Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Størrelse: px
Starte visningen fra side:

Download "Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6."

Transkript

1 Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f (4) og f (7). 2. Når man efterisolerer et hus nedsættes varmeforbruget og derved mindskes CO 2 -udslippet. Når loftet i et hus efterisoleres med et x mm tykt lag stenuld opnås over en bestemt årrække en samlet CO 2 -besparelse på i alt f (x) tons CO 2. 85x For et bestemt hus kan denne CO 2 -besparelse beskrives ved f ( x). x 67 Beregn f (10) og fortolk resultatet. 3. En genstand slippes i en højde af 100 meter over jorden, hvorefter den falder lodret nedad. Efter t sekunders fald er genstanden i højden f (t) målt i meter over jorden, hvor f ( t) 139,2 19,6t 39,2 0, 607 t Beregn f (2) og fortolk resultatet. 4. Målinger af vanddybden ud for Øst Kamchatka har vist at vanddybden f (x) i afstanden x meter fra kysten med god tilnærmelse kan beskrives ved hvor f (x) måles i meter. Beregn f (20) og fortolk resultatet. f ( x) 0,82 x 0,67 5. Grafen for en lineær funktion går gennem punkterne P ( 3,4) og Q (5,2). Tegn grafen for f. Bestem en regneforskrift for f. Beregn f (9) og løs ligningen f ( x) 1, 25. 1/7

2 6. En funktion f er givet ved f ( x) x 2 3, Dm ( f ) R. Tegn grafen for f. # Bestem Vm(f). 7. Figuren viser grafen for en funktion f. Bestem definitionsmængden og værdimængden for f. Løs ligningerne f ( x) 2 og f ( x) 0 grafisk. En anden funktion g har forskriften 1 g ( x) 3, x 0. x Tegn grafen for g i samme koordinatsystem som grafen for f. # Løs ligningen f ( x) g( x) grafisk. 8. En funktion f er givet ved f ( x) 0,25x 3, 25. Bestem f (1) og f (5), og tegn grafen for f. En anden funktion g er givet ved g ( x) x 2, x 0. Tegn grafen for g i samme koordinatsystem som grafen for f, og bestem værdimængden for g. # Løs ligningen f ( x) g( x). 2/7

3 9. Undersøg i hvert af følgende tilfælde om x og y er ligefrem proportionale, omvendt proportionale eller ingen af delene. Bestem en evt. proportionalitetsfaktor. x 2,5 2 1,5 1,2 y 0,12 0,15 0,2 0,25 x -2/ y 3-2/3-4/5 5 x y Tegn i samme koordinatsystem på lommeregneren graferne for følgende andengradspolynomier: f 1 (x) = x 2 f 2 (x) = 4x 2 f 3 (x) = ¼ x 2 Hvilken betydning har størrelsen af koefficienten ved x 2 for grafens udseende? 11. Tegn i samme koordinatsystem på lommeregneren graferne for følgende andengradspolynomier: g 1 (x) = 2x 2 g 2 (x) = -2x 2 Hvilken betydning har fortegnet på koefficienten ved x 2 for grafens udseende? 12. Andengradspolynomierne f og g har forskrifterne: f(x) = 2x 2 6x + 1 g(x) = x 2 4x + 9 Bestem koordinaterne til grafernes toppunkter og tegn graferne på papir. Kontroller tegningerne ved hjælp af lommeregner. Hvilken betydning har konstantleddet c? 3/7

4 13. To parabler har ligningerne y = 2x 2 4x + 6 y = ½x 2 3 Bestem parablernes toppunkt og tegn graferne på papir. Kontroller på lommeregner. 14. Beregn toppunkter og eventuelle skæringer med x-aksen for følgende 2.gradspolynomier: # f 1 (x) = x 2 + 5x 24 f 2 (x) = 3x 2 +6x + 4 Tegn graferne i passende vinduer på lommeregneren og kontroller udregningerne på lommeregner. 15. Opløs følgende andengradspolynomier i faktorer: f(x) = x 2 6x 7 g(x) = 4x x 12 Kontroller resultaterne med CAS. Kommandoen factor er ens for alle CAS-værktøjer. For TI-89: Brug menu-tasten F2 i hovedmenuen (algebra) efterfulgt af 2:factor og indtast polynomiet. Se nedenstående billede. 16. Faktoriser følgende andengradspolynomier, hvis det er muligt: f 1 (x) = 2x 2 + x 15 f 2 (x) = x 2 + 3x + 6 f 3 (x) = 9x 2 24x + 16 f 4 (x) = 2x 2 + x 6 f 5 (x) = 16x 2 8x + 1 Kontroller resultaterne med lommeregneren. 17. Omskriv følgende to andengradspolynomier til formen p(x) = ax 2 + bx + c p 1 (x) = (x 2) (x + 1) p 2 (x) = (x + 5) (x 5) Kontroller resultatet vha. lommeregneren: F2 (algebra) 3:expand. 18. Vis ved beregning at 2 er rod i følgende polynomier: p 1 (x) = x 4 3x 10 # p 2 (x) = -3x 3 + 5x 2 4x /7

5 19. Bestem b så 3 er rod i polynomiet p(x) = x 2 + bx En parabel skærer x-aksen i punkterne (1,0) og (5,0). Punktet (4, - 6) ligger på parablen. Bestem en ligning for parablen. # 21. Faktoriser følgende polynomier vha. lommeregneren. # p 1 (x) = x 3 2x 2 5x + 6 p 2 (x) = x 3 + x 2 + 2x + 2 p 3 (x) = 2x 4 x 3 6x 2 + 3x 22. Grafen for en potensvækst f går gennem punkterne (5,18) og (8,21). Bestem regneforskriften for f. 23. Løs følgende ligninger vha. nulreglen: a) 2(x +1)(x - 1) = 0 b) x ( x 7) 0 c) (x-4)(3x 2 +5x+4) = 0 d) x 2-4x = 0 # e) x 3-3x 2-70x = 0 # f) x 4 - x 2 = 0 # 24. Tegn graferne for følgende funktioner på papir: f 1 (x) = x 2 2x + 3 f 2 (x) = - x 2 6x + 3 Løs ligningen x 2 2x + 3 = - x 2 6x + 3 både grafisk og ved beregning. Kontroller resultatet med grafregneren. 25. Løs nedenstående ligning grafisk ved hjælp af grafregneren, og herefter algebraisk vha. grafregneren 4x 3 2x 2 10x 4 = 0 # 5/7

6 Vink til mulig fremgangsmåde og supplerende kommentarer (opgaver med #) 1) Lidt om opskrivning af intervaller: En åben bolle symboliserer at tallet ikke er med i intervallet - en udfyldt bolle at tallet er med. Ved intervalopskrivning illustreres dette ved at den kantede parentes peger væk fra tallet, der ikke er med, og ind mod tallet, der er med. Intervallet [a ; b[ indeholder således alle reelle tal fra og med a til men ikke med b. Hvis intervallet ikke har en øvre grænse bruges symbolet (uendelig). Ved dette symbol vender den kantede parentes altid væk fra symbolet. Tilsvarende bruges symbolet,hvis intervallet ikke har en nedre grænse. På tallinjen illustreres dette ved at der hverken er åben eller udfyldt bolle. Intervallet ] mindre end b. ; b[ indeholder alle tal, der er 6) Du kan f.eks. udfylde nedenstående tabel og tegne graf derudfra: x ½ 0 ½ f(x) 7) Udfyld nedenstående table og tegn graf derudfra (vær opmærksom på definitionsmængden for g): x g(x) ) Brug f.eks. nedenstående tabel: x 0 g(x) ) Skæringer med x-aksen bestemmes ved at løse ligningen f(x) = 0, dvs f.eks. f 1 (x) = 0 x 2 + 5x 24 = 0 18) 2 er rod i et polynomium, hvis funktionsværdien af 2 er 0. Vis derfor at p 1 (2) = 0. 20) Rødderne kendes, så udtrykket kan faktoriseres: y = a (x 1) (x 5). Indsæt (x,y) = (4, -6). Bestem a ud fra den ligning der fremkommer. Indsæt a i ligningen ovenfor. 21) Brug F2 i hovedmenuen (algebra) tast 2:factor efterfulgt af polynomiet. 23) d) opløs først venstre side i faktorer e) sæt først x udenfor parentes f) sæt først x 2 udenfor parentes 25) Et tredjegradspolynomium kan højst have tre rødder. Ved tegning af grafen i standardvinduet ses at dette polynomium har tre rødder (der gemmer sig altså ikke rødder udenfor vinduet!). Rødderne bestemmes grafisk vha. F5 i grafvinduet 2:zero. Til algebraisk løsning bruges F2 i hovedmenuen 1:solve 6/7

7 Facit: 1. Dm(f) = [ -7; 8[, Vm(f) = [ - 3,2 ; 4 ], f(4) = -3, f(7) = 2 2. f(10)=11,04, dvs. efterisoleres med 10 mm fås en besparelse på godt 11 tons CO 2 over årrækken. 3. f(2)= 85,6, det betyder at efter 2 sekunder befinder genstanden sig 85,6 meter over jorden. 4. f(20)= 6,1, dvs. at 20 meter fra kysten er vanddybden 6,1 meter. 5. f(x)= - 0,25x , f(9) = 1, x=8 6. Vm(f)= [3; [ 7. Dm(f)= [1; 5½] og Vm(f)=[ -3 ; 4½], L={1.5, 4.4}, L={1,5}, L={2,4} 8. f(1)=3 og f(5)=2, Vm(g)=[2; [, x=1 9. a) omvendt proportionale med k = 0,3 b) hverken eller c) ligefremproportionale med k = ½ 10. angiver hvor bred eller stejl grafen er. 11. viser om parablens grene vender nedad eller opad. 12. (1.5, - 3.5) og (2,5) og c angiver grafens skæring med y-aksen. 13. (1,4) og (0, -3) 14. f 1 : (-2.5, ) og (-8,0) og (3,0), f 2 : (-1,1) 15. f(x) = (x+1) (x 7) og g(x) = 4(x+4)(x-0,75) [i grafregnerens udtryk er 4 ganget ind i den sidste parentes] 16. f 1 (x) = 2(x+3) (x-2½) f 2 : kan ikke faktoriseres f 3 (x) = f 5 (x) = 16( x 1 2 4) 17. p 1 (x)=x 2 x -2 og p 2 (x)= x p 1 (2)=0 og b=2 20. y = 2 x 2 12 x + 10 x f 4 (x) = ( x 2)( x 3 ) 9( 21. p 1 (x) = (x-3) (x-1) (x+2) p 2 (x) = (x+1) (x 2 +2) p 3 (x) = x (2x-1) (x 2-3) 22. f(x)=10,6 x 0, ) 23. L={-1,1}, L={-7, 0}, L={ 4 } L={0, 4}, L={-7, 0, 10}, L={-1, 0, 1} 24. L={0, -2} 25. L={-1, -0.5, 2} 2 2 7/7

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1 Side 1 Funktion Opgaverne med svar starter på side 2, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 3 med et s foran nummeret. 1001 Figuren viser grafen

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Projekt 3.1 Fjerdegradspolynomiets symmetri

Projekt 3.1 Fjerdegradspolynomiets symmetri Projekt 3.1 Fjerdegradspolynomiets symmetri I kapitel 3 har vi set at grafen for et andengradspolynomiet p x a x x c () altid er symmetrisk omkring den lodrette akse x. a Tilsvarende er grafen for tredjegradspolynomiet

Læs mere

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet Projekt 3 Fjerdegradspolynomiets symmetri Indledning: Symmetri for polynomier I kapitel har vi set at grafen for et andengradspolynomiet altid er symmetrisk omkring den lodrette akse x a p x a x x c ()

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden

Brug af TI-83. Løsning af uligheder: Andre ikke simple uligheder løses ved følgende metode - skitseret ved et eksempel : Løs uligheden Brug af TI-83 Løsning af andengradsligninger med TI-83 Indtast formlerne for d, og rødderne og gem dem i formellagrene u,v eller w. Gem værdierne for a, b og c i lagrene A, B og C Nedenstående display

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Grafregnerkravet på hf matematik tilvalg

Grafregnerkravet på hf matematik tilvalg Grafregnerkravet på hf matematik tilvalg Dette dokument er en sammenskrivning af uddrag af følgende skrifter: Undervisningsvejledning nr. 21 for matematik i HF (september 1995); findes på adressen: http://us.uvm.dk/gymnasie/almen/vejledninger/undervishf/hfvej21.htm;

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Skabelon til funktionsundersøgelser

Skabelon til funktionsundersøgelser Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Når eleverne skal opdage betydningen af koefficienterne i udtrykket:

Når eleverne skal opdage betydningen af koefficienterne i udtrykket: Den rette linje og parablen GeoGebra er tænkt som et dynamisk geometriprogram, som både kan anvendes til euklidisk og analytisk geometri Eksempel Tegn linjen med ligningen: Indtast ligningen i Input-feltet.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010 Institution Handelsskolen Sjælland Syd, Campus Vordingborg Uddannelse Fag og niveau Lærer(e)

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte Strange-Pedersen

Læs mere

Løsningsforslag MatB Jan 2011

Løsningsforslag MatB Jan 2011 Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Ann Risvang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 12/13 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54

t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54 Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Regning med funktioner - TAVLENOTER

Regning med funktioner - TAVLENOTER Sammensat funktion [Elevsamtaler] Jens Thostrup, GUX Nuuk 1 FACIT b) 1 og 3 er de eneste løsninger, der optræder i tabellen Jens Thostrup, GUX Nuuk 2 Regningsarter for funktioner Sumfunktion: (f+g)(x)

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Sanne Schyum

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

Matema10k. Matematik for hhx C-niveau. af Rasmus Axelsen

Matema10k. Matematik for hhx C-niveau. af Rasmus Axelsen Matema10k Matema10k Matematik for hhx C-niveau af Rasmus Axelsen Matema10k. Matematik for hhx C-niveau 1. udgave, 1. oplag, 2013 Forfatteren og Bogforlaget Frydenlund ISBN 978-87-7118-253-8 Redaktion:

Læs mere

Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende.

Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende. Nogle didaktiske overvejelser vedrørende indledende undervisning i funktionsbegrebet i gymnasiet og nærværende hæftes nytte i så henseende. af Dinna Balling og Jørn Schmidt. Hæftet Lige og ulige sætter

Læs mere

Matematik på 9. og 10. klassetrin

Matematik på 9. og 10. klassetrin Matematik på 9. og 10. klassetrin Hayati Balo, AAMS, Forår 2013 Baseret på 9. klasse og 10. klasse udvidet kursus (Sigma), 1. udg. 8. oplæg 1986 og 1. udg. 6. oplæg 1986, af Henry Schultz, Johan Jacobsen,

Læs mere

Lineær Programmering i GeoGebra Side 1 af 8

Lineær Programmering i GeoGebra Side 1 af 8 Lineær Programmering i GeoGebra Side 1 af 8 Grundlæggende find selv flere funktioner, fx i GG s indbyggede hjælpefunktion. Vær opmærksom på at grænsefladen i GeoGebra ændrer sig med tiden, da værktøjet

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Brugervejledning til Graph (1g, del 1)

Brugervejledning til Graph (1g, del 1) Graph (brugervejledning 1g, del 1) side 1/8 Steen Toft Jørgensen Brugervejledning til Graph (1g, del 1) Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet

Læs mere

Oversigt over undervisningen i matematik 2y 07/08

Oversigt over undervisningen i matematik 2y 07/08 Oversigt over undervisningen i matematik 2y 07/08 side Der undervises efter: AB Nielsen & Fogh: Vejen til Matematik AB ( Forlaget HAX) B2 Nielsen & Fogh: Vejen til Matematik B2 ( Forlaget HAX) EKS Knud

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution VID Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Hasse Rasmussen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C CASO(Carina Suzanne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Vejle Handelsskole Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Potensfunktioner og dobbeltlogaritmisk papir

Potensfunktioner og dobbeltlogaritmisk papir 1 Potensfunktioner og dobbeltlogaritmisk papir OBS: til skriftlig eksamen skal du kun kunne aflæse på en graf, der allerede er indtegnet på dobbeltlogaritmisk papir. Du kan ikke komme ud for at skulle

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Løsningsforslag MatB Juni 2012

Løsningsforslag MatB Juni 2012 Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011 juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau Lærer(e)

Læs mere

Figur 1. fs10 Matematik - Tennisklubben

Figur 1. fs10 Matematik - Tennisklubben Figur 1 fs10 Matematik - Tennisklubben 1 Hammel Tennisklub Hammel tennisklub har eksisteret siden år 1904 1.1 Hvor lang tid har klubben eksisteret? Der spilles fra april, til oktober starter. 1.2 Hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin aug-juni 13/14 Institution Campus Vejle VUC Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Lars Therkelsen

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Oversigt over gennemførte flerfaglige forløb disse hentes via hjemmesiden

Oversigt over gennemførte flerfaglige forløb disse hentes via hjemmesiden Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 15/16 Institution Uddannelse Fag og niveau Lærer e-mailadresse Hold Handelsgymnasiet Ribe HHX Matematik

Læs mere

Mathcad Survival Guide

Mathcad Survival Guide Mathcad Survival Guide Mathcad er en blanding mellem et tekstbehandlingsprogram (Word), et regneark (Ecel) og en grafisk CAS-lommeregner. Programmet er velegnet til matematikopgaver, fysikrapporter og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørn Ole Spedtsberg

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat8 Noter: Kompetencemål efter 9. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

GUX. Matematik Niveau B. Prøveform b

GUX. Matematik Niveau B. Prøveform b GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2

Matematik. Grundforløbet. Mike Auerbach (2) Q 1. y 2. y 1 (1) x 1 x 2 Matematik Grundforløbet (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Mike Auerbach Matematik: Grundforløbet 1. udgave, 2014 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC

Læs mere