Hamiltons princip. Et systems bane (i konfigurationsrummet) fra t 1 til t 2 er bestemt

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Hamiltons princip. Et systems bane (i konfigurationsrummet) fra t 1 til t 2 er bestemt"

Transkript

1 Hamtons prncp.1 Konfguratonsrum q 3 Et systems bane ( konfguratonsrummet) fra t t er bestemt af, at aktonsntegraet I = Lt har en statonær vær. t q 1 q () Systemet ska være monogensk, vs. ae kræfter (ekskusvt bnngskræfter) ska være bestemt ve et generaseret skaært potentae V = V (q 1,...,q n, q 1,..., q n,t). () L er Lagrangefunktonen L = L(q 1,...,q n, q 1,..., q n,t)=t V. () At aktonsntegraet er statonært betyer, at et er ekstremat eer at ntegraes varaton er 0: δi = δ L(q 1,...,q n, q 1,..., q n,t) t =0 (v) V ska vse, at Lagranges gnnger Hamtons prncp.

2 Varatonsregnng (Euer-Lagrange) (). To varabe: J = Statonær vær af J = f(x, ẋ, t)t, x = x(t), ẋ = x t Varaton af x(t): x 7 x(t, α) =x(t)+αη(t), me bbetngese η( )=0ogη(t )=0. J(α) = t Z 1 t f x(t, α), ẋ(t, α),t t og en statonær vær af J f(x 1,x, ẋ 1, ẋ,t)t ³ J α J ³ f α = x x α + f ẋ t. Devs ntegraton af sste e: ẋ α Z f ẋ t ẋ α t = f x f x ³ f x t = t ẋ αt ẋ α t ẋ α t = ³ J h f x = α α=0 x α ³ f x ³ f t = t ẋ α α=0 x f t ẋ ³ J Ska gæe for vkårgt η(t), vs. δj = δα =0 f α α=0 x t x 1 7 x 1 (t, α) =x 1 (t)+αη 1 (t), x 7 x (t, α) =x (t)+αη (t) Z J t ³ f α = x 1 x 1 α + f ẋ 1 ẋ 1 α + f x x α + f ẋ t og erme ẋ α ³ J h³ f = f ³ f η α α=0 x 1 t ẋ 1 + f η 1 x t ẋ t =0 som umebart kan generaseres t et vkårgt anta (uafhængge) varabe. α=0 =0. ³ f x t ẋ α t η t ³ f =0 ẋ

3 Varatonsregnng (Euer-Lagrange) ().3 δj = δ f(x 1,...,x n, ẋ 1,...,ẋ n,t)t =0 f f =0, x t ẋ =1,,...,n Eksempe (): Korteste afstan meem to punkter (0, 0) og (a, b) panen Kvaratet på enfferentee bueænge: (s) =(x) +(y). For en parametrske kurve (x, y) = x(t),y(t) ³ s ³ x ³ Z y t pẋ gæer = + eer s =(±) + ẏ t t t t, f = p f ẋ + ẏ, x =0, f ẋ = ẋ pẋ + ẏ, δs =0 0 ³ ẋ pẋ =0 t + ẏ ẋ pẋ + ẏ = c 1 og tsvarene ẏ eer pẋ + ẏ = c ẏ = α ẋ, α = c. c 1 Antages y = y(x) fås at ẏ = y 0 (x)ẋ og erme at y 0 (x) =α. Løsnngen er en rette ne y(x) =αx + β = b a x s = p 1+(y0 ) ẋt = Z a 0 p 1+(b/a) x = p a + b Eksempe (): Hamtons prncp δi = δ L(q 1,...,q n, q 1,..., q n,t) t =0 L Lagrange gnnger: L =0, =1,,...,n q t q

4 Lagrange-mutpkatorer.4 At fne ekstremum af F (x, y) mebbetngesenf(x, y) =0eranaogttatbestemme ekstremum af G(x, y) =F (x, y)+λf(x, y), hvor x og y er uafhængge varabe. λ kaes for en Lagrange-mutpkator (Øvese). Generaseret t mange varabe kan Lagrange-mutpkatorer benyttes t at bestemme e generaseree bnngskræfter svarene t en eer fere (m) bnnger: L = T V = L(q 1,...,q n, q 1,..., q n,t) f α = f α (q 1,...,q n,t)=0 (α =1,...,m). mx Inføres L = L + λ α f α kanhamtonsprncpbenyttes: δi = δ L t =0, α=1 L afhænger af n m uafhængge og m afhængge koornater, mens ae n varabe ska antages uafhængge L. Metoen er kun anveneg for (sem-)hoonomske bnnger. De n Lagrangegnnger, uet fra varatonsprncppet δi = 0, samt e m betngeser f α = 0 gver en bestemmese af e n generaseree koornater q (t) samtem Lagrangemutpkatorer λ α (t), hvor λ α (t) bestemmer e n komponenter af bnngskræfterne Q f (t): Q f = L Q f t q q = ³ (L L) (L L) mx f α = λ t q q Ae vrknnger af anre (påtrykte + anre bnngs-) kræfter er metaget L = T V,og Q f er erfor bnngskræfterne fra e m bnnger. Bemærk, at kravet om at et vrtuee arbee af bnngskræfterne er 0 ska stagvæk være opfyt, P Qf δq =0. α=1

5 Eksempe: Runng på skråpan.5 x F Mgcos φ θ O Rng: masse M raus r (I) Newton: () Mẍ = Mgsn φ F () Mr θ = Fr (moment om O) () Runng x = rθ ẍ = 1 g sn φ, F = 1 Mgsn φ (II) Lagrange (generaseree koornater x, θ): Mg φ L = T V = 1 Mẋ + 1 Mr θ ( Mgxsn φ) Bnng: f(x, θ) =x rθ =0 Bnngen emnerer én varabe (r θ = ẋ): L = L(x, ẋ, t) =Mẋ + Mgxsn φ t ẋ L x =Mẍ Mgsn φ =0 (III) Lagrange-mutpkator: L = L + λf = 1 Mẋ + 1 Mr θ + Mgxsn φ + λ(x rθ) L = Mẍ Mgsn φ λ =0, t ẋ x Q t θ L θ = Mr θ + λr =0, Qθ = λ f θ = λr x = λ f x = λ Insættes f(x, θ) =0,eerr θ =ẍ ẍ = 1 g sn φ, λ = Mẍ Mgsn φ = 1 Mgsn φ = F

6 Bevaresessætnnger og symmetrer.6 Hvs V kke afhænger af ṙ er L ẋ = T ẋ = ẋ h X 1 m (ẋ + ẏ + ż ) = m ẋ = p x Den generaseree bevægesesmænge p svarene t koornaten q efneres som: p L q For partker me annger e er V (generaseret) hastghesafhængg og p x 6= m ẋ : L = X h 1 m ṙ e φ(r )+e A(r ) ṙ p x = L = m ẋ ẋ + e A x At L er cyksk mht. koornaten q,eeratq er en cyksk koornat, betyer at L er uafhængg af q.erettetfæefås: 0= L L = L = t q q t q t p = ṗ eer p = konstant når L =0. q Den generaseree bevægesesmænge af en cyksk (uafhængg) koornat er bevaret. For aee partker er p (kke m ṙ ) bevaret, hvs φ og A er uafhængge af r (og A 6= 0). Cykske koornater kan entfceres ve symmetrbetragtnnger: Systemet har en transatonssymmetr når q 7 q + δq kke ænrer e fysske forho V og T og erme L uafhængg af q eer q er en cyksk koornat. Transatonssymmetr mht. q mefører at p er bevaret. Én-partke eksemper: V er konstant angs x: L cyksk mht. x og p x er bevaret. V rotatonssymmetrsk om z: L er cyksk mht. φ og p φ = L z =(r p) z = mr φ er bevaret. N partker: V (r) uafhænggafx: R x er en cyksk koornat og P x = MṘx er konstant.

7 Eksemper på transaton().7 For et konservatvt system (V er uafhængg q ) p = L = T og f. Lagranges gnnger ṗ q q = L = T V = T + Q q q q q r (q α ) p α = T = ³ 1 q α q α n q α r (q α + q α ) Antag, at q α 7 q α + q α svarer t en transaton af systemet,vs.ataestevektorerænresmenq α, hvor α er et bestemt neks og n er en konstant vektor: r = m q α 0 r (q α + q α ) r (q α ) q α F r = X Q α = X X m ṙ = X m ṙ ṙ = X q α Hvs bnngerne kke afhænger ekspct af t: X T = 1 M k q q k, M k = X r m r, se (1.7) q q k k M k = X ³ r m q r + r r =0, et α q q k q q k T er uafhængg af q α og erme ṗ α = T + Q = Q α. α = nq α q α = n F n = F n se (1.49) m v r = n X m q v = n P α r = n er konstant. Hvs V (q α )=V (q α + q α ) Q α =0 og p α er en bevægeseskonstant.

8 Eksemper på transaton () For et konservatvt system (V er uafhængg q ) p = L = T og f. Lagranges gnnger ṗ q q = L = T V = T + Q q q q q n r (q α ) θ p α = T = ³ 1 q α q α r (q α + q α ) q α 7 q α + q α svarer t en rotaton af systemet: Ae stevektorer rees vnken n q α om n, hvor α er et bestemt neks, og n er en konstant vektor. r (q α + q α )=r (q α )+[n r (q α )]q α eer r = n r Q α = X X m ṙ = X m ṙ ṙ = X q α Hvs bnngerne kke afhænger ekspct af t: X T = 1 M k q q k, M k = X r m r, q q k k M k = X ³ r m r + r r = X q q k q q k T er uafhængg af q α og erme ṗ α = T + Q = Q α. α F r = X F n r = n X r F = n N m v n r = n X r (m v )=n L m ³ n r q r q k + r q n r q k =0. Hvs V (q α )=V (q α + q α ) Q α =0 og p α er en bevægeseskonstant..8

9 Jacobs ntegra og energbevarese.9 L t = X L t = X L q q t t + X q q + X L q q t + L t L q q t + L t = X L og Lagranges gnnger = L q t q q t q + L t Jacobs ntegra eer energfunktonen : h(q 1,...,q n, q 1,..., q n,t) X L q L q opfyer reatonen h t = L, vs. afhænger L kke ekspct af t er Jacobs ntegra bevaret. t h er mange tfæe en totae energ af systemet. Det er tfæet, hvs V kke afhænger af q,ogt er kvaratsk eer en homogen funkton af. gra q h = X q p L = X L q L = X T q q (T V )=T (T V )=T + V = E q [Homogen funkton af nte gra: f(τx 1, τx,...,τx p )=τ n f(x 1,x,...,x p ) px f(x 1,x,...,x p ) x = nf(x x 1,x,...,x p ) (Euers teorem, øvese).] =1 For en aet partke fås: L = 1 mṙ qφ(r)+qa(r) ṙ, p x = mẋ + qa x, h = ẋp x + ẏp y + żp z L = ẋ(mẋ+qa x )+ẏ(mẏ +qa y )+ż(mż +qa z ) 1 m(ẋ +ẏ +ż )+qφ q(a x ẋ+a y ẏ +A z ż) = 1 m ẋ + ẏ + ż + qφ = T + qφ = E (et magnetske fet ufører ntet arbee, et F B = qv B er vnkeret på r = vt). Benyttes Rayeghs sspaton F = 1 kv fås Q = F q og h t = E t = F

Classical Mechanics (3. edition) by Goldstein, Poole & Safko

Classical Mechanics (3. edition) by Goldstein, Poole & Safko Classcal Mechancs (3. eton). by Golsten, Poole & Safko Mekansk bevægelse af en partkel: Newtons anen lov v = r p, p = mv, F = t t ṗ Bevarelsesteorem for en partkels bevægelsesmænge: Hvs en totale kraft

Læs mere

PC PSI PT JEAN-MARIE MONIER GUILLAUME HABERER CÉCILE LARDON MÉTHODES ET EXERCICES. Mathématiques. méthodes et exercices. 3 e.

PC PSI PT JEAN-MARIE MONIER GUILLAUME HABERER CÉCILE LARDON MÉTHODES ET EXERCICES. Mathématiques. méthodes et exercices. 3 e. PC PSI PT MÉTHODES ET EXERCICES JEAN-MARIE MONIER GUILLAUME HABERER CÉCILE LARDON Mathématiques méthodes et exercices 3 e édition Conception et création de couverture : Atelier 3+ Dunod, 201 5 rue Laromiguière,

Læs mere

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet

Klassisk kaos. Kaotiske systemer. Visse regulariteter universalitet Klassisk kaos Deterministiske bevægelsesligninger kan under visse omstændigheder udvise løsninger som er uforudsigelige, dvs. løsninger der opfører sig kaotisk: Faserum Forudsigelige Integrable systemer

Læs mere

Formelsamling Kaos 2005

Formelsamling Kaos 2005 Formelsamling Kaos 2005 Lykke Pedersen Indhold 1 En dimension 2 1.1 Fixpunkter og stabiliet...................... 2 1.2 Bifurkationer........................... 3 2 To dimensioner 4 2.1 Lineære systemer.........................

Læs mere

Minikaos - må ikke bruges til noget. Henrik Dahl

Minikaos - må ikke bruges til noget. Henrik Dahl Minikaos - må ikke bruges til noget. Henrik Dahl hdahl@tdc-broadband.dḳ. 1 DEFINITIONER 2 1 Definitioner Aperiodisk adfærd Attraktor Der findes baner, der ikke lander i FP eller i periodiske baner eller

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Elektromagnetisme 12 Side 1 af 6 Magnetisk energi. Magnetisk energi

Elektromagnetisme 12 Side 1 af 6 Magnetisk energi. Magnetisk energi lektronetsme Sde af 6 Betragt et kredsløb med erstatnngsresstans R og erstatnngs- L nduktans L. Som udtryk (.) er U emf+ R. (.) U R Det arbejde, som batteret skal præstere løbet af tdsrummet strømmen,

Læs mere

Eksamen i Calculus Mandag den 4. juni 2012

Eksamen i Calculus Mandag den 4. juni 2012 Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Konusdrejning. Angivelse af konusitet. Konusberegninger ved hjælp af formler. Konusdrejning

Konusdrejning. Angivelse af konusitet. Konusberegninger ved hjælp af formler. Konusdrejning Konusrejning Konusrejning Angiese af konusitet Angieser En konus kan angies e f.eks. konus 1:4, s. at for her 4 mm af konusens ænge foranrer iameteren sig 1 mm. Tinærmet æri Forskeen er uen praktisk betyning

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Matematik F Et bud på hvordan eksamenssæt løses

Matematik F Et bud på hvordan eksamenssæt løses Matematik F Et bud på hvordan eksamenssæt løses Jeppe Trøst Nielsen 11. april 21 Denne samling af ligninger og løsninger er udarbejdet efter det princip, at eksamenssættene ikke ændrer sig specielt meget

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Energitæthed i et elektrostatisk felt

Energitæthed i et elektrostatisk felt Elektromagnetisme 6 ie af 5 Elektrostatisk energi Energitæthe i et ektrostatisk ft I utryk (5.0) er en ektrostatiske energi E af en laningsforing utrykt ve ennes laningstæthe ρ, σ og tilhørene ektrostatiske

Læs mere

VELKOMMEN TIL DEN NYE SKOLE NYE FAG

VELKOMMEN TIL DEN NYE SKOLE NYE FAG VELOMMEN TIL DEN NYE SOLE +5 x MÅL: Ae eever ska trves og bve så dygtge, de kan! DAN S VEJEN DERTIL: En ny skoedag der er vareret, faggt udfordrende og motverende for den enkete eev Ae eever får en mere

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk 3 simple yper differenialligninger

Læs mere

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2 Eulers metode Tom Pedersen //Palle Andersen pa,tom@es.aau.dk Aalborg University Eulers metode p. 1/2 Differentialligninger m(t) H(t) d(h(t)) dt = 0.0125m(t) 0.001772 H(t) hvor m(t) er kendt og H(t) skal

Læs mere

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test

Opsamling. Simpel/Multipel Lineær Regression Logistisk Regression Ikke-parametriske Metoder Chi-i-anden Test Opsamlng Smpel/Multpel Lneær Regresson Logstsk Regresson Ikke-parametrske Metoder Ch--anden Test Opbygnng af statstsk model Specfcer model Lgnnger og antagelser Estmer parametre Modelkontrol Er modellen

Læs mere

Koblede svingninger. Thomas Dan Nielsen Troels Færgen-Bakmar Mads Sørensen juni 2005

Koblede svingninger. Thomas Dan Nielsen Troels Færgen-Bakmar Mads Sørensen juni 2005 Koblee svingninger Thomas Dan Nielsen 20041151 Troels Færgen-Bakmar 20041116 Mas Sørensen 20040795 1. juni 2005 Institut for Fysik og Astronomi Det Naturvienskabelige Fakultet Aarhus Universitet Inhol

Læs mere

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3 Det Teknisk-Naturvidenskabelige Basisår 2003-2004 Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik 1 Introduktion E-OPG 3 Dette er den tredje store opgave, som skal danne grundlag

Læs mere

Lidt om plane kurver og geometrisk kontinuitet

Lidt om plane kurver og geometrisk kontinuitet Lidt om plane kurver og geometrisk kontinuitet Jesper Møller og Rasmus P. Waagepetersen, Institut for Matematiske Fag, Aalborg Universitet September 3, 2003 1 Indledning Dette notesæt giver en oversigt

Læs mere

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2005

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2005 Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2005 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

REGULARITET AF LØSNINGER M.M.

REGULARITET AF LØSNINGER M.M. REGULARITET AF LØSNINGER M.M. E. SKIBSTED Inhol 1. Plan og forusætninger 1 2. Generalisering af [B, Theorem 3.8] 1 3. Autonomt tilfæle 3 3.1. Mængen D er åben 3 3.2. Strømmen er kontinuert på D 4 4. Tisafhængige

Læs mere

Løsninger til kapitel 12

Løsninger til kapitel 12 Løsnnger tl kaptel 1 Opgave 1.1 HypoStat gver umddelbart: ft = 7 En P Teststørrelse H 0 : Alle P passer mandag 80 0,14857 48,8571 3,89737 H 1 : Ikke alle P passer trsdag 30 0,14857 48,8571 1,48899 onsdag

Læs mere

Integration m.h.t. mål med tæthed

Integration m.h.t. mål med tæthed Integration m.h.t. mål med tæthed Sætning (EH 11.7) Lad ν = f µ på (X, E). For alle g M + (X, E) gælder at gdν = g f dµ. Bevis: Standardbeviset: 1) indikatorfunktioner 2) simple funktioner 3) M + -funktioner.

Læs mere

INSTITUT FOR MATEMATISKE FAG c

INSTITUT FOR MATEMATISKE FAG c INSTITUT FOR MATEMATISKE FAG c AALBORG UNIVERSITET FREDRIK BAJERS VEJ 7 G 9220 AALBORG ØST Tlf.: 96 35 89 27 URL: www.math.aau.dk Fax: 98 15 81 29 E-mail: bjh@math.aau.dk Dataanalyse Sandsynlighed og stokastiske

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Matematisk modellering og numeriske metoder. Lektion 10

Matematisk modellering og numeriske metoder. Lektion 10 Matematisk modellering og numeriske metoder Lektion 10 Morten Grud Rasmussen 2. november 2016 1 Partielle differentialligninger 1.1 Det grundlæggende om PDE er Definition 1.1 Partielle differentialligninger

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004 Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2004 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i

Læs mere

Matematik-teknologi 3. semester Projekt introduktion

Matematik-teknologi 3. semester Projekt introduktion Matematik-teknologi 3. semester Projekt introduktion Thomas Arildsen, Arne Jensen, Rafael Wisniewski Version 3 31. august 2015 1 Indledning Dette dokument giver en introduktion til projektmodulet på 3.

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio

Logistisk regression. Logistisk regression. Probit model Fortolkning udfra latent variabel. Odds/Odds ratio Logstsk regresson Logstsk regresson Odds/Odds rato Probt model Fortolknng udfra latent varabel En varabel Y parameter p P( Y 1 Bernoull/bnomal fordelngen 1 1 p. er Bernoull- fordelt med sandsynlgheds hvs

Læs mere

Kursusgang 5 Afledte funktioner og differentialer Repetition

Kursusgang 5 Afledte funktioner og differentialer Repetition Kursusgang 5 Repetition - froberg@math.aau.k http://people.math.aau.k/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 30. september 2008 1/15 Differenskvotient og Differentialkvotient

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006

Økonometri 1. Dagens program. Den multiple regressionsmodel 18. september 2006 Dagens program Økonometri Den multiple regressionsmodel 8. september 006 Opsamling af statistiske resultater om den simple lineære regressionsmodel (W kap..5). Den multiple lineære regressionsmodel (W

Læs mere

Note om interior point metoder

Note om interior point metoder MØK 2016, Operationsanalyse Interior point algoritmer, side 1 Note om interior point metoder Som det er nævnt i bogen, var simplex-metoden til løsning af LP-algoritmer nærmest enerådende i de første 50

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Kolde atomare gasser Skræddersyet kvantemekanik. Georg M. Bruun Fysiklærerdag 2011

Kolde atomare gasser Skræddersyet kvantemekanik. Georg M. Bruun Fysiklærerdag 2011 Kolde atomare gasser Skræddersyet kvantemekanik Georg M. Bruun Fysiklærerdag Wednesday, January 6, Hovedbudskaber Bose-Einstein Kondensation = Identitetskrise for kvantepartikler BEC i atomare ultrakolde

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Partielle afledede og retningsafledede

Partielle afledede og retningsafledede Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen

Læs mere

Hans J. Munkholm: En besvarelse af

Hans J. Munkholm: En besvarelse af Hans J. Munkholm: En besvarelse af Projekt for MM501, Lineære differentialligninger November-december 2009 Nummererede formler fra opgaveformuleringen Her samles alle opgavens differentialligninger og

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

MÅLESTOKSFORHOLD HFB 2012 / 13. Målestoksforhold OP SL AG. Byggecentrum

MÅLESTOKSFORHOLD HFB 2012 / 13. Målestoksforhold OP SL AG.  Byggecentrum MÅLESTOKSFORHOLD Målestoksforhold 340 MÅLEENHEDER Måleenheder Omsætning: Gl. dansk mål metermål gl. engelsk mål (= amerikansk mål). Se også: Målesystemer og enheder. Gl. dansk mål Metermål Gl. engelsk

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Program for dag: Kvanttatve metoder Den smple regressonsmodel 9. februar 007 Regressonsmodel med en forklarende varabel (W..3-5) Varansanalyse og goodness of ft Enheder og funktonel form af varabler modellen

Læs mere

VEJLEDNING VIN D BELA ST N IN G ER

VEJLEDNING VIN D BELA ST N IN G ER VEJLEDNNG FOR FASTSÆTTELSE AF VN D BELA ST N N G ER BLAG T DANSK NGENØRFORENNGS NORMER FOR BYGNNGSKONSTRUKTONER 1ft BELASTNNGSFORSKRFTER BLAGSBLAD TL DS 410 1. UDGAVE OKT. 1966 VEJLEDNNG FOR FASTSÆTTELSE

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ. Statistiske modeller (Definitioner) Statistik og Sandsynlighedsregning 2 IH kapitel 0 og En observation er en vektor af tal x (x,..., x n ) E, der repræsenterer udfaldet af et (eller flere) eksperimenter.

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

3.3. Mindste kvadraters metode Det overbestemte problem.

3.3. Mindste kvadraters metode Det overbestemte problem. 3.3. Mndste kvadraters etode. 3.3. Det overbestete proble. Mndste kvadraters etode er tradtonelt blevet anvendt tl at bestee en n-densonal vektor x, udfra observatoner,, > n. V har et overbestet proble.

Læs mere

Elektromagnetisk induktion

Elektromagnetisk induktion Elektromagnetsme 11 Sde 1 af 8 Elektromotorsk kraft Elektromagnetsk ndukton Den elektromotorske kraft en lukket kreds er defneret som det elektromagnetske arbede pr. ladnng på en prøveladnng q, der føres

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Punktgrupper. Klaus Thomsen

Punktgrupper. Klaus Thomsen Punktgrupper Klaus Thomsen 1. Forord Disse noter er skrevet med henblik på et efteruddannelses-kursus for gymnasielærere i matematik og/eller kemi. Formålet er at give en introduktion til matematikken

Læs mere

Figur 3: Illustration af hvordan en børsteløs DC-motor kan betragtes rent magnetisk.

Figur 3: Illustration af hvordan en børsteløs DC-motor kan betragtes rent magnetisk. Opstlnng af oel for en børsteløs D-otor Danel R. Peersen & Jesper. Larsen 4. aprl 2003 I ette arbejsbla vl er blve opstllet en oel af en børsteløs D otor (LDM). Moellen er opstllet e et forål at kunne

Læs mere

Huseftersynsordningen plus, minus ti år -

Huseftersynsordningen plus, minus ti år - Huseftersynsordningen plus, minus ti år - ! # # # % & # ( ( #! # ) # ( & # # # # +! #!# %, # # #! %.# / # # 0#( # # # # # # %, # # # 1 # # % 2 # & # # 0#( # # # # # 2 # #! 2 ( # # 3 ( & # # # (#! #, #

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Nanostatistik: Test af hypotese

Nanostatistik: Test af hypotese Nanostatistik: Test af hypotese JLJ Nanostatistik: Test af hypotese p. 1/50 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

2x MA skr. årsprøve

2x MA skr. årsprøve MA skr. årsprøve 8.0.08 Prøven uen hjælpemiler Opg. + = 0 ( ) + = 0 I parentesen står et anengraspolynomium. Det har = = 9 + og erme røerne = = og = = Af nulregelen ses at også 0 er en løsning, så

Læs mere

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Binomialfordelingen. X ~ bin(n,p): X = antal succeser i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes. Uge 9 Teoretisk Statistik 23. februar 24 1. Binomialfordelingen 2. Den hypergeometriske fordeling 3. Poissonfordelingen 4. Den negative binomialfordeling 5. Gammafordelingen Binomialfordelingen X ~ bin(n,p):

Læs mere

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 29. maj 2015 Kursus nr : (navn) (underskrift) (bord nr) DANMARKS TEKNISKE UNIVERSITET Side af 7 sider Skriftlig prøve, den: 9. maj 05 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Varighed : 4 timer Tilladte hjælpemidler: Alle Dette sæt er besvaret af:

Læs mere

Elliptiske kurver. kryptering, digital signatur og det diskrete logaritmeproblem. Bachelorprojekt i matematik Tobias Ansbak Louv

Elliptiske kurver. kryptering, digital signatur og det diskrete logaritmeproblem. Bachelorprojekt i matematik Tobias Ansbak Louv Elliptiske kurver kryptering, digital signatur og det diskrete logaritmeproblem Bachelorprojekt i matematik Tobias Ansbak Louv 20107914 Vejleder: Jørgen Brandt 7. oktober 2013 Institut for Matematiske

Læs mere

Løsningsforslag til opgavesæt 5

Løsningsforslag til opgavesæt 5 Matematik F Matematik F Løsningsforslag til opgavesæt 5 Opgave : Se kursushjemmesiden. Opgave : a) π dθ 5 + 4 sin θ = e iθ, = ie iθ dθ, dθ = i sin θ = eiθ e iθ i = i(5 + 4( / )) = i = + 5i Integranden

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

M=3 kunde forbindelse. oprettet lokation Steinerkant

M=3 kunde forbindelse. oprettet lokation Steinerkant M=3 åben facilitet kunde forbindelse lukket facilitet oprettet lokation Steinerkant v Connected facility location-problemet min i f i y i + d j c ij x ij + M c e z e (1) j i e hvorom gælder: x ij 1 j (2)

Læs mere

Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7

Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7 Oversigt [S] 11.8 Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7 Calculus 2-2006 Uge 47.2-1 Skitse [S] 11.8 Niveaukurver y f(x,y)=1

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

SKRUER EXPANDET EXTRA

SKRUER EXPANDET EXTRA SKRUER EXPANDET EXTRA Teknisk ark for skruer i serien Expanet Extra, samt Expanet Terrasseskrue Materiaer: Expanet Extra V2 Uenørs me unersænket hove og Panhove er fremstiet i hæret speciastå og overfaebehanet

Læs mere

Uge 10 Teoretisk Statistik 1. marts 2004

Uge 10 Teoretisk Statistik 1. marts 2004 1 Uge 10 Teoretisk Statistik 1. marts 004 1. u-fordelingen. Normalfordelingen 3. Middelværdi og varians 4. Mere normalfordelingsteori 5. Grafisk kontrol af normalfordelingsantagelse 6. Eksempler 7. Oversigt

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

Statistisk hypotese. Lad P være en statistisk model på (X, E). (P er altså en familie af sandsynlighedsmål på (X, E).)

Statistisk hypotese. Lad P være en statistisk model på (X, E). (P er altså en familie af sandsynlighedsmål på (X, E).) Statistisk hypotese Lad P være en statistisk model på (X, E). (P er altså en familie af sandsynlighedsmål på (X, E).) En statistisk hypotese er en delmængde P 0 P.. p.1/26 PSfrag replacements Statistisk

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

Grafregner-projekt om differentiation.

Grafregner-projekt om differentiation. Grafregner-projekt om ifferentiation. Motivation: Når nu ifferentieret giver, og e ifferentieret giver e, hvorfor får man så ikke e når man ifferentiere e? Formål: ) At opnå kenskab til, og forståelse

Læs mere

Bowlingturnering 2015/ 2016

Bowlingturnering 2015/ 2016 Læs de under slagseddel anførte oplysnnger tak & spllernummer skal jo angves, og navn & spllernummer skal gerne passe tl samme bowlngspller, så jeg kke skal tl at gætte hvem der har spllet hvlket resultat

Læs mere

Vektoranalyse INDLEDNING. Indhold. 1 Integraltricks. Jens Kusk Block Jacobsen 21. januar 2008

Vektoranalyse INDLEDNING. Indhold. 1 Integraltricks. Jens Kusk Block Jacobsen 21. januar 2008 Vektoranalyse Jens Kusk Block Jacobsen 21. januar 2008 INLENING ette er en opsamling af ting, jeg synes er gode at have ifbm vektoranalyse som præsenteret i kurset VEKANAE07 ved IMF på AU. Noten er dels

Læs mere

StatDataN: Test af hypotese

StatDataN: Test af hypotese StatDataN: Test af hypotese JLJ StatDataN: Test af hypotese p. 1/69 Repetition n uafhængige gentagne målinger: Fordelingsundersøgelse: Pindediagram / Histogram qq-plot Parameter: egenskab ved fordeling

Læs mere

2 Den lineære bølgeligning

2 Den lineære bølgeligning Sidse Damgaard Årskortnummer 20062443 1 Indledning I denne opgave skal vi se på den numeriske løsning af den ikke-lineære bølgeligning. Den ikke-lineære bølgeligning beskriver longitudinale trykbølger

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variable Loven om den itererede middelværdi Eksempler 1 Beskrivelse af

Læs mere

Avl med kort og langpelsede hunde

Avl med kort og langpelsede hunde Av med kort og angpesede hunde Hundens pesængde bestemmes af et gen-par, hvoraf hunden arver 1 gen fra hver af forædrene hhv: Inden for pesængde er der atså tae om 3 varianter: = KORTpeset = ANGpeset =

Læs mere

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 30. juni 2005, kl Alle hjælpemidler er tilladt SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK Bygge- og Anlægskonstruktion, 8. semester Fredag den 3. juni 5, kl. 8.3-.3 Alle hjælpemidler er tilladt OPGAVE u = y B u = u C A x c u = D u = Figuren viser en homogen

Læs mere

C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen

C R. Figur 1 Figur 2. er eksempler på kredsløbsfunktioner. Derimod er f.eks. indgangsimpedansen Kredsløbsfunktioner Lad os i det følgende betragte kredsløb, der er i hvile til t = 0. Det vil sige, at alle selvinduktionsstrømme og alle kondensatorspændinger er nul til t = 0. I de Laplace-transformerede

Læs mere

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program Dagens program Afsnit 3.1-3.2 Middelværdi -Definition - Regneregler Betinget middelværdi Middelværdier af funktioner af stokastiske variabler Loven om den itererede middelværdi Eksempler 1 Beskrivelse

Læs mere

Eksamen på Økonomistudiet 2006-II. Tag-Med-Hjem-Eksamen. Makroøkonomi, 2. årsprøve, Økonomien på langt sigt. Efterårssemestret 2006

Eksamen på Økonomistudiet 2006-II. Tag-Med-Hjem-Eksamen. Makroøkonomi, 2. årsprøve, Økonomien på langt sigt. Efterårssemestret 2006 Eksamen på Økonomistudiet 2006-II ag-med-hjem-eksamen Makroøkonomi, 2. årsprøve, Økonomien på langt sigt Efterårssemestret 2006 Udleveres tirsdag den 2. januar 2007, kl. 10.00 Afleveres torsdag den 4.

Læs mere

Parameterkurver. Kapitel 7:

Parameterkurver. Kapitel 7: Kapitel 7: Parameterkurver 7 Oversigt af tegning af parameterkurver... 116 Oversigt over tegning af parameterkurver... 117 Forskelle mellem tegning af parameterkurver og funktioner... 118 I dette kapitel

Læs mere

Bygningskonstruktion og Arkitektur, 5 (Dimensionering af bjælker)

Bygningskonstruktion og Arkitektur, 5 (Dimensionering af bjælker) Bygningskonstruktion og Arkitektur, 5 (Dimensionering af bjælker) Overslagsregler fra Teknisk Ståbi Bøjningsimensionering af bjælker - Statisk bestemte bjælker - Forankrings og stølænger - Forankring af

Læs mere