logbog Hvad kan du nu?............................ kopiside Kursus Hvad kan du nu? Kan du tabeller?............... kopiside Kursus Hvad kan du nu? Skal vi dele?..................

Læs mere

Arbejdsplan generel Tema 4: Statistik

Arbejdsplan generel Tema 4: Statistik Arbejdsplan generel Tema 4: Statistik Formål: Eleverne skal få kendskab til og kunne forklare forskellige begreber inden for det statistiske emne. Der bliver alene arbejdet med enkelobservationer. Grupperede

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere

1) Hold ballonen i luften med venstre hånd. 2) med højre hånd 3) Over hovedet med højre og venstre hånd 4) Skift mellem højre og venstre hånd

1) Hold ballonen i luften med venstre hånd. 2) med højre hånd 3) Over hovedet med højre og venstre hånd 4) Skift mellem højre og venstre hånd Kidsvolley Kidsklubsamling Peter Morell Opvarmning Øvelser med balloner 1) Hold ballonen i luften med venstre hånd. 2) med højre hånd 3) Over hovedet med højre og venstre hånd 4) Skift mellem højre og

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 0. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6. og 6. Betingede diskrete

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

kreativ produktudvikling 3D leg Partnerskab for Vækst Fyn

kreativ produktudvikling 3D leg Partnerskab for Vækst Fyn Partnerskab for Vækst Fyn kreativ produktudvikling give gaver der har samme sko som dig selv. 3. den med længst hår 4. giv hinanden gaver ved at mime. Vis gaven med dit kropssprog uden at sige, hvad det

Læs mere

for gymnasiet og hf 2016 Karsten Juul

for gymnasiet og hf 2016 Karsten Juul for gymnasiet og hf 75 50 5 016 Karsten Juul Statistik for gymnasiet og hf Ä 016 Karsten Juul 4/1-016 Nyeste version af dette håfte kan downloades fra http://mat1.dk/noter.htm HÅftet mç benyttes i undervisningen

Læs mere

Matematik i indskolingen - de mindste børn

Matematik i indskolingen - de mindste børn Matematik i indskolingen - de mindste børn De mindste børn Børn kan godt lide at eksperimentere og undersøge. Disse erfaringer tager børnene med sig, når de møder i skolen første gang. De har fx lagt puslespil,

Læs mere

120 ords-tæppet. På sporet af ordet

120 ords-tæppet. På sporet af ordet 120 ords-tæppet På sporet af ordet I denne vejledning kan du finde idéer og inspiration til, hvordan du kan bruge 120 ords-tæppet i arbejdet med at få automatiseret de 120 hyppige ord med afsæt i leg og

Læs mere

Satellit af BKO Charlottenlund Fort. Aktivitetshæfte Samarbejdslege for børnehavebørn

Satellit af BKO Charlottenlund Fort. Aktivitetshæfte Samarbejdslege for børnehavebørn Satellit af BKO Charlottenlund Fort Aktivitetshæfte Samarbejdslege for børnehavebørn Udarbejdet af MOtivaTION ApS for Gentofte Kommune, Gentoftegade, Ordrup, Dyssegård og Vangede Bibliotek 02-03-2015 Billedlotteri

Læs mere

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen

Matematik og dam. hvordan matematik kan give overraskende resultater om et velkendt spil. Jonas Lindstrøm Jensen Matematik og dam hvordan matematik kan give overraskende resultater om et velkendt spil Jonas Lindstrøm Jensen (jonas@imf.au.dk) March 200 Indledning Det klassiske spil dam spilles på et almindeligt skakbræt.

Læs mere

Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Sandsynlighedsregning: endeligt udfaldsrum (repetition) Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16 Sandsynlighedsregning: endeligt udfaldsrum (repetition)

Læs mere

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Sandsynlighedsregning 10. forelæsning Bo Friis Nielsen Matematik og Computer Science Danmarks Tekniske Universitet 2800 Kgs. Lyngby Danmark Email: bfni@dtu.dk Dagens emner afsnit 6.1 og 6.2 Betingede diskrete

Læs mere