Håndbog i skriftlig matematik stx B-niveau

Størrelse: px
Starte visningen fra side:

Download "Håndbog i skriftlig matematik stx B-niveau"

Transkript

1 Håndbog i skriftlig matematik stx B-niveau Gode råd til elever der arbejder med skriftlig matematik stxb Skriftlighedsgruppe Dette dokument henvender sig til elever der arbejder med skriftlig matematik stxb. (Der foreligger et tilsvarende dokument for skriftlig matematik stxa.) Forord Hvordan løser man matematikopgaver? Hvordan kommer man i gang, hvilke metoder er det godt at bruge, hvordan udnytter man sine hjælpemidler, hvordan undgår man fejl, hvordan udformer man sin besvarelse bedst muligt osv.? Denne håndbog indeholder i meget konkret form en række gode råd til elever der arbejder med skriftlig matematik i gymnasiet - både i den daglige undervisning og til eksamen. Håndbogen henvender sig til alle, uanset om man skriver i hånden, med et tekstbehandlingsprogram eller i et egentligt matematikprogram. Bemærk at vi har valgt at bruge ordet "værktøjsprogram" som en samlet betegnelse for alle typer af CAS-hjælpemidler (herunder CAS-lommeregnere og integrerede matematikprogrammer) og geometriprogrammer. Første kapitel indeholder nogle generelle råd om det daglige arbejde og om eksamen. Andet kapitel er organiseret efter emner. Vi følger i det store og hele rækkefølgen fra "Vejledende eksempler på eksamensopgaver i matematik". Dog indledes med et afsnit om tegn og symboler. Sidste kapitel handler især om den sproglige udformning af skriftlig matematik. For en beskrivelse af hvordan skriftlige studentereksamensopgaver i matematik B-niveau bedømmes, henvises til dokumentet "Bedømmelseskriterier for skriftlig matematik stx B-niveau - En vejledning for elever". Indhold 1 Gode råd om arbejdet med skriftlig matematik Skriftlig matematik til hverdag Skriftlig matematik til hverdag og ved eksamen Skriftlig matematik ved eksamen Gode råd om arbejdet med forskellige opgavetyper 2.1 Men først: Brug af matematiske tegn og symboler Regning med bogstavudtryk i hånden Ligningsløsning i hånden Geometri Beregninger og ligningsløsning med værktøjsprogram Statistik Funktioner og grafer, modellering af variabelsammenhænge Differentialregning og modellering med f Integralregning Gode råd om skriftlig fremstilling i matematik 8.1 Opsætning Fagsprog og fagudtryk

2 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Gode råd om arbejdet med skriftlig matematik 1.1 Skriftlig matematik til hverdag 1. Begynd på opgaverne i god tid. 2. Bed din lærer om hjælp. Det er sjovere (og bedre) at få et lille puf og komme igennem opgaven selv end senere at få at vide hvordan man skulle have gjort.. Er der en lektiecafé på din skole? Brug den! Det er hyggeligt at sidde sammen med andre og lave opgaverne, og så får man hjælp på stedet hvis man sidder fast. 4. Hjælp hinanden. Men husk at arbejdet ikke skal uddelegeres: alle skal både tænke, regne, forstå, skrive og tegne. 5. Opgaver uden hjælpemidler skal løses uden hjælpemidler. Brug derfor ikke lommeregner og computer når du regner den type opgaver. 6. Har du brug for en formel? Prøv først om du kan huske den eller komme frem til den ud fra et eksempel inden du slår op i formelsamlingen. 7. Rationer din hukommelse. Det er ikke nødvendigt at lære et mylder af forskellige formler udenad. Lær de vigtigste og sats på forståelse. 8. Hvis du har en formelsamling: Lær den at kende, så du ved præcis hvad den indeholder, og hvor du kan slå op. 1.2 Skriftlig matematik til hverdag og ved eksamen 9. Læs opgaveteksten grundigt. 10. Kik på tidligere opgavesæt og besvarelser. Måske har der været en opgave der ligner? 11. Slå op i bøger, noter og notater fra timerne. Find eksempler der ligner. 12. Giv ikke op! 1. Undgå fejl: Det er dit ansvar at dine resultater er korrekte! Der er (næsten) altid flere metoder til løsning af en opgave. Kontroller dine svar ved at tjekke resultatet med en anden metode. 1. Skriftlig matematik ved eksamen 14. Tag fat på delprøven med hjælpemidler så snart du er færdig med delprøven uden hjælpemidler. Man kan sagtens gå i gang med at tænke sig om inden man tænder computeren eller slår op i bogen! 15. Opgaverne behøver ikke at blive afleveret i nummerorden. Du bestemmer rækkefølgen. Begynd f.eks. med de opgaver du bedst kan lide, eller dem du ved at du godt kan klare. 16. Hvis du er kørt fast i en opgave: Læg den til side og tag fat på en anden. 17. Hvis du er kørt fast i alle opgaver: Hold en lille pause. Måske kan du endda få lov at gå ud et øjeblik? 18. Inden du afleverer: Tjek lige at du ikke har overset en opgave eller et delspørgsmål. Giv agt: Nogle delspørgsmål består i sig selv af flere delspørgsmål! 19. Gå ikke før tid. Man kan altid gøre tingene bedre. Og det er for ærgerligt at komme i tanker om en fejl som man kunne have opdaget i tide.

3 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Gode råd om arbejdet med forskellige opgavetyper 2.1 Men først: Brug af matematiske tegn og symboler 1. Respekt for lighedstegnet! Et lighedstegn angiver at to størrelser (to tal, to udtryk, to punkter, to funktioner, to mængder) er ens. 225 = 15 (x y) 2 = x 2 + y 2 2xy Hvis cos A = 1 2, er A = cos 1 ( 1 2 ) = 60 NB! Undgå misbrug: Et lighedstegn kan ikke bruges til at forbinde to ligninger. 2. Ved reduktion af udtryk: Husk lighedstegn. a (a 2b) = a 2 6ab. En dobbeltpil mellem to ligninger/åbne udsagn angiver at de to ligninger/åbne udsagn er ensbetydende (har samme løsningsmængde). Du er velkommen til at droppe pilene og bare skrive hver omformning af ligningen på en ny linje. (Men et lighedstegn kan ikke bruges i stedet for en pil.) 12x = 4x 4 8x = 4 x = 1 2 NB! Undgå misbrug: En dobbeltpil kan ikke bruges mellem to tal eller udtryk. 4. Husk nødvendige parenteser om negative tal. Undgå sammenstød af regnetegn. d = ( ) ( 5) 18 + ( 7) ( 2) 5. Et gangetegn er en prik, ikke et kryds eller en stjerne - heller ikke når du skriver på computer. 6. Husk parentes om koordinatsæt. Skæringspunktet er ( 14, 8) 7. Tegnene og er ikke nødvendige. Men hvis du bruger dem, skal du bruge dem korrekt. Tegnene kan kun bruges mellem (åbne) udsagn. x = 2 x = 5 eller skriv x = 2, x = 5 x 2 > 9 x < x > eller skriv (...) x < eller x > NB! Undgå misbrug: Tegnene og kan ikke bruges mellem to tal eller ord. 8. Ved intervalskrivemåde: Skriv det mindste tal først. Vend intervalparenteserne rigtigt (vendes indad hvis endepunkt med). Vender altid væk fra og. f er voksende i ]2; 4], aftagende i [4; 17] og voksende i [17; [. 9. Udnyt gerne de matematiske symbolers styrke til at skrive kort og præcist. f(5) = 8 (kort og præcist for "vi indsætter 5 i f(x) og får f(x) = 8" ) f () = 1 2 (kort og præcist for "for x = er f (x) = 1 2 " ) 10. Husk gradtegn efter gradtal, eller skriv ordet "grader". C = 180 (4, , 2 ) ; D = 44, grader 11. Skriv rigtige potenser, ikke. 8 2 = 64

4 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Skriv rigtige tierpotenser, ikke sære udtryk med E. 1, Værn om matematikkens reserverede tegn (f.eks., /, ). De har en bestemt betydning og skal ikke bruges til alt muligt andet. NB! Nogle værktøjsprogrammer anvender som linjeadskiller. Forsøg at slå det fra! At noget både hedder a og BC, udtrykkes med et lighedstegn. 14. P Q betegner et linjestykke (selve det man tegner), P Q dets længde (altså et tal). 15. SRP betegner vinklen mellem SR og RP. 2.2 Regning med bogstavudtryk i hånden 1. Man forkorter (hhv. forlænger) en brøk ved at dividere (hhv. gange) med samme tal i tæller og nævner. Det ændrer ikke brøkens værdi. 12a a = 4a 2 a = 4 2 a 1 7 = x 7x 2. Det er let at gange brøker med hinanden. x 5a x2 = x 15a. Er det svært at lægge brøker sammen og at trække brøker fra hinanden? Skaf først fællesnævner... 4a p + a+2b p = 12a p 4. Pas på minusparenteser. + a+2b p = 1a+2b p 6x (2x + 7) = 6x 2x 7 = 4x 7... Og pas på usynlige minusparenteser! t 4t 11 = t (4t 11) = t 4t+11 = t Ved reduktion: Vær omhyggelig. Fald ikke i fælder. 2t+10 2 = t Kvadratet på en toleddet størrelse... (x + 5) 2 = x x... kan bruges begge veje: y 2 6y + 9 = (y ) 2 7. Potensregneregler! ( 2 x )2 = 4 x 2 8. Undgå hjemmelavede regneregler. Brug de officielle.

5 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Ligningsløsning i hånden 1. Omform ligningen trin for trin ved hjælp af tilladte operationer. De enkelte omformninger bør for overskuelighedens skyld skrives på en ny linje. Den ubekendte skal være med i hver omskrivning af ligningen. Mellemregninger skal vises, så man kan følge med i regnerierne. 2. Idé: Flyt rundt på leddene og saml ensbenævnte led.. Idé: Kan man bruge nulreglen? Måske ved at sætte noget uden for en parentes først? t(2t 6) = 0 løses med nulreglen: t = 0, t = x 12x 2 = 0 x 2 (x 4) = 0 x = 0 x = 4 4. Idé: Gang med samme tal eller udtryk på hver side af ligningen. Hvis den ubekendte står i en nævner, kan det være en god idé at gange igennem med denne nævner. 2 2 x = 10 2 = 10x 10 = x x = Andengradsligninger: Beregn først diskriminanten. Hvis den er negativ, er der ikke mere at gøre. Ellers: Sæt ind i formlen og find løsningen/løsningerne. 6. Forslag: Løs nemme andengradsligninger nemt! x 2 21 = 0 x 2 = 21 x 2 = 7 x = ± 7 7. Fik du alle løsninger med, eller glemte du nogle af dem på vejen? Var der noget med ±? x 2 = 9 x = ± 8. Må man gætte en løsning? Ja, men hvis du gætter, skal du skrive hvordan du kontrollerer dit gæt, og du skal desuden argumentere for at du har fundet alle løsninger. 2.4 Geometri 1. Tegn! En figur er vigtig som støtte for din forklaring. Figuren skal være "principielt korrekt" ud fra de foreliggende oplysninger (f.eks. skal en retvinklet trekant tegnes retvinklet). Angiv de opgivne størrelser på figuren. 2. Skriv kun givne størrelser på en figur.. Forklar de betegnelser du bruger. Skriv f.eks. h på tegningen for at vise hvad du kalder h. Tegninger og beregninger skal passe sammen. Når du bruger en formel, så brug de bogstaver der passer med din tegning. 4. Pas på: Nogle værktøjsprogrammer skelner ikke mellem store og små bogstaver. Indfør derfor dine egne betegnelser til f.eks. at skelne mellem en side a i en trekant og en vinkel A i samme trekant. Og forklar betegnelserne! 5. Pythagoras er fin, men dur kun i retvinklede trekanter. 6. Trigonometri i retvinklede trekanter: Brug "de små formler" (cos=hos/hyp, sin=mod/hyp, tan=mod/hos). 7. Advarsel: Stol ikke på sinus når du beregner vinkler. Måske er der to løsninger! Måske har du fundet en spids vinkel, men det er den stumpe vinkel, der skal benyttes, eller måske er der to løsninger, både en spids og en stump vinkel. 8. Brug evt. et geometriprogram til at konstruere figuren efter korrekte konstruktionsprincipper, og beskriv konstruktionen. Bemærk: Det er tilladt herefter at løse resten af opgaven ved at udnytte programmets faciliteter til at beregne ukendte størrelser, idet resultaterne angives med en passende nøjagtighed i henhold til opgavens sammenhæng.

6 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Beregninger og ligningsløsning med værktøjsprogram 1. Matematik går forud for teknik! Opskriv ligningen - og løs den derefter med værktøjsprogrammet. Det skal fremgå hvilket værktøj du bruger, evt. ved at du angiver en programkommando. 2. Overvej om dine variable skal afgrænses. Måske søger du kun løsninger inden for et bestemt interval. Det kan værktøjsprogrammet tage højde for ved at du indskriver afgrænsningen. Ligningen x 5x + = 0 løses inden for de positive tal med værktøjsprogram og begrænsning x > 0 (skriv evt. kommandoen). Du får vist de to relevante løsninger (og, som ønsket, ikke den tredie, som ikke opfylder kriteriet). Trekantsberegninger: Sæt begrænsningen 0 A 180 hvis du finder A ved at løse en ligning, f.eks. med cosinusrelationen.. Pas på: Afrund ikke undervejs i en opgave; afrundingsfejlene kan hobe sig op og give unøjagtighed til sidst. Lad dit værktøjsprogram holde styr på dine variable med fuld nøjagtighed indtil allersidste øjeblik. 4. Angiv resultater eksakt eller med en passende afrunding. Afrund korrekt og til et passende antal decimaler/betydende cifre. Hvad er passende? Det afhænger af opgaven! Læg bl.a. mærke til hvor mange decimaler/betydende cifre der er i de opgivne størrelser. 2.6 Statistik 1. Ved bestemmelse af median for et observationssæt: Forklar hvilken metode du bruger. 2. Pas på: Median ("midterste observation" ) og middeltal (gennemsnit) er ikke det samme.. Tegning af boksplot ud fra et observationssæt: Bestem først mindste observation, største observation, nedre kvartil, øvre kvartil og median, eller brug et værktøjsprogram der kan tegne boksplot direkte ud fra observationssættet. 4. Ved histogrammer og sumkurver: Skriv tallene på deres rigtige pladser på førsteaksen. Førsteaksen skal altså være en ganske almindelig tallinje. Skriv tallene 200, 400, osv. på talaksen (intervallerne er dermed bestemt) 5. En sumkurve tegnes ud fra de kumulerede frekvenser. Hvis de kumulerede frekvenser ikke er opgivet, må du først beregne dem og indskrive dem i en tabel. 6. Sumkurver: Begynd korrekt. I det første interval stiger frekvensen fra 0 i venstre endepunkt. 7. Når en påstand skal kommenteres, skal det gøres ved brug af statistiske begreber. Stikprøve: De ting eller personer der rent faktisk undersøges (eller besvarer spørgsmålene eller... ). Population: Den samling ting eller personer som undersøgelsen hævder at udtale sig om. Systematiske fejl (bias) og skjulte variable: Kendte eller ukendte forhold som, på forudsigelig eller ikke forudsigelig måde, indvirker på undersøgelsen således at der ikke med rimelighed kan konkluderes fra stikprøven til populationen. 2.7 Funktioner og grafer, modellering af variabelsammenhænge 1. Hvis du tegner i hånden: Husk en pil på hver koordinatakse. Pilen angiver den positive retning. Angiv enheder. Et enkelt 1-tal på hver akse er nok. 2. Graf med værktøjsprogram: Vælg passende vindue og akseformatering, så alle væsentlige egenskaber ved funktionen vises grafisk. Hvad der er væsentligt, afhænger af opgaven (f.eks. monotoniforhold, ekstrema, nulpunkter, evt. asymptoter).. Husk benævnelser på koordinatakserne hvis opgaven vedrører noget fra det virkelige liv. 4. Grafiske aflæsninger og beregninger skal passe sammen. Markér gerne aflæsninger med stiplede linjer eller koordinatsæt. 5. Lineær vækst: y = a x + b (her er a hældningskoefficienten, og b er "begyndelsesværdien")

7 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Hvis f er en lineær funktion med f(5) = 8 og f(6) = 12, så er f(7) = 16, f(8) = 20 osv. (for hver gang der lægges 1 til x, stiger y med tallet a = 4). 6. Eksponentiel vækst: y = b a x (her er a fremskrivningsfaktoren, og b er "begyndelsesværdien") Ved eksponentiel vækst: Fald ikke i den lineære fælde! Hvis f er en eksponentiel udvikling med f(5) = 8 og f(6) = 12, så er f(7) = 18, f(8) = 27 (for hver gang der lægges 1 til x, skal y ganges med faktoren a = 1, 5). 7. Fordoblings- eller halveringskonstant for eksponentielle udviklinger: Vælg den mest velegnede formel. Fordoblingskonstanten for f(x) = 877 1, 144 x er T 2 = ln 2 ln 1, Halveringskonstanten for f(t) = 29, 1 e 0,005t er T 1/2 = ln 2 0, Pas på ved procentiske ændringer: Stigning eller fald? Fremskrivningsfaktoren er 1,02. Det svarer til en stigning på,2 %. Til et fald på 8 % svarer fremskrivningsfaktoren 0,92. Og husk: "Frem og tilbage er ikke lige langt". Prisstigning fra 200 kr. til 250 kr. : stigning på 25 %. Prisfald fra 250 kr. til 200 kr. : fald på 20 %. 9. Potensvækst: procent/procent-vækst. f(x) = b x a ; hvis x vokser med faktoren 1,27 (dvs. til 1, 27 x), vokser y med faktoren 1, 27 a 10. Lineær regression/ eksponentiel regression/ potensregression: Brug værktøjsprogram med alle datapunkter. Angiv tabelværdierne. Fortæl hvad du bruger som uafhængig og afhængig variabel. Fortæl hvilken regressionstype du anvender. Advarsel: "a" og "b" er ikke standardbetegnelser! Måske bytter dit værktøjsprogram om på dem. 2.8 Differentialregning og modellering med f 1. Ved differentiation i hånden: Brug regneregler for differentiation! Vælg den rigtige regel og brug den rigtigt (sumreglen, differensreglen, konstantfaktorreglen). 2. Differentiation med værktøjsprogram: Forklar nødvendig værktøjsprogram-notation (måske kan dit værktøjsprogram ikke skrive f (x) eller df dx ).. En tangent er en linje. I ligningen for en linje indgår (som oftest) et x og y og et lighedstegn. Ligningen for tangenten er altså y = 2x Monotoniforhold for en funktion f: Differentiér f. Løs ligningen f (x) = 0. Undersøg fortegn for f (x) eller henvis til graf. Husk konklusion med ord! Op- og ned-pile er ikke nok. f er voksende i ] ; ] og i [10; [; f er aftagende i [; 10]. 5. Bestemmelse af maksimum/minimum for en funktion f: Differentiér f. Løs ligningen f (x) = 0. Overvej: Er der maksimum, minimum eller ingen af delene? Argumentér ud fra fortegn for f (x) eller ved henvisning til graf. Hvis der ønskes maksimum/minimum inden for et begrænset interval, kan det klares direkte med en indbygget facilitet i værktøjsprogrammet. 6. Væksthastighed og tolkning af differentialkvotienter: Tænk på enheder, det hjælper tit. Tallet f (17) = 2, 8 fortæller at væksthastigheden til tiden t = 17 timer er 2, 8 cm/time, dvs. at lige netop efter 17 timers forløb falder vandstanden med 2,8 cm i timen.

8 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Integralregning 1. Matematik går forud for teknik! Hvis du får brug for et integral, skal det opskrives med sædvanlig matematisk notation inden du går i gang med at udregne det. 2. Ved beregning af areal: Forklar hvilket areal du beregner (f. eks. ved at skravere på en figur). Ukendte grænser skal beregnes først.. Ved stamfunktionsbestemmelse med værktøjsprogram: Forklar nødvendig værktøjsprogram-notation (måske skelner dit værktøjsprogram ikke mellem f og F ). Gode råd om skriftlig fremstilling i matematik.1 Opsætning 1. Udnyt siden/papiret fornuftigt! Stil besvarelsen overskueligt op, så man som læser let kan følge med. Bemærk: Grundskolens ideal, den trespaltede opstilling, er sjældent den bedste til gymnasieopgaver. Brug gerne hele sidens bredde til en lang forklaring eller til en udregning med mange trin. 2. Til håndskrivere: Skriv læseligt og tydeligt, ikke gnidret og svagt. Brug gerne blyant, så er det let at lave ændringer. Skal noget rettes, så gør det ordentligt: Visk det forkerte helt ud inden du skriver det rigtige, eller streg det forkerte tydeligt over og skriv rettelsen ved siden af.. Regn gerne videre på et udtryk i samme linje. Det giver overblik og sparer plads. a = ( 8) = 12 = 4 4. Til håndskrivere: Undgå misforståelser og fejllæsninger: Skriv brøkstreger, lighedstegn og regnetegn i samme niveau. Pas især på at et tal ved siden af en brøk ikke sniger sig ind under brøkstregen. 5. Overvej: Hvordan flettes tekst, beregninger og figurer bedst?.2 Fagsprog og fagudtryk 1. Brug de korrekte fagudtryk Udtrykket reduceres Brøken forkortes Tallet 2,97741 afrundes til to decimaler: 2,40 Funktionen er voksende/aftagende Tangentens røringspunkt er... Fremskrivningsfaktoren er 1,04 og vækstraten er derfor,4 % Funktionsværdi Udtrykket e 0,4x består af to led. Leddet 12e 0,4x er et produkt af to faktorer. Arealet af firkant ABCD er summen af arealerne af trekant ABC og trekant ADC. Differensen mellem kaffens temperatur T og rummets temperatur T 0 er T T 0. Forholdet mellem den nye pris P og den oprindelige pris P 0 er P P 0. Formlen A = πr 2 udtrykker cirklens areal A som funktion af dens radius r. 2. Udtryk dig præcist. En funktion har en forskrift (den har ikke en ligning). En tangent har en ligning (den har ikke en forskrift).

9 Håndbog skr. mat. stx B-niveau Skriftlighedsgruppe Grafen for en funktion kan have en tangent (men det har selve funktionen ikke). En funktion kan være voksende, aftagende, monoton, konstant, kontinuert, differentiabel (men det kan en graf ikke være). En funktion kan gå mod eller have et maksimum (men det kan en graf ikke). En parabel har et toppunkt (det har andre grafer ikke).. Stav korrekt. Sådan staves disse ord: Positiv. Negativ. Differens. Parentes. Reduktion, at reducere. Ligning. En variabel, flere variable. Proportional, proportionalitetskonstant. Lineær. Pythagoras. Hypotenuse. Rektangel, kvadrat. Parallel, parallelle, parallelogram. Stump vinkel. Koordinater, koordinatsæt, koordinatsystem. En graf, grafen. Asymptote. Definitionsmængde. Hældningskoefficient. Differentialkvotient. At differentiere. Et ekstremum, flere ekstrema. Monoton, monotoniforhold. Et integral, at integrere. Eksponentiel vækst, eksponentielt voksende/aftagende funktion, eksponentialfunktion. Lineær regression, eksponentiel regression, potensregression. Et polynomium, flere polynomier. Parabel. Symmetrisk. Rationale tal, reelle tal. Kumuleret frekvens. Kvartil. Parameter. Kladde. Bilag.

Håndbog i skriftlig matematik stx A-niveau

Håndbog i skriftlig matematik stx A-niveau Håndbog i skriftlig matematik stx A-niveau Gode råd til elever der arbejder med skriftlig matematik stxa Skriftlighedsgruppe 01.04.09 Dette dokument henvender sig til elever der arbejder med skriftlig

Læs mere

Bedømmelseskriterier for skriftlig matematik stx A-niveau

Bedømmelseskriterier for skriftlig matematik stx A-niveau Bedømmelseskriterier for skriftlig matematik stx A-niveau Sådan bedømmes opgaverne ved skriftlig studentereksamen i matematik En vejledning for elever Skriftlighedsgruppe 01.04.09 Dette dokument henvender

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

Vejledning til bedømmelse af eksamensopgaver i matematik

Vejledning til bedømmelse af eksamensopgaver i matematik Vejledning til bedømmelse af eksamensopgaver i matematik I Læreplanen for Matematik stx A og Matematik stx B er der i afsnit 4.3 angivet en række bedømmelseskriterier, som alle lægges til grund for vurderingen

Læs mere

MATEMATIK A-NIVEAU 2g

MATEMATIK A-NIVEAU 2g NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Studentereksamen i Matematik B 2012

Studentereksamen i Matematik B 2012 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10

Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg

Læs mere

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger.

Der anvendes ikke blandet tal, men uægte brøker. Ikke så vigtigt (bortset fra beløb). Alle decimaler skal med i mellemregninger. Faglige Områder Tal og brøker Der anvendes blandet tal. Der anvendes ikke blandet tal, men uægte brøker. Anvender brøker Anvender både blandet tal og brøker. Antal cifre Der skal afrundes til et passende

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe102-mat/b-31082010 Tirsdag den 31. august 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

MATEMATIK A-NIVEAU-Net

MATEMATIK A-NIVEAU-Net STUDENTEREKSAMEN MAJ AUGUST 2007 2011 MATEMATIK A-NIVEAU-Net torsdag 11. august 2011 Kl. 09.00 14.00 frs112-matn/a-11082011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret formelsamling

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

GU HHX MAJ 2009 MATEMATIK B. Onsdag den 13. maj 2009. Kl. 9.00 13.00 GL091-MAB. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK B. Onsdag den 13. maj 2009. Kl. 9.00 13.00 GL091-MAB. Undervisningsministeriet GU HHX MAJ 009 MATEMATIK B Onsdag den 13. maj 009 Kl. 9.00 13.00 Undervisningsministeriet GL091-MAB Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C, 8D og

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a

gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a gl. Matematik A Studentereksamen gl-1st141-mat/a-05014 Torsdag den. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Grafregnerkravet på hf matematik tilvalg

Grafregnerkravet på hf matematik tilvalg Grafregnerkravet på hf matematik tilvalg Dette dokument er en sammenskrivning af uddrag af følgende skrifter: Undervisningsvejledning nr. 21 for matematik i HF (september 1995); findes på adressen: http://us.uvm.dk/gymnasie/almen/vejledninger/undervishf/hfvej21.htm;

Læs mere

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2

(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2 MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2013/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen 7Ama1V13

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 7Bma1S14

Læs mere

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A

Matematik A. Studentereksamen. Tirsdag den 24. maj 2016 kl stx161-MAT/A Matematik A Studentereksamen 1stx161-MAT/A-24052016 Tirsdag den 24. maj 2016 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl. Matematik B Studentereksamen

gl. Matematik B Studentereksamen gl. Matematik B Studentereksamen gl-stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December-januar 15/16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C

Læs mere

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 13.00 STX083-MAB

STUDENTEREKSAMEN DECEMBER 2008 MATEMATIK B-NIVEAU. Fredag den 12. december 2008. Kl. 09.00 13.00 STX083-MAB STUDENTEREKSAMEN DECEMBER 008 MATEMATIK B-NIVEAU Fredag den 1. december 008 Kl. 09.00 13.00 STX083-MAB Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juli-august 2011 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK-hold Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består

Læs mere

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011 Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B

Matematik B. Studentereksamen. Tirsdag den 27. maj 2014 kl stx141-MAT/B Matematik B Studentereksamen 2stx141-MAT/B-27052014 Tirsdag den 27. maj 2014 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Herning HF og VUC (657248) Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C,

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-1stx131-mat/a-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx10-mat/a-108010 Torsdag den 1. august 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2014-2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår efterår 16, eksamen december 2016 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

gl-matematik B Studentereksamen

gl-matematik B Studentereksamen gl-matematik B Studentereksamen gl-1stx121-mat/b-25052012 Fredag den 25. maj 2012 kl. 9.00-13.00 Side 1 af 5 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i

Læs mere

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009

FRANSK BEGYNDERSPROG HØJT NIVEAU FORTSÆTTERSPROG TILVALGSFAG HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 STUDENTEREKSAMEN MAJ 2005 2005-11-2 SPROGLIG OG MATEMATISK LINJE HØJERE FORBEREDELSESEKSAMEN MAJ 2005 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 HØJERE FORBEREDELSESEKSAMEN AUGUST 2009 FRANSK BEGYNDERSPROG

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juni 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Hf Matematik C Lærer(e) Manisha de Montgomery Nørgård (MAN) og Daniel Christensen (DC) - barselsvikar.

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj- juni, 14-15 Horsens HF & VUC HF 2- årigt Matematik

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Matematik A. Studentereksamen. Fredag den 6. december 2013 kl stx133-mat/a

Matematik A. Studentereksamen. Fredag den 6. december 2013 kl stx133-mat/a Matematik A Studentereksamen stx133-mat/a-06122013 Fredag den 6. december 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx131-MAT/A-24052013 Fredag den 24. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard Lindeløv mac2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Matematik B. Studentereksamen. Skriftlig prøve (4 timer)

Matematik B. Studentereksamen. Skriftlig prøve (4 timer) Matematik B Studentereksamen Skriftlig prøve (4 timer) STX093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-2stx131-mat/a-29052013 Onsdag den 29. maj 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 1stx111-MAT/A-18052011 Onsdag den 18. maj 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik B Angela

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby Hf Matematik C Ashuak Jakob France

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

28 lektioner af 50 min

28 lektioner af 50 min Undervisningsbeskrivelse (Alle data) Stamoplysninger til brug ved prøver til gymnasiale uddannelser Tekst Registrering Termin August 2009 Institution Uddannelse Fag og niveau Lærer(e) 648 - VUC Århus gsk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard

Læs mere