Overgangsbetingelser for D- og E-felt
|
|
- Daniel Østergaard
- 1 år siden
- Visninger:
Transkript
1 lektomgnetisme 5 Side f 9 lektosttisk enegi Ovegngsetingse fo D- og -ft I det flg. undesøges, hvd de ske med D- og -ftvektoene ved ovegngen mlem to diektik: D-ft: Den Gussiske flde S e en cylinde med lille gundflde ΔS, infinitesiml høde og demed umfng d. ρ og ρ infinitesimlt e ldningstæthedene i hhv. diektikum og, og σ e oveflddningstætheden ved gænseflden. ˆn D D n ΔS ds ' d D ΔS nˆ = nˆ D n D nˆ da = D nˆ da+ D nˆ da+ D nˆ da = D nˆ da+ D n da S ΔS ΔS ds' indl ΔS ˆ ΔS ( ) in i ˆ { } = D Δ S+ D Δ S = D D ΔS, D D n, i,. n n n n d d Q = ρ + ρ + σδ S = σδ S. å ikke ndet ngives, e de he og femove undefostået tle om indleede oveskudsldninge. Hvis de hvde væet tle om såv indleede som polistionsldninge, ville nottionen hve væet σ tot ndvidee e det he undefostået, t de e tle om ldningstæthede inden fo det infinitesimle umfng d. Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
2 lektomgnetisme 5 Side f 9 lektosttisk enegi Demed fås ifølge Guss lov: D D = σ. (5.) n n Så ved en skp ovegng f ét diektikum til et ndet e diskontinuiteten i D- ftvektoens nomlkomposnt således givet ved oveflddningstætheden f de indleede ldninge 3. Dette e i god oveensstemmse med, t D-fte skes f indleede ldninge. I en lede i sttisk ligevægt e som ekendt =, men pemittiviteten og demed D- ftet e ikke entydigt defineet, men sættes D =, fås fo en ovegng f en lede til et diektikum: svende til hvo ˆn Dn e ettet f ledeen ind i diektikumet. = σ, (5.) Dn ˆ = σ, (5.3) Bemæk nlogien mlem udtyk (.9), (3.) og (4.6) 4 : ρ, ( indl), ρp, ε tot = D= ρ P= smt mlem udtyk (.3), (3.) og (5.3): σ ˆ =, ˆ = ˆ ( indl) = ε tot n D n σ, P n σ P. Bemæk, t udtyk (5.) også gælde i gænsen ΔS, sådn t D og D konstnte henove hhv. og ΔS. ΔS uden tilnæmse kn ntges t væe 3 I den viste figu e σ således positiv. 4 I udtyk (3.) indgå et minustegn, fodi P, i modsætning til D og, e ettet f minus til plus. Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
3 lektomgnetisme 5 Side 3 f 9 lektosttisk enegi -ft: l e et ektng med lille sidængde Δl og infinitesiml høde dl '. A B dl ' D C dl Jf. opg. D e = dl = dl + dl = dl + dl = Δ l + Δl ABCDA AB CD AB CD = Δ l = Δl, Δlˆ, ( ) ( t t) svende til it i t = t Δl t t ( ). (5.4) Så tngentilkomposnten f -ftvektoen e kontinuet ved en ovegng f ét diektikum til et ndet. Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
4 lektomgnetisme 5 Side 4 f 9 lektosttisk enegi lektosttisk enegi f en smling punktldninge To punktldninge: ed q f to punktldninge q, q fostås efinde sig uendigt lngt f hinnden. Δ i fohold til en sitution, hvo og q kn således eegnes ved t se på en sitution, hvo flyttes f uendigt lngt væk til sin plds i fohold til q q (le omvendt), så q d q q ˆ O ifølge udtyk (.): = = = = 4πε 4 4 πε πε F d ˆ d d : Så den ektosttiske enegi f de to punktldninge e ltså hvis q og q h smme fotegn (fstødning), > hvis q og q h modst fotegn (tiltækning), < = 4πε. (5.5) fo (nulpunkt vlgt, hvo de to punktldninge ikke påvike hinnden). 5 Bemæk, t udtyk (5.5), som gælde i vkuum, ifølge udtyk (4.3) kn genelisees til et vilkåligt lineæt, isotopt diektikum ved t esttte ε med ε. 5 Den potentile enegi f en ekton i et tom med tomnumme Z e således Ze = 4πε og e demed minde, o tættee ektonen e på kenen, idet ektonens potentile til t opnå kinetisk enegi i kft f sin tiltækning til kenen e minde, o tættee ektonen e på kenen. Af smme gund e et legemes potentile enegi i tyngdeftet, = mgh, minde, o tættee det e på oden. pot Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
5 lektomgnetisme 5 Side 5 f 9 lektosttisk enegi Te punktldninge: Beegnet ud f den sitution, hvo føst plcees i fohold til, og q denæst q 3 plcees i fohold til og q, fås 3 3 = + + 4πε 4πε 4πε 3 3 q q = πε 4πε 4πε 4πε 4πε 4πε = 3 3 i 4πε. (5.6) i= i i : punktldninge: = i 4πε. (5.7) i= i i Hvis ϕ i etegne det ektosttiske potentil i punktet i, hvo den i te punktldning efinde sig, skt f de kn udtyk (5.7) skives øvige punktldninge: q ϕi = 4πε, (5.8) i i= i = qϕ i i. (5.9) På næ den fkto, som koigee fo t lle veksvikninge live tlt med to gnge, e udtyk (5.9) på smme fom som udtyk (.). Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
6 lektomgnetisme 5 Side 6 f 9 lektosttisk enegi lektosttisk enegi f en ldningsfoding Betgt et system estående f et ntl ledee (skveede) ngt inden i et lineæt, isotopt diektikum: S e såv intene som ekstene S S ε oveflde kendetegnet ved indleet ldningstæthed σ. e diektikumets umfng kendetegnet ved indleet ldningstæthed ρ. Den ektosttiske enegi f denne kontinuete ldningsfoding findes (nok engng) ved t. Indde i små diskete volumen- og ovefldeemente, de hve isæ sve til punktldninge med ldning hhv. Δ q= ρδ og Δ q= σδ A.. Behndle disse små ldningspotione som punktldninge f. udtyk (5.9). 3. Lde Δ og ΔA. Heved fås = ( ) ( ) ( ) ( ) ρ ϕ d + σ ϕ da S ρ( ' ) σ ( ' (5.) ), ϕ ( ) = d' + ', 4πε ' 4πε da S ' hvo det ektosttiske potentil e en geneliseing f udtyk (.8) til et diektikum med pemittivitet ε. D ldningstætheden e nul inden i ledene, kn i udtyk (5.) udvides til t omftte he systemet, svom ε kun e defineet fo diektikumet. Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
7 lektomgnetisme 5 Side 7 f 9 lektosttisk enegi I det følgende omskives udtyk (5.) til et udtyk, hvoi idgene f ledee og diektikum holdes dskilt. Ledenes idg e gennem oveflde fælles med diektikumet, så fo ledee med potentil yde oveflde fås ϕ, oveflde S og oveflddning Q og fo S ' etegnende systemets σ ϕ σ ϕ σ ϕ S S' S = ( ) ( ) = ( ) ( ) + ( ) da da da S' S ' ( ) ( ) ( ) = σ ϕ da+ ϕ σ da ( ) ( ) = = σ ϕ da+ ϕ Q = S, og demed = ( ) ( ) ( ) ( ) ρ ϕ d + σ ϕ da+ S' Q ϕ. (5.) = Så hvis l ldning sidde på oveflden f ledee: = Qϕ. (5.) = Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
8 lektomgnetisme 5 Side 8 f 9 lektosttisk enegi Dics dtfunktion Dics dtfunktion e i én dimension defineet på flg. måde: { } δ ( x) = x \, + δ ( xdx ) =. (5.3) δ ( x) x = x Fo t undesøge egenskene f δ ( x) etgtes integlet f ( x) δ ( x x) dx: Fo x ; fås ifølge udtyk (5.3): x + f ( x) δ( x x ) dx= lim f( x) δ( x x ) dx ε x ε x + ε = f ( x ) lim δ ( x x ) dx ε x ε ε = f( x ). δ ( x x ) f ( x) x x Fo x ; fås f( x) δ ( x x ) dx=, så f( x) δ ( x x ) dx= f ( x) fo x ;, (5.4) fo x ; svende til t Dics dtfunktion, såfemt integlet løe henove x, udvælge funktionsvædien i x. Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
9 lektomgnetisme 5 Side 9 f 9 lektosttisk enegi Ovenstående kn umiddt genelisees til te dimensione fo δ δ( x x ) δ( y y ) δ( z z, (5.5) svende til ( ) δ (5.6) f d = f,. ( ) d =,, ( ) δ ( ) ( ) ) Dic-epæsenttion f punktldninge: n punktldning q plceet i punktet kn epæsentees ved ldningstætheden ρ = qδ, (5.7) idet ( ) ( ) d q d q d = q, ρ ( ) = δ ( ) = δ ( ) smtidigt med t ldningen q e koncenteet i. Fo punktldninge gælde ( ) = qiδ ( i) ρ i=. (5.8) h. udtyk (5.8) e det således muligt t epæsentee en smling punktldninge som en kontinuet ldningsfoding. De led i eks. udtyk (.8) og (.8), som eskive punktldningenes idg kn således uddes, nå lot ρ inkludee den kontinuete ldningsfoding fo disse punktldninge. Begeet kontinuet ldningsfoding e således ikke et ltentiv til, men en geneliseing f egeet punktldning. Thoms B. Lynge, Institut fo Fysik og noteknologi, AAU 4//7
Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v
Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...
Elektrostatisk energi
Elektomagnetisme ide 1 af 8 Elektostatik Elektostatisk enegi Fo et legeme, de bevæge sig fa et punkt til et andet, e tilvæksten i potentiel enegi høende til en konsevativ 1 kaft F givet ved minus det abejde,
Dielektrisk forskydning
Elektomagnetisme 4 ide 1 af 7 Dielektisk foskydning Betagt Gauss lov anvendt på et dielektikum: Q EndA ˆ =. (4.1) ε De af omsluttede ladninge Q bestå af: Polaisationsladninge, som e opstået ved indbydes
Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning
Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone (, neutone ( n og elektone ( og bestå defo p + mestendels af ladede patikle, men langt, langt støstedelen af denne
Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( )
Kvantemekanik 0 Side af 9 Bintatomet I Sfæisk hamoniske Ifølge udtyk (9.7) e Lˆ Lˆ og de eksistee således et fuldstændigt sæt af = 0 samtidige egenfunktione fo ˆL og L ˆ de som antydet i udtyk (9.8) kan
Elektromagnetisme 1 Side 1 af 11 Elektrostatik 1. Elektrisk ladning
Elektomagnetisme 1 Side 1 af 11 Elektostatik 1 Elektisk ladning Stof e opbygget af potone ( ), neutone ( n ) og elektone ( ) og bestå defo p + mestendels af ladede patikle, men den altovevejende del af
Kvantepartikel i centralpotential
Kvantemekanik 11 Side 1 af 7 Bintatomet II Kvantepatike i centapotentia Det kan vises at bevægesesmængdemomentets støese dets pojektion på en akse samt enegien af en kvantepatike i et centapotentia e samtidigt
Energitæthed i et elektrostatisk felt
Elektromagnetisme 6 ie af 5 Elektrostatisk energi Energitæthe i et ektrostatisk ft I utryk (5.0) er en ektrostatiske energi E af en laningsforing utrykt ve ennes laningstæthe ρ, σ og tilhørene ektrostatiske
Gravitationsfeltet. r i
Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo
Magnetisk dipolmoment
Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I
Magnetisk dipolmoment
Kvantemekanik 9 Side 1 af 8 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π og
DesignMat Den komplekse eksponentialfunktion og polynomier
DesignMat Den komlekse eksonentialfunktion og olynomie Peben Alsholm Uge 8 Foå 009 Den komlekse eksonentialfunktion. Definitionen Definitionen Den velkendte eksonentialfunktion x! e x vil vi ofte ligesom
( ) ( ) ( ) Størrelsesorden for funktionerne a x, x a og ln(x) (opgaveforløb v/ Bjørn Grøn og John Schächter) > ( )
Støelsesoden fo funktionene, og ln() Side f 5 Støelsesoden fo funktionene, og ln() (opgvefoløb v/ Bjøn Gøn og John Schächte) Intoduktion I dette foløb vil vi dels få et edskb til t smmenligne, hvo hutigt
Elektromagnetisme 13 Side 1 af 8 Maxwells ligninger. Forskydningsstrømme I S 1
Elektromagnetisme 13 Side 1 af 8 Betragt Amperes lov fra udtryk (1.1) anvendt på en kapacitor der er ved at blive ladet op. For de to flader og S der begge S1 afgrænses af C fås H dl = J ˆ C S n da = I
Matematisk modellering og numeriske metoder. Lektion 17
Mtemtisk modellering og numeriske metoder Lektion 1 Morten Grud Rsmussen 8. november, 1 1 Numerisk integrtion og differentition [Bogens fsnit 19. side 84] 1.1 Grundlæggende om numerisk integrtion Vi vil
Projekt 0.5 Euklids algoritme, primtal og primiske tal
Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige
Krydsprodukt. En introduktion Karsten Juul
Kydspodut En ntoduton 5 Ksten Juul Bugsnvsnng Du sl se de fuldt optune mme fo t fnde defntone og sætnnge De e st punteet mme om esemple og evse Indhold Rmme Sde Defnton f ydspodut Esempel på ug f defntonen
Matematisk formelsamling til A-niveau - i forsøget med netadgang til skriftlig eksamen 1
Mtemtisk fomelsmling til A-niveu - i fosøget med netdgng til skiftlig eksmen Food Mtemtisk fomelsmling til A-niveu e udejdet fo t give et smlet ovelik ove de fomle og det symolspog, de knytte sig til kenestoffet
TEORETISK OPGAVE 3. Hvorfor er stjerner så store?
TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk
Impulsbevarelse ved stød
Iulsbevaelse ved stød Iulsbevaelse ved stød Indhold Iulsbevaelse ved stød.... Centalt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevaelse ved stød...3 5. Centalt elastisk stød...4 6. Centalt
Integralregning. 2. del. 2006 Karsten Juul
Integrlregning del ( ( 6 Krsten Juul Indhold 6 Uestemt integrl8 6 Sætning om eksistens stmunktioner 8 6 Oplæg til "regneregler or integrl"8 6 Regneregler or uestemt integrl 9 68 Foreredelse til "integrtion
Procent og eksponentiel vækst - supplerende eksempler
Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee
Projekt 0.5 Euklids algoritme og primiske tal
Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele
TAL OG BOGSTAVREGNING
TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,
-:å' sef ssnsk* iq',. Å,lfssionsfarbund TRO TIL. W#fuMM. :i 1+'' f? {I åg \,/ ##e #å -*t *,å#*ååå
-:å' sef ssnsk* iq',. Å,lfssionsfbund TRO TIL W#fuMM :i 1+'' f? {I åg \,/ ##e #å -*t *,å#*ååå Hvodn skl hæftes buges? Kommente Dette hæfte e et bejdshæfte. Det e udbejdet f en bejdsguppe i Det Dnske Missionsfobund
Kort om. Potenssammenhænge. 2011 Karsten Juul
Kot om Potenssmmenhænge 011 Ksten Juul Dette hæfte indeholde pensum i potenssmmenhænge, heunde popotionle og omvendt popotionle vible, fo gymnsiet og hf. Indhold 1. Ligning og gf fo potenssmmenhænge...
Atomare egentilstande
Kvantemekank 4 Sde af 7 Atomae egentlstande Unde antagelsen om, at en atomkene e hvle fohold tl atomets massemdtpunkt, e Hamltonopeatoen fo et helumatom gvet ved ˆ e e e H = + + +, = + +, (4.) me me 0
Regneregler. 1. Simple regler for regning med tal.
Regneregler. Simple regler for regning med tl. Vi rejder l.. med følgende fire regningsrter: plus (), minus ( ), gnge () og dividere (: eller røkstreg, se senere), eller med fremmedord : ddition, sutrktion,
INTEGRALREGNING. Opgaver til noterne kan findes her. PDF. Facit til opgaverne kan hentes her. PDF. Version: 5.0
INTEGRALREGNING Version: 5.0 Noterne gennemgår egreerne: integrl og stmfunktion, og nskuer dette som et redsk til estemmelse f l.. reler under funktioner. Opgver til noterne kn findes her. PDF Fcit til
Bogstavregning. for gymnasiet og hf Karsten Juul. a a
Bogstvregning for gymnsiet og hf 010 Krsten Juul Til eleven Brug lynt og viskelæder når du skriver og tegner i hæftet, så du får et hæfte der er egenet til jævnligt t slå op i under dit videre rejde med
TAL OG REGNEREGLER. Vi ser nu på opbygningen af et legeme og noterer os samtidig, at de reelle tal velkendte regneoperationer + og er et legeme.
TAL OG REGNEREGLER Inden for lgeren hr mn indført egreet legeme. Et legeme er en slgs konstruktion, hvor mn fstsætter to regneregler og nogle sætninger (ksiomer), der gælder for disse. Pointen med en sådn
Elektromagnetisme 9 Side 1 af 5 Magnetfelter 2. Biot og Savart
Eektomagnetisme 9 ide af 5 Magnetfete Biot og avat En aften i 8 havde fysikpofesso fa Københavns Univesitet Hans Chistian Østed inviteet venne og studeende hjem i pivaten fo at demonstee, at en stømføende
Elektromagnetisme 15 Side 1 af 5 Molekylært elektrisk felt. Molekylært E-felt i et dielektrikum. mol
lektromagnetisme 15 Side 1 af 5 Molekylært -felt i et dielektrikum Det ekylære elektriske felt, som et enkelt ekyle i et dielektrikum oplever, er ikke det samme som det makroskopiske -felt defineret i
Hvad ved du om mobning?
TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt
Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017
Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................
Institut for Matematik, DTU: Gymnasieopgave. Integrationsprincippet og Keplers tønderegel
Integrtionsprincippet og Keplers tønderegel. side Institut for Mtemtik, DTU: Gymnsieopgve Integrtionsprincippet og Keplers tønderegel Littertur: H. Elrønd Jensen, Mtemtisk nlyse, Institut for Mtemtik,
At score mål på hjørnespark
At scoe ål på hjønespk Ole Witt Hnsen, lekto eeitus undevisningens udvikling i gnsiet Indtil 988 hvilede fsikundevisningen i gnsiet på det teoetiske, so n søgte t bekæfte genne deonsttionsfosøg elle fsikøvelse,
De dynamiske stjerner
De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til
Livstidssundhedsomkostninger for rygere og aldrig-rygere. Årlige omkostninger ved passiv rygning
Livstidssundhedsomkostninge fo ygee og ldig-ygee Ålige omkostninge ved pssiv ygning Konsulentppot udbejdet til Hjetefoeningen f pojektlede Susnne Reindhl Rsmussen, egotepeut, MPH DSI Institut fo Sundhedsvæsen,
Tredimensional grafik
Teimensionl gfi 6 Ksten Juul Inhol I Homogene oointsæt og gngning f mtie sie Vi vil fose og eje figue i ummet og æne ees støelse Defo inføe vi homogene oointsæt og gngning f mtie II th sie Et olsninge
Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.
Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer
Annuiteter og indekstal
Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På
LØSNINGER FRA OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER
MASKIN- LØSNINGER FRA He finde du voes sotiment f mskine OMSNØRINGSMASKINER LIMPISTOLER STRÆKFILMSOMVIKLERE KRYMPEPISTOLER PAPIRFYLDNINGSMASKINER PAL-CUT MASKINER 94 Omsnøingsmskine og stækfilmsomviklee
Lektion 7s Funktioner - supplerende eksempler
Lektion 7s Funktioner - supplerende eksempler Oversigt over forskellige tper f funktioner Omvendt proportionlitet og hperler.grdsfunktioner og prler Eksponentilfunktioner Potensfunktioner Lektion 7s Side
Potens- sammenhænge. inkl. proportionale og omvendt proportionale variable. 2010 Karsten Juul
Potens- smmenhænge inkl. proportionle og omvendt proportionle vrible 010 Krsten Juul Dette hæfte er en fortsættelse f hæftet "Eksponentielle smmenhænge, udgve ". Indhold 1. Hvd er en potenssmmenhæng?...1.
hvor A er de ydre kræfters arbejde på systemet og Q er varmen tilført fra omgivelserne til systemet.
!#" $ "&% (')"&*,+.-&/102%435"&6,+879$ *1')*&: or et system, hvor kun den termiske energi ændres, vil tilvæksten E term i den termiske energi være: E term A + Q hvor A er de ydre kræfters rbejde på systemet
Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger
Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende
Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c
Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole
Elektromagnetisme 7 Side 1 af 12 Elektrisk strøm. Elektrisk strøm
Elektromagnetisme 7 Side 1 af 12 Med dette emne overgås fra elektrostatikken, som beskriver stationære ladninger, til elektrodynamikken, som beskriver ladninger i bevægelse (elektriske strømme, magnetfelter,
TDC A/S Nørregade 21 0900 København C. Afgørelse om fastsættelse af WACC i forbindelse med omkostningsdokumentation af priserne i TDC s standardtilbud
TC A/S Nøegade 21 0900 København C Afgøelse om fastsættelse af WACC i fobindelse med omkostningsdokumentation af pisene i TC s standadtilbud Sagsfemstilling en 29. juni 2006 modtog TC s notat om den beegningsmæssige
Regneregler for brøker og potenser
Regneregler for røker og potenser Roert Josen 4. ugust 009 Indhold Brøker. Eksempler......................................... Potenser 7. Eksempler......................................... 8 I de to fsnit
Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007
Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det
Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009
N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i
Hvad ved du om mobning?
TEST: Hvd ved du om moning? I testen her kn du fprøve, hvor meget du ved om moning på rejdspldsen. Testen estår f tre dele: Selve testen, hvor du skl sætte ét kryds for hvert f de ti spørgsmål. Et hurtigt
En forhandlingsmodel for løndannelsen
MODELGRUPPEN Moten Wene Danmaks Statistik Abejdspapi 30. janua 2003[Udkast] En foandlingsmodel fo løndannelsen Resumé: Afløse foige papi af samme navn. [Koektulæsning og gennemskivning udestå] mo Nøgleod:
Matematisk modellering og numeriske metoder. Lektion 12
Mtemtisk modellering numeriske metoder Lektion 12 Morten Grud Rsmussen 21. oktober, 213 1 Prtielle differentilligninger 1.1 Løsning f vrmeligningen vh. Fourierrækker [Bens sektion 12.6 på side 558] Vi
Matematik på Åbent VUC
Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning
UGESEDDEL 52. . Dette gøres nedenfor: > a LC
UGESEDDE 52 Opgve 1 Denne opgve er et mtemtisk eksempel på Ricrdo s én-fktor model, der præsenteres i Krugmn & Obstfeld kpitel 2 side 12-19. Denne model beskriver hndel som et udslg f komprtive fordele
Matematik B-A. Trigonometri og Geometri. Niels Junge
Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke
Den stigende popularitet af de afdragsfrie lån har ad flere omgange fået skylden for de kraftigt stigende boligpriser de senere år.
16. septembe 8 Afdagsfie lån og pisstigninge på boligmakedet Den stigende populaitet af de afdagsfie lån ha ad flee omgange fået skylden fo de kaftigt stigende boligpise de senee å. Set ove en længee peiode
Annuiteter og indekstal
Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.
Erik Vestergaard www.matematikfysik.dk. Erik Vestergaard, 2009.
Erik Vestergrd www.mtemtikfysik.dk Erik Vestergrd, 009. Billeder: Forside: Collge f billeder: istock.com/titoslck istock.com/yuri Desuden egne fotos og illustrtioner Erik Vestergrd www.mtemtikfysik.dk
Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen runde
Retningslinjer for bedømmelsen Georg Mohr-Konkurrencen 016. runde Besvrelser som flder uden for de løsninger som ligger til grund for pointskemerne, bedømmes ved nlogi så skridt med tilsvrende vægt i den
Diverse. Ib Michelsen
Diverse Ib Michelsen Ikst 2008 Forsidebilledet http://www.smtid.dk/visen/billede.php?billedenr69 Version: 0.02 (2-1-2009) Diverse (Denne side er A-2 f 32 sider) Indholdsfortegnelse Regning med procent
Integrationsteknikker
Integrtionsteknikker Frnk Vill. jnur 14 Dette dokument er en del f MtBog.dk 8-1. IT Teching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 Numerisk integrtion.1
rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,
ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet
Termodynamikkens første hovedsætning
Statistisk mekanik 2 Side 1 af 13 Termodynamikkens første hovedsætning Inden for termodynamikken kan energi overføres på to måder: I form af varme Q: Overførsel af atomar/molekylær bevægelsesenergi på
HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00
1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,
Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling
Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de M svingninger i en sortlegeme-kavitet som fotoner.
Eksamensopgave august 2009
Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er
Om Riemann-integralet. Noter til Matematik 1
Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons
gudmandsen.net y = b x a Illustration 1: potensfunktioner i 5 forskellige grupper
gudmndsen.net Dette dokument er publiceret på http://www.gudmndsen.net/res/mt_vejl/. Ophvsret: Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution
Dødelighed og kræftforekomst i Avanersuaq. Et registerstudie
Dødelighed og kræftforekomst i Avnersuq. Et registerstudie Peter Bjerregrd, Anni Brit Sternhgen Nielsen og Knud Juel Indledning Det hr været fremført f loklbefolkningen i Avnersuq og f Lndsstyret, t der
MATEMATIK på Søværnets officerskole
MOGENS ODDERSHEDE LARSEN MATEMATIK på Søvænets officeskole (opeativ linie). udgave 9 FORORD Bogen gennemgå det pensum, som e beskevet i fagplanen af 9. Det e en foudsætning, at de studeende ha et solidt
Spil- og beslutningsteori
Spil- og eslutningsteori Peter Hrremoës Niels Brock 26. novemer 2 Beslutningsteori De økonomiske optimeringssitutioner, vi hr set på hidtil, hr været helt deterministiske. Det vil sige t vores gevinst
KEGLESNIT OG BANEKURVER
KEGLESNIT OG BANEKURVER x-klsserne Gmmel Hellerup Gymnsium INDHOLDSFORTEGNELSE INDHOLDSFORTEGNELSE... BEGREBET KEGLE... 3 KEGLESNIT... 5 Cirkel... 6 Ellipse... 8 Prbel... 15 Hyperbel... 19 Keglesnitsligninger
1 1 t 10 1. ( ) x 2 4. + k ================= sin( x) + 4 og har graf gennem (0,2), dvs F(0) = 2. + 4x + k
0x-MA (0.0.08) _ opg (3:07) Integrtion ved substitution ( x + 7) 9 t x + 7 > t 9 t 0 + k 0 0 ( x + 7)0 + k b) x x + 4 t x + 4 > 3 x t t t x 3 t x x + k 3 t t + k ( ) x 4 3 x + 4 + + k c) cos( x)
Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling
Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de EM svingninger i en sortlegeme-kavitet som
Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:
0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække
Rentesregning: Lektion A1. Forrentningsfaktor, Diskonteringsfaktor, og Betalingsrækker. Overordnede spørgsmål i Rentesregning. Peter Ove Christensen
Rentesegning: Lektion A1 Foentningsfakto, Diskonteingsfakto, og Pete Ove Chistensen Foå 2012 1 / 49 Oveodnede spøgsmål i Rentesegning Hvoledes kan betalinge sammenlignes, nå betalingene e tidsmæssigt adskilte?
Matematikkens sprog INTRO
Mtemtikkens sprog Mtemtik hr sit eget sprog, der består f tl og symboler fx regnetegn, brøkstreger bogstver og prenteser På mnge måder er det ret prktisk - det giver fx korte måder t skrive formler på.
Erhvervs- og Selskabsstyrelsen
Ehvevs- og Selskabsstyelsen Måling af viksomhedenes administative byde ved afegning af moms, enegiafgifte og udvalgte miljøafgifte Novembe 2004 Rambøll Management Nøegade 7A DK-1165 København K Danmak
Indholdsfortegnelse. Matematik A. Projekt 6 - Centralperspektiv. Stine Andersen og Morten Kristensen
HTX Næstved Matematik A 8 2 Indholdsfotegnelse Indholdsfotegnelse... 2 Indledning... 3 Poblemstilling... 4 Teoi... 5 Vektoe i planet... 5 Vektobestemmelse... 5 Vinkel mellem to vektoe... 6 Vektokoodinate...
Elektromagnetisme 10 Side 1 af 11 Magnetisme. Magnetisering
Elektroagnetise 10 Side 1 af 11 Magnetisering Magnetfelter skabes af ladninger i bevægelse, altså af elektriske strøe. I den forbindelse skelnes elle to typer af agnetfeltskabende strøe: Frie strøe, der
Danmarks Tekniske Universitet
Dmk ekke Uetet Sde f 6 de Skftlg pøe, de 4. deceme, Kuu yk Kuu. //4 Vghed: 4 tme lle hjælpemdle: Ige hjælpemdle "Vægtg": eele edømme om e helhed. Alle kl egude med mde det e get. Alle mellemegge kl mege.
Matematik - introduktion. Martin Lauesen February 23, 2011
Mtemtik - introduktion Mrtin Luesen Februry 23, 2011 1 Contents 1 Aritmetik og elementær lgebr 3 1.1 Symboler............................... 3 1.1.1 ligheder............................ 4 1.1.2 uligheder...........................
Pointen med Integration
Pointen med Integrtion Frnk Nsser 20. pril 2011 c 2008-2011. Dette dokument må kun nvendes til undervisning i klsser som bonnerer på MtBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en
ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG
ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...
Et udvalg af funktionerne tegnet på grafregneren (eller her med Derive)
GDS, opgve 85 En strt på opgven (undervisnings- og tvleprotokol): En milie unktioner hr orskrit 4 ( ) + R, Et udvlg unktionerne tegnet på grregneren (eller her med Derive) Værdier tllet, or hvilke hr henholdsvis
Kort om Potenssammenhænge
Øvelser til hæftet Kort om Potenssmmenhænge 2011 Krsten Juul Dette hæfte indeholder bl.. mnge småspørgsmål der gør det nemmere for elever t rbejde effektivt på t få kendskb til emnet. Indhold 1. Ligning
Matematikkens mysterier - på et obligatorisk niveau. 2. Trigonometri
Mtemtikkens mysterier - på et oligtorisk niveu f Kenneth Hnsen 2. Trigonometri T D Hvd er fstnden fr flodred til flodred? 2. Trigonometri og geometri Indhold.0 Indledning 2. Vinkler 3.2 Treknter og irkler
Trigonometri. Trigonometri. Sinus og cosinus... 2 Tangens... 6 Opgaver... 9. Side 1
Trigonometri Sinus og osinus... 2 Tngens... 6 Opgver... 9 Side Sinus og osinus Til lle vinkler hører der to tl, som kldes osinus og sinus. Mn finder sinus og osinus til en vinkel ved t tegne vinklen midt
Analyse 30. januar 2015
30. jnur 2015 Større dnsk indkomstulighed skyldes i høj grd stigende kpitlindkomster Af Kristin Thor Jkosen Udgivelsen f Thoms Pikettys Kpitlen i det 21. århundrede hr fstedkommet en del diskussion f de
Matematisk formelsamling. Hf C-niveau
Mtemtisk fomelsmling Hf C-niveu Denne udgve f Mtemtisk fomelsmling Hf C-niveu e udgivet f Undevisningsministeiet og gjot tilgængelig på uvm.dk. Fomelsmlingen e udejdet i et smejde mellem Mtemtiklæefoeningen
Sportsfiskerforeningen ALS medlem af Danmarks Sportsfiskerforbund
Fomde h odet... medlem f Dmks Spotsfiskefobd å bg oet i Spotsfiskefoeige ALS. J det e toligt, som tide gå. Jeg vil gee beytte lejlighede til t bige e STOR TAK til lle de, de mødte op elle på de ee elle
MOGENS ODDERSHEDE LARSEN MATEMATIK
MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen
Formelsamling Matematik C Indhold
Formelsmling Mtemtik C Indhold Eksempler på esvrelser, lin, eksp, pot, geo... Tl, regneopertioner og ligninger... 6 Ligninger... 7 Geometri... 9 Funktioner og modeller... Lineær funktion... Procentregning...
Krumningsradius & superellipsen
Krumningsrdius & suerellisen Side /5 Steen Toft Jørgensen Krumningsrdius & suerellisen Formålet med dette mini-rojekt er t erhverve mtemtisk viden om krumningsrdius f en kurve og nvende denne viden å det
Formelsamling Mat. C & B
Formelsmling Mt. C & B Indhold BRØER... PARENTESER...3 PROCENT...4 RENTE...5 INDES...6 GEOMETRI... Arel f treknt... Vinkelsum i en treknt... Ens- vinklede treknter... Vilkårlig treknt... Ret- vinklet treknt...8
Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen
Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.