Newton, Einstein og Universets ekspansion

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Newton, Einstein og Universets ekspansion"

Transkript

1 Newon, Einsein og Universes ekspansion Bernhard Lind Shisad, Viborg Tekniske ymnasium Friedmann ligningerne beskriver sammenhængen mellem idsudviklingen af Universes udvidelse og densieen af sof og energi. De er løsninger il Einseins felligninger i den generelle relaivieseori, men de viser sig, a de også kan udledes af Newons mekanik med almindelig gymnasiemaemaik. Vi ser på, hvorledes de kan udledes basere på de kosmologiske prinip, og hvilke konsekvenser de har for udviklingen af Universes ekspansion. Indledning I 1915 offenliggjorde Einsein sin generelle relaivieseori. Den viser, a ilsedeværelse af masse og energi påvirker merikken i den firedimensionale rumid, som igen besemmer hvorledes fysiske objeker bevæger sig. Kor id efer eoriens offenliggørelse, påvise Aleksandr Friedmann a Einseins ligninger har re mulige løsninger for kosmologien i e ekspanderende univers: Posiiv krumning, hvor ekspansionen afager E saisk univers med konsan ekspansion Negaiv krumning, hvor ekspansionen vokser Universes ekspansion angives ved Hubbles konsan, som foræller hvorledes afsande mellem galakser vokser med iden. Sammenhængen mellem Hubbles konsan, Universes energiæhed og iden er give ved de såkalde Friedmann Lemaîre Roberson Walker ligninger. Den kan udledes fra Einseins felligninger, medn dee kræver maemaik lang ud over gymnasieniveau. Imidlerid findes der en alernaiv meode il a udlede ligningen ud fra Newons mekanik med almindelig gymnasiemaemaik ilsa en lille smule relaivieseori. Denne udledning skal vi gennemgå her. Hubbles lov Edwin Hubble opdagede i 19, a en galakses hasighed i forhold il ælkevejen og andre galakser er proporional med afsanden. Denne sammenhæng er udryk i Hubbles lov, som siger, a Newons graviaionseori har også e problem med e saisk univers. Hvis Universe sarer med alle sjerner i hvile i forhold il hinanden og en endelig sørrelse, vil graviaionen få de il a kollapse. Newon roede selv, a ilrækningen mellem alle par af sjerner var omhyggelig udbalanere af ilrækningen af fjernere sjerner på den anden side. Der er én vigig forskel mellem e ekspanderende univers i Einseins og Newons mekanik: Hvis e Newonsk univers ekspanderer, sker de ved, a galakserne fjerner sig fra hinanden i e Euklidsk rum, således a koordinaakserne ikke påvirkes af ekspansionen. I Einseins mekanik er de derimod rumme selv, som ekspanderer. Vi kan opfae de som om, galakserne ligger i sabile koordinaer, men a koordinaakserne srækkes med iden. Friedmann Lemaîre Roberson Walker ligningerne Sammenhængen mellem Universes udvidelse (Hubbles konsan) og rummes krumning R, densieen af sof r og den kosmologiske konsan Λ, er give ved de berøme Friedmann Lemaîre Roberson Walker ligninger. De o ligninger siger, a H a a 0 a a 8 Ra p Her er den universelle graviaionskonsan, a er afsanden og a er den dobbelafledede af a med hensyn il iden, p er rykke, R er Universes globale krumningsradius og k er den rumlige krumningsparameer. Trykke p kommer fra den såkalde energi sress ensor i Einseins felligninger. I vores nuværende univers er rykke så lille, a vi hel kan se bor fra de, så vi kan skrive ligningen som a a (1) () () v = H o a, hvor v er hasigheden, a er afsanden og H o er en konsan, kalde Hubbles konsan. De har senere vis sig, a H o også varierer med iden, men de er en langsom variaion over lang id. A Universe udvider sig, passer mege fin med Einseins felligninger, hvor e saisk univers ikke er en løsning af den originale version. Einsein indføre den kosmologiske konsan for a illade e saisk univers, noge han senere beegnede som den sørse fejlagelse i si liv. Vi vil nu udlede ligningerne ud fra en simpel generalisering af Newons mekanik og se på ligningens konsekvenser for e ekspanderende univers. Ekspanderende koordinaer Vi sarer med a foresille os e univers fyld med galakser. Vi indfører e koordinasysem, hvor galakserne ligge i fase koor dinaer således, a hvis afsanden mellem galakserne vokser, så følger koordinasyseme med og galakserne beholder deres koordinaer, se Figur 1. LFK-blade 1/018 1 aemaik Fysik

2 H kaldes Hubbles konsan, men der er ingen grund il a den skal være idsuafhængig. Den er konsan over hele rumme og har en besem værdi i dag, men denne værdi kan have variere over id og kan variere i fremiden. De vigige er, a den er uafhængig af de rumlige koordinaer x, y og z. Vi kan nu udrykke den relaive hasighed mellem o vilkårlige galakser ved hjælp af afsanden mellem dem: v H D Dee kaldes Hubbles lov. Figur 1 Skalering af koordinasysem. Hvis Universe ekspanderer eller rækker sig sammen, følger giere med. Dee giver mening, da galakserne ikke bevæger sig ilfældig men mege kohæren, som om de sad på en gummimembran, der kan srækkes. Dee er basere på observaioner af bevægelse af nabogalakser. alakserne gives koordinaer efer hvilke gierpunk der er æes på. Afsanden mellem o punker i dee koordinasysem (i meer) er afsanden i gierkoordinaer Dx gange skalaparameeren a: D a x, hvor Dx er afsanden mellem o gierlinjer. Da Universe ekspanderer, vil afsanden mellem o galakser A og B være idsafhængig: D a x Afsand i rumme er give med afsandsformelen D a x y z Den relaive hasighed mellem galakse A og galakse B er give ved Rummes krumning I den førse Friedmann ligning (1) indgår e led som beskriver Universes globale krumning: Ra R er den globale krumningsradius, og parameeren k angiver krumningens foregn: k = 1 k = 1 k = 0 negaiv krumning, parabolsk geomeri posiiv krumning, sfærisk geomeri flad univers, Euklidsk geomeri Når vi observerer mege fjerne galakser, vil rummes geomeri påvirke, hvor sor rumvinkel galaksen fylder på himlen, således, a den bliver forsørre ved sfærisk geomeri og formindske ved parabolsk geomeri. Da vi ikke observerer nogen sådan forvrængning af fjerne galakser, kan vi konkludere, a anagelsen k = 0 er en mege god beskrivelse af de nuværende univers. Vi vil derfor herefer se bor fra den globale krumning. Vi kan alligevel have en voldsom lokal krumning fx i forbindelse med sore huller, men de påvirker ikke den globale geomeri. aemaik Fysik v a x (vi ser kun på én dimension) Forholde mellem hasighed og afsand bliver da v a x a D a x a hvor a er den afledede af a med hensyn il iden. Læg mærke il, a Dx blev forkore væk. De beyder, a forholde mellem hasigheden, hvormed galakserne fjerner sig fra hinanden, og afsanden er uafhængig af hvilke galakser vi aler om. Uanse hvor o galakser befinder sig, vil forholde a mellem hasigheden og afsanden være den samme. Dee forhold kaldes Hubbles konsan: H a a a Densie Vi vil nu se lid på, hvad der sker med densieen, når rumme udvider sig. Vi vil berage massen inden for e gierelemen med dimensionerne Dx, Dy og Dz, som er sore nok il a udjævne lokale forskelle i densie (for eksempel en milliard lysår). Hvis densieen i gierkoordinaer er n (de er ikke de samme som densieen i normale enheder), er massen i gierelemene give ved x y z Rumfange i normale (ikke gier ) koordinaer af denne volumenhed er V a x y z. Densieen i normale enhe- der og koordinaer bliver da a ængden af masse i hver gierelle er konsan, men hvis a ændrer sig med iden, vil r også variere. LFK-blade 1/018

3 De kosmologiske prinip og graviaionen oderne kosmologi er basere på o anagelser som ilsammen kaldes de kosmologiske prinip: På en ilsrækkelig sor skala er Universe Homogen (de vil sige a de har samme egenskaber uanse hvor vi befinder os) Isorop (de ser ens ud i alle reninger) Vi vil nu ser på, hvad der sker med graviaionen i de ekspanderende univers. Vi vil berage graviaionen på en ilfældig galakse. På grund af de kosmologiske prinip har Universe ikke noge enrum, så vi kan lægge e koordinasysem med origo e vilkårlig sed, for eksempel i jordkloden. I henhold il Newons skaleorem for graviaionen, se Figur, vil graviaionen på e objek, som befinder sig i e sfærisk symmerisk graviaionsfel, kun påvirkes af graviaionen fra objeker, som er inden for en kugle med radius lig med afsanden fra origo il galaksen. Nu anvender vi Newons. lov sam graviaionsloven il a beregne yngdekrafen på en fjern galakse med masse m. inusegne skyldes, a krafen er ilrækkende og modsaree afsanden il galaksen. Vi får F m A m D m a R m a R a a a R Vi sæer ind i udrykke for fra () og får den anden Friedmann ligning: a a R a a R Den kosmologiske konsan Λ er ikke med, ligesom den ikke var de i Einseins oprindelige version af relaivieseorien. Vi lægger mærke il, a ligningen er uafhængig af R da Universe er homogen. De vil sige, a den holder for alle galakser. Her kan vi allerede se, a e saisk univers er uforenelig med eorien. Kun hvis densieen r = 0, kan Universe være saisk. Da densieen r varierer med iden, ersaer vi den nu med densieen i gierkoordinaer og får a a a Figur Newons eorem. assen inden for kuglen er give ved V D Hvis vi udrykker afsanden i gierkoordinaer får vi, a D a x y z a R () Dee er en differenialligning, hvor kun a og ä er funkioner af iden, alle andre sørrelse er konsaner. Dee er bevægelsesligningen for skalafakoren a(). Formlen blev oprindelig opdage af den russiske fysiker og asronom Alexandr Friedmann i 19 i forbindelse med løsning af Einseins felligninger i den generelle relaivieseori. Denne bevægelsesligning for skalafakoren foræller os, a graviaionen vil bremse Universes ekspansion, men den siger ikke, om den vil sandse eller skife rening. Dee vil afhænge af Universes oprindelige ekspansionshasighed og densie. aemaik Fysik Vi sæer ind i udrykke for massen a R og får herved besem hasighed og aeleraion (vi behøver ikke a bekymre os om a differeniere R, da galaksen befinder sig i e fas punk i gire): v D a R Av D a R Bevægelsesligningen har vi kunne udlede udelukkende ud fra Newons ligninger. Hvis den var hele sandheden, vil skalafakoren blive ved med a afage. Dee roede kosmologerne indil for a. 15 år siden. Vi skal se, a de forholder sig modsa. Kriisk densie For a forså, hvorledes densieen påvirker Universes udvikling, vil vi nu beregne energien il vores enlige fjerne galakse. Den kineiske energi er efer Newons mekanik give ved 1 1 Ekin mv m a R LFK-blade 1/018

4 Den poenielle energi finder vi fra Newons graviaionspoeniale, hvor vi husker, a D a R E po m a R Vi kombinerer begge ligninger og finder: 1 m E Ekin Epo ma R a R Vi vil nu prøve a finde en skalafakor, som præis får Universes udvidelse il a sandse. Dee svarer il, a den oale energi er lig med nul. 1 m m a R a R som giver a a R 0 For a få densieen ind i ligningen, dividerer vi med a : a a a a a R a R 8 V 8 (5) Dee er Friedmann ligningen for energi 0, som angiver Universes udvidelses undslipnings ekspansionshasighed. a Ide vi erindrer, a H, kan vi finde den kriiske densi- a e, hvor ekspansionen går i så: H 8 Den bedse asronomiske besemmelse (016) af Hubbles konsan er 71,9 (km/s)/p, som svarer il, (m/s)/m i normale enheder. Når vi indsæer denne værdi, finder vi en kriisk densie på 10 18, s , mkg s 9510, 7 kg/m 11 1 Dee svarer il a. 6 brinaomer pr. m, hvilke ikke ligger lang fra de bedse observaioner af Universes densie. Tidsudviklingen af Hubbles konsan Vi har se på speialilfælde, hvor alle galakser bevæger sig væk fra hinanden med undslipningshasigheden og energien derfor er 0. Vi vil nu berage de generelle ilfælde. Vi ser igen på en enkel galakse i forhold il e sfærisk område med radius D og med masse i henhold il Newons eorem. Hvis galaksen har masse m er dens oale energi give ved 1 E mv m D Da energien er bevare, er dee en konsan, dvs. E v konsan D m Vi husker, a D a x og v a x. Da vi alligevel kun har valg en vilkårlig afsand D, vil vi yderligere foresille os, a galaksen ligger i afsanden x = 1. Heraf får vi, a a konsan a Vi dividerer med a og får a a a a a a a a 8 a a 8 a Vi indfører densieen i gierenheder og får: 8 a a a a Dee er Friedmann ligningen for de generelle ilfælde, hvor energien ikke er nul. Tidsudviklingen vil afhænge af foregne på, da a ikke kan være negaiv. I sede for konsanen er de normal a beskrive idsudviklingen som afhængig af densiesparameeren Ω 0, se Figur. Ω 0 = r r Hvis Ω 0 > 1 som svarer il posiiv energi, vil den kineiske energi være sørre end den poenielle, og Universe vil blive ved med a ekspandere, selv om ekspansionen vil afage med iden Hvis Ω 0 < 1 som svarer il negaiv energi, vil ekspansionen gå i så, og Universe vil begynde a kollapse Hvis Ω 0 = 1 som svarer il energi lig nul, vil ekspansionen gå mod nul LFK-blade 1/018 5 aemaik Fysik

5 Friedmann ligningen for de foondominerede univers bliver derfor a a 8 a a Her er årsagen il, a skalaparameeren opræder i. poens, a foonenernes bølgelængde srækkes når Universe ekspanderer. Figur Tidsudviklingen ved forskellige densies parameeren. De maeriedominerede univers Vi vil nu se på løsningerne af Friedmann ligningen for de maeriedominerede univers, hvor densieen har den kriiske værdi, hvor ekspansionen vil gå i så. Her er 8 en konsan, så ligningen kan skrives a a 1 konsan a Vi søger efer en løsning på formen a p. Vi sæer ind i ligningen og ser, a den er opfyld hvis p =. Vi kan alså udrykke skalaparameeren med formelen a (6) Dee viser, a i e Newonsk ekspanderende univers, hvor ekspansionen har den kriiske værdi, hvor den går i så i en uendelig fremid, vil skalaparameeren udvikle sig med iden i / poens. Vi vil se, om vi kan finde løsninger il denne ligning for a se, hvorledes skalafakoren udvikler sig med iden. For a gøre ligningen leere a løse, sæer vi = 0. Da bliver ligningen a a 8 a a a 8 1 a F Vi ganger med a() på begge sider og får a, hvor a 8 F er en konsan. Dee er en simpel 1. ordens differenialligning på formen d d a F a Den har løsningen a (7) F De vil sige, a de idlige univers lige efer Big Bang, hvor foonerne dominerede, ekspanderede proporional med kvadraroden af iden i modsæning il de maeriedominerede univers, som ekspanderede med iden i /, se Figur. De foondominerede univers I de mege idlige univers dominerede energien i sråling (fooner) oal over maerien. Hvis Universe er fyld med fooner, kan vi ikke længer illade os a bruge Newons udryk for energien. en heldigvis kan probleme løses ved a ersae masse densieen med energiæheden for e foonfyld univers. Vi skal alså ersae E = m med foonenergi densie. aemaik Fysik Vi foresiller os en elle i rumme i gierenheder. Cellen har sider lig med en enhed, x = 1, og dens rumfang er derfor V a. Cellen er fyld med fooner, som hver har energien E h. Når rumme udvider sig, og a() vokser, srækkes også bølgelængden ilsvarende. Dee medfører, a foonens energi afager, når bølgelængden srækkes. Anal fooner i boksen vil være konsan, men energien af foonerne vil afage, når Universe ekspanderer. Energien pr. foon vil afage med 1/a. I modsæning il de maeriedominerede univers, hvor energien er konsan, vil foonenergien i de foondominerede univers afage med en over skalafakoren. De medfører, a densieen vil afage som 1 a, da ellens sørrelse vokser med a og energiindholde i foonerne afager med 1 a. Figur Udvikling af skalafakoren. 6 LFK-blade 1/018

6 Universes ilsandsligning For a forså, hvorledes skalafakoren afhænger af Universes densie, vil vi sudere Universes ilsandsligning. Fra ermodynamikken kender vi idealgasligningen. Den angiver sammenhængen mellem ryk, emperaur og rumfang for en gas. Den kan skrives på formen P nrt R V T hvor er mol massen og r er densieen. I kosmologien giver emperaurbegrebe ikke så megen mening, når vi aler om bevægelse af galakser, så vi opfaer den som en konsan. De har vis sig, a en mege god approksimaion af ilsandsligningen for Universe kan opnås ved a skrive idealgasligningen med konsan emperaur som P W (8) hvor P er rykke, r er densieen og W er en konsan. Vi skal nu se, hvad denne simple ilsandsligning siger om skalafakoren. Vi foresiller os en rekangulær boks, som indeholder energi i form af maerie, for eksempel galakser. Trykke på en af siderne i boksen er lig med krafen F dividere med areale A af siden P = F A Hvis vi ekspandere boksen lineær med en længde dx, vil maerien i boksen udføre e arbejde på væggen Fdx PAdx PdV Hvor dv er ændringen af boksens rumfang. Dee medfører, a energien i boksen afager med de arbejde, der er udfør på væggen hvor er en inegraionskonsan. en rumfange V er proporional med skalafakoren a() i redje poens, så vi kan skrive ligningen på formen 0 1 W a hvor r 0 er energidensieen ved a() = 1. (10) Vi vil nu se på de o speialilfælde, vi undersøge idligere. I de maeriedominerede univers udgør masse næsen al energi og energien i e rumfang V er lig med V. en energien er konsan, og når Universe udvider sig, falder energidensieen med skalafakoren i redje poens. De vil sige, a i de maeriedominerede univers er m 0 a I de foondominerede univers så vi, a udvidelsen påvirker foonernes bølgelængde, så densieen falder med skalafakoren i fjerde poens 0 a Hvis vi sammenligner med ilsandsligningen (10) ser vi, a W = 0 for de maeriedominerede univers, og W = 1 for de foondominerede univers. Den kosmologiske konsan Den kosmologiske konsan Λ opræder på højre side i Friedmann ligningen. Den sammer fra en reelse som Einsein indføre il sin berøme felligning i 1916 for a illade e saisk univers. Senere kalde han dee for den sørse fejlagelse i mi liv, da den er unødvendig i e ekspanderende univers. en de har vis sig, a den alligevel har beydning. Årsagen il dee er vakuumenergi. de Pd V (9) Da energien i boksen er lig med energidensieen ρ gange rumfange V får vi de dv V d, da densieen afager, når energien i boksen afager. Vi sæer ind i (9) og får d V V d PdV Så sæer vi ind ilsandsligningen (8): dv V d W dv d W dv 1 V Vi inegrerer og får løsningen V 1 W Vakuumenergi opræder i kvanefeleori som nulpunkenergi. Selv i absolu vakuum vil der være viruelle parikler, som eksiserer korvarig. Da de opfylder Heisenbergs usikkerhedsrelaion, kan deres energi ikke være nul. Dee giver ophav il nulpunkenergi i en kvanifiere harmonisk osillaor. Effeken kan observeres i Casimir effeken, som skaber ilrækning mellem elekrisk ledende plader i vakuum og den er også ophav il Hawking sråling fra sore huller. I kosmologien opræder vakuumenergien som en konsan (lille) energidensie, som fylder hele Universe. Vi vil nu se på, hvilke implikaioner dee har på ilsandsligningen. Vakuumenergi er en egenskab ved rumme og den påvirkes ikke af fysiske proesser. De vil sige, a når Universe ekspanderer, vil densieen af vakuumenergi være konsan. For a dee skal kunne opfyldes, må W = 1 i ligning (9). LFK-blade 1/018 7 aemaik Fysik

7 Konklusion Vi har se, a vi kan udlede Friedmann ligningerne fra Newons mekanik og de kosmologiske prinip. Vi kan beskrive Universe med en simpel ilsandsligning og vise, a Universe har gennemgåe re faser, se Figur 5. I de idlige univers dominerede foonerne og Universe ekspanderede med kvadraroden af iden. Eferhånden, som der blev danne sof i form af elemenarparikler, gik Universe over i den sofdominerede fase, hvor ekspansionen er proporional med iden i /. Når Universe ekspanderer, falder densieen, og på e idspunk går de ind i sin redje fase, hvor vakuumenergien dominerer, og Universe begynder en eksponeniel ekspansion. Denne skyldes, a vakuumenergien ilager, når Universe udvider sig. Figur 5 Tre faser i Universes ekspansion. Tilsandsligningen for e univers dominere af vakuumenergi er derfor P, hvor er energidensieen i vakuum. Universes eksponenielle ekspansion blev opdage i 1998 og udløse nobelprisen i fysik i 011. Når vi kombinerer de re faser, får vi e samle billede af Universes ekspansion som vis i Figur 6. Vi kan udrykke denne ved hjælp af den kosmologiske konsan 8 ed denne definiion kan vi skrive Freidmann ligningen som a a 8 m v 0 Ra Vi vil nu se på løsninger il ligningen for e univers, hvor vakuumenergien er dominerende. Da (, ) v, sæer vi derfor 0 og får m a v a 8 Figur 6 Tidsudviklingen af Universes ekspansion. Dee er en differenialligning, som har løsningen a ke (11) De vil sige, a rumme ekspanderer eksponeniel med iden. E sådan rum, hvor rykke er negaiv og vakuumenergien dominerer, kaldes e de Sier rum. aemaik Fysik De negaive ryk skyldes, a når boksen i ilsandsligningen udvider sig, vokser energien med mere end de arbejde, boksen udfører på omgivelserne. 8 LFK-blade 1/018

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet. stx141-matn/a-05052014 Maemaik A Sudenereksamen Forberedelsesmaeriale il de digiale eksamensopgaver med adgang il inernee sx141-matn/a-0505014 Mandag den 5. maj 014 Forberedelsesmaeriale il sx A ne MATEMATIK Der skal afsæes

Læs mere

Eksponentielle sammenhänge

Eksponentielle sammenhänge Eksponenielle sammenhänge y 800,95 1 0 1 y 80 76 7, 5 5% % 1 009 Karsen Juul Dee häfe er en forsäelse af häfe "LineÄre sammenhänge, 008" Indhold 14 Hvad er en eksponeniel sammenhäng? 53 15 Signing og fald

Læs mere

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og

EPIDEMIERS DYNAMIK. Kasper Larsen, Bjarke Vilster Hansen. Henriette Elgaard Nissen, Louise Legaard og EPDEMER DYAMK AF Kasper Larsen, Bjarke Vilser Hansen Henriee Elgaard issen, Louise Legaard og Charloe Plesher-Frankild 1. Miniprojek idefagssupplering, RUC Deember 2007 DLEDG Maemaisk modellering kan anvendes

Læs mere

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk

2 Separation af de variable. 4 Eksistens- og entydighed af løsninger. 5 Ligevægt og stabilitet. 6 En model for forrentning af kapital med udtræk Oversig Mes repeiion med fokus på de sværese emner Modul 3: Differenialligninger af. orden Maemaik og modeller 29 Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk 3 simple yper differenialligninger

Læs mere

Bankernes renter forklares af andet end Nationalbankens udlånsrente

Bankernes renter forklares af andet end Nationalbankens udlånsrente N O T A T Bankernes rener forklares af ande end Naionalbankens udlånsrene 20. maj 2009 Kor resumé I forbindelse med de senese renesænkninger fra Naionalbanken er bankerne bleve beskyld for ikke a sænke

Læs mere

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver

Newtons afkølingslov løst ved hjælp af linjeelementer og integralkurver Newons afkølingslov løs ved hjælp af linjeelemener og inegralkurver Vi så idligere på e eksempel, hvor en kop kakao med emperauren sar afkøles i e lokale med emperauren slu. Vi fik, a emperaurfalde var

Læs mere

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst

1 Stofskifte og kropsvægt hos pattedyr. 2 Vægtforhold mellem kerne og strå. 3 Priselasticitet. 4 Nedbrydning af organisk materiale. 5 Populationsvækst Oversig Eksempler på hvordan maemaik indgår i undervisningen på LIFE Gymnasielærerdag Thomas Vils Pedersen Insiu for Grundvidenskab og Miljø vils@life.ku.dk Sofskife og kropsvæg hos paedyr Vægforhold mellem

Læs mere

DiploMat Løsninger til 4-timersprøven 4/6 2004

DiploMat Løsninger til 4-timersprøven 4/6 2004 DiploMa Løsninger il -imersprøven / Preben Alsholm / Opgave Polynomie p er give ved p (z) = z 8 z + z + z 8z + De oplyses, a polynomie også kan skrives således p (z) = z + z z + Vi skal nde polynomies

Læs mere

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling

Hvad er en diskret tidsmodel? Diskrete Tidsmodeller. Den generelle formel for eksponentiel vækst. Populationsfordobling Hvad er en diskre idsmodel? Diskree Tidsmodeller Jeppe Revall Frisvad En funkion fra mængden af naurlige al il mængden af reelle al: f : R f (n) = 1 n + 1 n Okober 29 1 8 f(n) = 1/(n + 1) f(n) 6 4 2 1

Læs mere

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik

1. Raketligningen. 1.1 Kinematiske forhold ved raketopsendelse fra jorden. Raketfysik Rakefysik. Rakeligningen Rakeligningen kan udlede ud fra iulssæningen. Vi anager a vi har en rake ed asse (), Rakeen drives fre ved a der udslynges en konsan asse µ r. idsenhed µ -d/d ed hasigheden u i

Læs mere

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen

Fysikrapport: Vejr og klima. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ann-Sofie N. Schou og Camilla Jensen Fysikrappor: Vejr og klima Maila Walmod, 13 HTX, Rosklide I gruppe med Ann-Sofie N Schou og Camilla Jensen Afleveringsdao: 30 november 2007 1 I dagens deba høres orde global opvarmning ofe Men hvad vil

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72.

I dette appendiks uddybes kemien bag enzymkinetikken i Bioteknologi 2, side 60-72. Bioeknologi 2, Tema 4 5 Kineik Kineik er sudier af reakionshasigheden hvor man eksperimenel undersøger de fakorer, der påvirker reakionshasigheden, og hvor resulaerne afslører reakionens mekanisme og ransiion

Læs mere

Undervisningsmaterialie

Undervisningsmaterialie The ScienceMah-projec: Idea: Claus Michelsen & Jan Alexis ielsen, Syddansk Universie Odense, Denmark Undervisningsmaerialie Ark il suderende og opgaver The ScienceMah-projec: Idea: Claus Michelsen & Jan

Læs mere

Skriftlig prøve Kredsløbsteori Onsdag 3. Juni 2009 kl (2 timer) Løsningsforslag

Skriftlig prøve Kredsløbsteori Onsdag 3. Juni 2009 kl (2 timer) Løsningsforslag Skriflig prøve Kredsløbseori Onsdag 3. Juni 29 kl. 2.3 4.3 (2 imer) øsningsforslag Opgave : (35 poin) En overføringsfunkion, H(s), har formen: Besem hvilke poler og nulpunker der er indehold i H(s) Tegn

Læs mere

FitzHugh Nagumo modellen

FitzHugh Nagumo modellen FizHugh Nagumo modellen maemaisk modellering af signaler i nerve- og muskelceller Torsen Tranum Rømer, Frederikserg Gymnasium Fagene maemaik og idræ supplerer hinanden god inden for en lang række emner.

Læs mere

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation.

Lindab Comdif. Fleksibilitet ved fortrængning. fortrængningsarmaturer. Comdif er en serie af luftfordelingsarmaturer til fortrængningsventilation. comfor forrængningsarmaurer Lindab Comdif 0 Lindab Comdif Ved forrængningsvenilaion ilføres lufen direke i opholds-zonen ved gulvniveau - med lav hasighed og underemperaur. Lufen udbreder sig over hele

Læs mere

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger

MOGENS ODDERSHEDE LARSEN. Sædvanlige Differentialligninger MOGENS ODDERSHEDE LARSEN Sædvanlige Differenialligninger a b. udgave 004 FORORD Dee noa giver en indføring i eorien for sædvanlige differenialligninger. Der lægges især væg på løsningen af lineære differenialligninger

Læs mere

Lektion 10 Reaktionshastigheder Epidemimodeller

Lektion 10 Reaktionshastigheder Epidemimodeller Lekion 1 Reakionshasigheder Epidemimodeller Simpel epidemimodel Kermack-McKendric epidemimodel Kemiske reakionshasigheder 1 Simpel epidemimodel I en populaion af N individer er I() inficerede og resen

Læs mere

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet En af de mest opsigtsvækkende opdagelser inden for astronomien er, at Universet udvider sig. Det var den

Læs mere

Funktionel form for effektivitetsindeks i det nye forbrugssystem

Funktionel form for effektivitetsindeks i det nye forbrugssystem Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh. augus 007 Funkionel form for effekiviesindeks i de nye forbrugssysem Resumé: Der findes o måder a opskrive effekiviesudvidede CES-funkioner med o

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock April 7, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C niveau, men dengang havde vi ikke

Læs mere

Logaritme-, eksponential- og potensfunktioner

Logaritme-, eksponential- og potensfunktioner Logarime-, eksponenial- og poensfunkioner John Napier (550-67. Peer Haremoës Niels Brock July 27, 200 Indledning Eksponenial- og logarimefunkioner blev indfør på Ma C nivea uden en præcis definiion. Funkionerne

Læs mere

Ny ligning for usercost

Ny ligning for usercost Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 8. okober 2008 Ny ligning for usercos Resumé: Usercos er bleve ændre frem og ilbage i srukur og vil i den nye modelversion have noge der minder om

Læs mere

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003

RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Efterårssemestret 2003 RETTEVEJLEDNING TIL Tag-Med-Hjem-Eksamen Makroøkonomi, 2. Årsprøve Eferårssemesre 2003 Generelle bemærkninger Opgaven er den redje i en ny ordning, hvorefer eksamen efer førse semeser af makro på 2.år

Læs mere

MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI

MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI MODERNE KOSMOLOGI STEEN HANNESTAD, INSTITUT FOR FYSIK OG ASTRONOMI T (K) t (år) 10 30 10-44 sekunder 1 mia. 10 sekunder 3000 300.000 50 1 mia. He, D, Li Planck tiden Dannelse af grundstoffer Baggrundsstråling

Læs mere

Computer- og El-teknik Formelsamling

Computer- og El-teknik Formelsamling ompuer- og El-eknik ormelsamling E E E + + E + Holsebro HTX ompuer- og El-eknik 5. og 6. semeser HJA/BA Version. ndholdsforegnelse.. orkorelser inden for srøm..... Modsande ved D..... Ohms ov..... Effek

Læs mere

Produktionspotentialet i dansk økonomi

Produktionspotentialet i dansk økonomi 51 Produkionspoeniale i dansk økonomi Af Asger Lau Andersen og Moren Hedegaard Rasmussen, Økonomisk Afdeling 1 1. INDLEDNING OG SAMMENFATNING Den økonomiske udvikling er i Danmark såvel som i alle andre

Læs mere

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4

Institut for Matematiske Fag Matematisk Modellering 1 UGESEDDEL 4 Insiu for Maemaiske Fag Maemaisk Modellering 1 Aarhus Universie Eva B. Vedel Jensen 12. februar 2008 UGESEDDEL 4 OBS! Øvelseslokale for hold MM4 (Jonas Bæklunds hold) er ændre il Koll. G3 på IMF. Ændringen

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Nulkuponobligationer Dagens forelæsning Ingen-Arbirage princippe Claus Munk kap. 4 Nulkuponobligaioner Simpel og generel boosrapping Nulkuponrenesrukuren Forwardrener 2 Obligaionsprisfassæelse Arbirage Værdien af en obligaion

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over.

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Rumgeomeri Hvis man ønsker mere udfordring, kan man springe de førse 0 opgaver over Opgave I rumme er give punkerne A og B Besem en parameerfremsilling for linjen l som indeholder punkerne A og B, når

Læs mere

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B

Trekantsberegning. Udgave 2. 2010 Karsten Juul 25 B Trekansberegning Udgave 7,0 3 5 00 Karsen Juul ee häfe indeholder den del af rekansberegningen som skal kunnes på -niveau i gymnasie (sx) og hf. Fra sommer 0 kräves mere. Indhold. real af rekan.... Pyhagoras'

Læs mere

Øresund en region på vej

Øresund en region på vej OKTOBER 2008 BAG OM NYHEDERNE Øresund en region på vej af chefkonsulen Ole Schmid Sore forvenninger il Øresundsregionen Der var ingen ende på, hvor god de hele ville blive når broen blev åbne, og Øresundsregionen

Læs mere

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik

Udkast pr. 27/11-2003 til: Equity Premium Puzzle - den danske brik Danmarks Saisik MODELGRUPPEN Arbejdspapir Jakob Nielsen 27. november 2003 Claus Færch-Jensen Udkas pr. 27/11-2003 il: Equiy Premium Puzzle - den danske brik Resumé: Papire beskriver udviklingen på de danske

Læs mere

Hvor bliver pick-up et af på realkreditobligationer?

Hvor bliver pick-up et af på realkreditobligationer? Hvor bliver pick-up e af på realkrediobligaioner? Kvanmøde 2, Finansanalyikerforeningen 20. April 2004 Jesper Lund Quaniaive Research Plan for dee indlæg Realkredi OAS som mål for relaiv værdi Herunder:

Læs mere

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008

Tjekkiet Štěpán Vimr, lærerstuderende Rapport om undervisningsbesøg Sucy-en-Brie, Frankrig 15.12.-19.12.2008 Tjekkie Šěpán Vimr lærersuderende Rappor om undervisningsbesøg Sucy-en-Brie Frankrig 15.12.-19.12.2008 Konak med besøgslæreren De indledende konaker (e-mail) blev foreage med de samme undervisere hvilke

Læs mere

MAKRO 2 ENDOGEN VÆKST

MAKRO 2 ENDOGEN VÆKST ENDOGEN VÆKST MAKRO 2 2. årsprøve Forelæsning 7 Kapiel 8 Hans Jørgen Whia-Jacobsen econ.ku.dk/okojacob/makro-2-f09/makro I modeller med endogen væks er den langsigede væksrae i oupu pr. mand endogen besem.

Læs mere

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl.

Skriftlig Eksamen. Datastrukturer og Algoritmer (DM02) Institut for Matematik og Datalogi. Odense Universitet. Torsdag den 2. januar 1997, kl. Skriflig Eksamen Daasrukurer og lgorimer (DM0) Insiu for Maemaik og Daalogi Odense Universie Torsdag den. januar 199, kl. 9{1 lle sdvanlige hjlpemidler (lrebger, noaer, ec.) sam brug af lommeregner er

Læs mere

Dynamik i effektivitetsudvidede CES-nyttefunktioner

Dynamik i effektivitetsudvidede CES-nyttefunktioner Danmarks Saisik MODELGRUPPEN Arbejdspapir Grane Høegh. augus 006 Dynamik i effekiviesudvidede CES-nyefunkioner Resumé: I dee papir benyes effekiviesudvidede CES-nyefunkioner il a finde de relaive forbrug

Læs mere

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst

Baggrundsnotat: Estimation af elasticitet af skattepligtig arbejdsindkomst d. 02.11.2011 Esben Anon Schulz Baggrundsnoa: Esimaion af elasicie af skaepligig arbejdsindkoms Dee baggrundsnoa beskriver kor meode og resulaer vedrørende esimaionen af elasicieen af skaepligig arbejdsindkoms.

Læs mere

Trykfald over en bed af fliskoks

Trykfald over en bed af fliskoks Danmarks Tekniske Universie Insiu for Energieknik ET -ES 99-01 Trykfald over en bed af fliskoks P Danmarks Tekniske Universie Insiu for Energieknik April 1999 Claus Hindsgaul Ulrik Henriksen Trykab over

Læs mere

DET USYNLIGE UNIVERS. STEEN HANNESTAD 24. januar 2014

DET USYNLIGE UNIVERS. STEEN HANNESTAD 24. januar 2014 DET USYNLIGE UNIVERS STEEN HANNESTAD 24. januar 2014 GANSKE KORT OM KOSMOLOGIENS UDVIKLING FØR 1920: HELE UNIVERSET FORMODES AT VÆRE NOGENLUNDE AF SAMME STØRRELSE SOM MÆLKEVEJEN OMKRING 30,000 LYSÅR GANSKE

Læs mere

Efterspørgslen efter læger 2012-2035

Efterspørgslen efter læger 2012-2035 2013 5746 PS/HM Eferspørgslen efer læger 2012-2035 50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 Anal eferspurge læger i sundhedsudgifalernaive Anal eferspurge læger i finanskrisealernaive

Læs mere

CHRISTIAN SCHULTZ 28. MARTS 2014 DET MØRKE UNIVERS CHRISTIAN SCHULTZ DET MØRKE UNIVERS 28. MARTS 2014 CHRISTIAN SCHULTZ

CHRISTIAN SCHULTZ 28. MARTS 2014 DET MØRKE UNIVERS CHRISTIAN SCHULTZ DET MØRKE UNIVERS 28. MARTS 2014 CHRISTIAN SCHULTZ OUTLINE Hvad er kosmologi Observationer i astrofysik Hvorfor må vi have mørk energi og mørkt stof for at forstå observationerne? 2 KOSMOLOGI Kosmos: Det ordnede hele Logi: Læren om Kosmo+logi: Læren om

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over.

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Rumgeomeri Hvis man ønsker mere udfordring, kan man springe de førse 0 opgaver over Opgave I rumme er give punkerne A og B Besem en parameerfremsilling for linjen l som indeholder punkerne A og B, når

Læs mere

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni

Øger Transparens Konkurrencen? - Teoretisk modellering og anvendelse på markedet for mobiltelefoni DET SAMFUNDSVIDENSKABELIGE FAKULTET KØBENHAVNS UNIVERSITET Øger Transarens Konkurrencen? - Teoreisk modellering og anvendelse å markede for mobilelefoni Bjørn Kyed Olsen Nr. 97/004 Projek- & Karrierevejledningen

Læs mere

Bilag 1E: Totalvægte og akseltryk

Bilag 1E: Totalvægte og akseltryk Vejdirekorae Side 1 Forsøg med modulvognog Slurappor Bilag 1E: Toalvæge og ryk Bilag 1E: Toalvæge og ryk Dee bilag er opdel i følgende dele: 1. En inrodukion il bilage 2. Resulaer fra de forskellige målesaioner,

Læs mere

Mørkt stof og mørk energi

Mørkt stof og mørk energi Mørkt stof og mørk energi UNF AALBORG UNI VERSITET OUTLINE Introduktion til kosmologi Den kosmiske baggrund En universel historietime Mørke emner Struktur af kosmos 2 KOSMOLOGI Kosmos: Det ordnede hele

Læs mere

En-dimensionel model af Spruce Budworm udbrud

En-dimensionel model af Spruce Budworm udbrud En-dimensionel model af Sprce dworm dbrd Kenneh Hagde Mandr p Niel sen o g K asper j er ing Søby Jensen, ph.d-sderende ved oskilde Universie i hhv. maemaisk modellering og maemaikkens didakik. Maemaisk

Læs mere

tegnsprog Kursuskatalog 2015

tegnsprog Kursuskatalog 2015 egnsprog Kursuskaalog 2015 Hvordan finder du di niveau? Hvor holdes kurserne? Hvordan ilmelder du dig? 5 Hvad koser e kursus? 6 Tegnsprog for begyndere 8 Tegnsprog på mellemniveau 10 Tegnsprog for øvede

Læs mere

Finansministeriets beregning af gab og strukturelle niveauer

Finansministeriets beregning af gab og strukturelle niveauer Noa. november (revidere. maj ) Finansminiseries beregning af gab og srukurelle niveauer Vurdering af oupugabe (forskellen mellem fakisk og poeniel produkion) og de srukurelle niveauer for ledighed og arbejdssyrke

Læs mere

Hvor lang tid varer et stjerneskud?

Hvor lang tid varer et stjerneskud? Hvor lang id varer e jernekud? Ole Wi-Hanen, Køge Gymnaium Hvordan kan man ud fra en meeor mae og haighed bekrive den vej ned gennem amofæren? Her giver forfaeren en fremilling af fyikken bag. Søndag den

Læs mere

Estimation af markup i det danske erhvervsliv

Estimation af markup i det danske erhvervsliv d. 16.11.2005 JH Esimaion af markup i de danske erhvervsliv Baggrundsnoa vedrørende Dansk Økonomi, eferår 2005, kapiel II Noae præsenerer esimaioner af markup i forskellige danske erhverv. I esimaionerne

Læs mere

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri

Matematikkens mysterier - på et højt niveau. 4. Rumgeometri Maemaikkens mserier - på e høj niveau af Kenneh Hansen 4. Rumgeomeri Hvordan kan o forskellige planer ligge i forhold il hinanden? 4. Rumgeomeri Indhold 4. Vekorer i rumme 4. Krdsproduke 7 4. Planer og

Læs mere

Bilbeholdningen i ADAM på NR-tal

Bilbeholdningen i ADAM på NR-tal Danmarks Saisik MODELGRUPPEN Arbejdspapir* Grane Høegh 4. april 2008 Bilbeholdningen i ADAM på NR-al Resumé: Dee papir foreslår a lade bilbeholdningen i ADAM være lig den officielle bilbeholdning fra Naionalregnskabe.

Læs mere

Lidt om trigonometriske funktioner

Lidt om trigonometriske funktioner DEN TEKNISK-NATURVIDENSKABELIGE BASISUDDANNELSE MATEMATIK TRIGNMETRISKE FUNKTINER EFTERÅRET 000 Lid m rignmeriske funkiner Funkinerne cs g sin De rignmeriske funkiner defines i den elemenære maemaik ved

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen

Danmarks fremtidige befolkning Befolkningsfremskrivning 2006. Marianne Frank Hansen, Lars Haagen Pedersen og Peter Stephensen Danmarks fremidige befolkning Befolkningsfremskrivning 26 Marianne Frank Hansen, Lars Haagen Pedersen og Peer Sephensen Juni 26 Indholdsforegnelse Forord...4 1. Indledning...6 2. Befolkningsfremskrivningsmodellen...8

Læs mere

En model til fremskrivning af det danske uddannelsessystem

En model til fremskrivning af det danske uddannelsessystem En model il fremskrivning af de danske uddannelsessysem Peer Sephensen og Jonas Zangenberg Hansen December 27 Side 2 af 22 1. Indledning De er regeringens mål a øge befolkningens uddannelsesniveau. Befolkningens

Læs mere

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie!

FARVEAVL myter og facts Eller: Sådan får man en blomstret collie! FARVEAVL myer og facs Eller: Sådan får man en blomsre collie! Da en opdræer for nylig parrede en blue merle æve med en zobel han, blev der en del snak bland colliefolk. De gør man bare ikke man ved aldrig

Læs mere

Fulde navn: NAVIGATION II

Fulde navn: NAVIGATION II SØFARTSSTYRELSEN Eks.nr. Eksaminaionssed (by) Fulde navn: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Yachskippereksamen af 1. grad. Y1NAV2-1/02

Læs mere

Matematil projekt Bærbar

Matematil projekt Bærbar Maemaik Kursusopgave Bærbar -6-26 Maemail projek Bærbar Opgave A. For a finde ligningen for planen så skal jeg bruge e punk på planen, og normalvekoren for planen. Punke på planen, kan jeg finde fordi

Læs mere

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug

Modellering af benzin- og bilforbruget med bilstocken bestemt på baggrund af samlet forbrug Danmarks Saisik MODELGRUPPEN Arbejdspapir* 13. maj 2005 Modellering af benzin- og bilforbruge med bilsocken besem på baggrund af samle forbrug Resumé: Dee redje papir om en ny model for biler og benzin

Læs mere

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington

Danmarks fremtidige befolkning Befolkningsfremskrivning 2009. Marianne Frank Hansen og Mathilde Louise Barington Danmarks fremidige befolkning Befolkningsfremskrivning 29 Marianne Frank Hansen og Mahilde Louise Baringon Augus 29 Indholdsforegnelse Danmarks fremidige befolkning... 1 Befolkningsfremskrivning 29...

Læs mere

A4: Introduction to Cosmology. Forelæsning 2 (kap. 4-5): Kosmisk Dynamik

A4: Introduction to Cosmology. Forelæsning 2 (kap. 4-5): Kosmisk Dynamik A4: Introduction to Cosmology Forelæsning (kap. 4-5): Kosmisk Dynamik 1-komponent modeller Robertson-Walker metrikken ds = c dt² a t [ Metrik med medfølgende koordinater (x,θ,φ), x= S κ (r) i den rumlige

Læs mere

Hvor meget er det værd at kunne udskyde sine afdrag, som man vil?

Hvor meget er det værd at kunne udskyde sine afdrag, som man vil? Hvor mege er de værd a kunne udskyde sine afdrag, som man vil? Bjarke Jensen Rolf Poulsen 1 Indledning For den almindelig fordrukne og forgældede danske boligejer var 1. okober 2003 en god dag: Billigere

Læs mere

Rustfrit stål i husholdningen

Rustfrit stål i husholdningen Rus f r i s åli hus hol dni ngen Hv i l k es ål y perbr ugerv iikøkk ene oghv or f or?oghv ader f l y v er us? Rusfri sål i husholdningen Hvilke sålyper bruger vi i køkkene og hvorfor? Og hvad er flyverus?

Læs mere

Modellove ved fysiske modelforsøg

Modellove ved fysiske modelforsøg DANSIS emadag om eksperimenel fluid dynamik (EFD) på FORCE Technology, yngby, 8. okober 003 odellove ved fysiske modelforsøg Chrisian Aage Docen, ph.d. Danmarks Tekniske Universie ariim Teknik Absrac:

Læs mere

Vækst på kort og langt sigt

Vækst på kort og langt sigt 12 SAMFUNDSØKONOMEN NR. 1 MARTS 2014 VÆKST PÅ KORT OG LANG SIGT Væks på kor og lang sig Efer re års silsand i dansk økonomi er de naurlig, a ineressen for a skabe økonomisk væks er beydelig. Ariklen gennemgår

Læs mere

Danmarks Nationalbank

Danmarks Nationalbank Danmarks Naionalbank Kvar al so ver sig 3. kvaral Del 2 202 D A N M A R K S N A T I O N A L B A N K 2 0 2 3 KVARTALSOVERSIGT, 3. KVARTAL 202, Del 2 De lille billede på forsiden viser Arne Jacobsens ur,

Læs mere

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken

Sammenhæng mellem prisindeks for månedstal, kvartalstal og årstal i ejendomssalgsstatistikken 6. sepember 2013 JHO Priser og Forbrug Sammenhæng mellem prisindeks for månedsal, kvaralsal og årsal i ejendomssalgssaisikken Dee noa gennemgår sammenhængen mellem prisindeks for månedsal, kvaralsal og

Læs mere

Universets opståen og udvikling

Universets opståen og udvikling Universets opståen og udvikling 1 Universets opståen og udvikling Grundtræk af kosmologien Universets opståen og udvikling 2 Albert Einstein Omkring 1915 fremsatte Albert Einstein sin generelle relativitetsteori.

Læs mere

Udlånsvækst drives af efterspørgslen

Udlånsvækst drives af efterspørgslen N O T A T Udlånsvæks drives af eferspørgslen 12. januar 211 Kor resumé Der har den senese id være megen fokus på bankers og realkrediinsiuers udlån il virksomheder og husholdninger. Især er bankerne fra

Læs mere

Formler for spoler. An English resume is offered on page 5.

Formler for spoler. An English resume is offered on page 5. An English resume is offered on page 5. Ledere En leder har ved lave frekvenser en inern selvindukion L 1 som følge af fele inde i lederen, men srømmen løber kun i de yderse,5 mm ved khz og,1 mm ved 1

Læs mere

Beregning af prisindeks for ejendomssalg

Beregning af prisindeks for ejendomssalg Damarks Saisik, Priser og Forbrug 2. april 203 Ejedomssalg JHO/- Beregig af prisideks for ejedomssalg Baggrud: e radiioel prisideks, fx forbrugerprisidekse, ka ma ofe følge e ideisk produk over id og sammelige

Læs mere

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer

Prisfastsættelse af fastforrentede konverterbare realkreditobligationer Copenhagen Business School 2010 Kandidaspeciale Cand.merc.ma Prisfassæelse af fasforrenede konvererbare realkrediobligaioner Vejleder: Niels Rom Aflevering: 28. juli 2010 Forfaere: Mille Lykke Helverskov

Læs mere

ktion MTC 4 Varenr MTC4/1101-1

ktion MTC 4 Varenr MTC4/1101-1 Brugervejledning kion & insrukion MTC 4 Varenr. 572185 MTC4/1101-1 INDHOLD Indeks. 1: Beskrivelse 2: Insallaion 3: Programmering 4: Hvordan fungerer syringen 4.1 Toggle ermosa 4.2 1 rins ermosa 4.3 Neuralzone

Læs mere

Anvendelseseksempler ANVENDELSESEKSEMPLER 73 72 KAPITEL A. FUNKTIONER OG MATEMATISKE MODELLER. Ud fra tabellen udregner vi de 4 summer:

Anvendelseseksempler ANVENDELSESEKSEMPLER 73 72 KAPITEL A. FUNKTIONER OG MATEMATISKE MODELLER. Ud fra tabellen udregner vi de 4 summer: 7 KAPITEL A FUNKTIONER OG MATEMATISKE MODELLER Anvendelseseksempler Anvendelseseksempel A Udklækningsid for flueæg (Daa i dee eksempel sammer fra Pracical saisics for environmenal and biological scieniss

Læs mere

Denne pdf-fil er downloadet fra Illustreret Videnskabs website (www.illvid.dk) og må ikke videregives til tredjepart.

Denne pdf-fil er downloadet fra Illustreret Videnskabs website (www.illvid.dk) og må ikke videregives til tredjepart. Kære bruger Denne pdf-fil er downloadet fra Illustreret Videnskabs website (www.illvid.dk) og må ikke videregives til tredjepart. Af hensyn til copyright indeholder den ingen fotos. Mvh Redaktionen Nye

Læs mere

Pensionsformodel - DMP

Pensionsformodel - DMP Danmarks Saisik MODELGRUPPEN Arbejdspapir Marin Junge og Tony Krisensen 19. sepember 2003 Pensionsformodel - DMP Resumé: Vi konsruerer ind- og udbealings profiler for pensionsformuerne. I dee ilfælde kigger

Læs mere

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998

Dommedag nu? T. Døssing, A. D. Jackson og B. Lautrup Niels Bohr Institutet. 23. oktober 1998 Dommedag nu? T. Døssing, A. D. Jackson og B. Laurup Niels Bohr Insiue 3. okober 1998 Der har alid være fanaikere, som har men, a dommedag var nær, og for en del år siden kom nogle naurvidenskabelige forskere

Læs mere

Optimalt porteføljevalg i en model med intern habit nyttefunktion og stokastiske investeringsmuligheder

Optimalt porteføljevalg i en model med intern habit nyttefunktion og stokastiske investeringsmuligheder Opimal poreføljevalg i en model med inern habi nyefunkion og sokasiske inveseringsmuligheder Thomas Hemming Larsen cand.merc.(ma.) sudie Insiu for Finansiering Copenhagen Business School Vejleder: Carsen

Læs mere

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2.

MAKRO 2 KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER. - uundværlig i frembringelsen af aggregeret output og. 2. KAPITEL 7: GRÆNSER FOR VÆKST? SOLOW-MODELLEN MED NATURRESSOURCER MAKRO 2 2. årsprøve Klassisk syn: JORDEN/NATUREN er en produkionsfakor, som er - uundværlig i frembringelsen af aggregere oupu og Forelæsning

Læs mere

8.14 Teknisk grundlag for PFA Plus: Bilag 9-15 Indholdsforegnelse 9 Bilag: Indbealingssikring... 3 1 Bilag: Udbealingssikring... 4 1.1 Gradvis ilknyning af udbealingssikring... 4 11 Bilag: Omkosninger...

Læs mere

Kan den danske forbrugsudvikling benyttes til at bestemme inflationsforventninger?

Kan den danske forbrugsudvikling benyttes til at bestemme inflationsforventninger? 59 Kan den danske forbrugsudvikling benyes il a besemme inflaionsforvenninger? Michael Pedersen, Økonomisk Afdeling INFLATIONSFORVENTNINGER Realrenen angiver låneomkosningerne (eller afkase af en placering

Læs mere

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked

Multivariate kointegrationsanalyser - En analyse af risikopræmien på det danske aktiemarked Cand.merc.(ma)-sudie Økonomisk nsiu Kandidaafhandling Mulivariae koinegraionsanalyser - En analyse af risikopræmien på de danske akiemarked Suderende: Louise Wellner Bech flevere: 9. april 9 Vejleder:

Læs mere

Appendisk 1. Formel beskrivelse af modellen

Appendisk 1. Formel beskrivelse af modellen Appendisk. Formel beskrivelse af modellen I dee appendiks foreages en mere formel opsilning af den model, der er beskreve i ariklen. Generel: Renen og alle produenpriser - eksklusiv lønnen - er give fra

Læs mere

Mere om. trekantsberegning. D s u. 2012 Karsten Juul

Mere om. trekantsberegning. D s u. 2012 Karsten Juul Mere om rekansberegning D s A C v B 01 Karsen Jl Dee häfe indeholder ilfåjelser il fålgende häfer: Korfae rekansberegning for gymnasie og hf /11-010 hp://ma1.dk/korfae_rekansberegning_for_gymnasie_og_hf.pdf

Læs mere

Arbejdspapir nr. 17/2005. Titel: Beregning af den strukturelle offentlige saldo 1. Forfatter: Michael Skaarup (msk@fm.dk)

Arbejdspapir nr. 17/2005. Titel: Beregning af den strukturelle offentlige saldo 1. Forfatter: Michael Skaarup (msk@fm.dk) Arbejdspapir nr. 17/5 Tiel: Beregning af den srukurelle offenlige saldo 1 Forfaer: Michael Skaarup (msk@fm.dk) Henvendelse: Michael Lund Nielsen (mln@fm.dk) Resumé: I arbejdspapire redegøres for den meode

Læs mere

1. Aftalen... 2. 1.A. Elektronisk kommunikation meddelelser mellem parterne... 2 1.B. Fortrydelsesret for forbrugere... 2 2. Aftalens parter...

1. Aftalen... 2. 1.A. Elektronisk kommunikation meddelelser mellem parterne... 2 1.B. Fortrydelsesret for forbrugere... 2 2. Aftalens parter... Gener el l ebe i ngel s erf orl ever i ngogdr i f af L ok al Tel ef onens j enes er Ver s i on1. 0-Febr uar2013 L ok al Tel ef onena/ S-Pos bok s201-8310tr anbj er gj-k on ak @l ok al el ef onen. dk www.

Læs mere

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage

Dagens forelæsning. Claus Munk. kap. 4. Arbitrage. Obligationsprisfastsættelse. Ingen-Arbitrage princippet. Illustration af arbitrage Dages forelæsig Ige-Arbirage pricippe Claus Muk kap. 4 Nulkupoobligaioer Simpel og geerel boosrappig Forwardreer Obligaiosprisfassæelse Arbirage Værdie af e obligaio Nuidsværdie af obligaioes fremidige

Læs mere

Bilag 7 - Industriel overfladebehandling Bilag til Arbejdstilsynets bekendtgørelse nr. 302 af 13. maj 1993 om arbejde med kodenummererede produkter

Bilag 7 - Industriel overfladebehandling Bilag til Arbejdstilsynets bekendtgørelse nr. 302 af 13. maj 1993 om arbejde med kodenummererede produkter Bilag 7 - Indusriel ovfladebehandling Bilag il Arbejdsilsynes bekendgørelse nr. 302 af 13. maj 1993 om arbejde kodenume produk 7.1. Bilages område a. Påføring af maling og lak på emn på fase arbejdsplads

Læs mere

Makroøkonomiprojekt Kartoffelkuren - Hensigter og konsekvenser Efterår 2004 HA 3. semester Gruppe 13

Makroøkonomiprojekt Kartoffelkuren - Hensigter og konsekvenser Efterår 2004 HA 3. semester Gruppe 13 Side 1 af 34 Tielblad Dao: 16. december 2004 Forelæser: Ben Dalum og Björn Johnson Vejleder: Ger Villumsen Berglind Thorseinsdoir Charloa Rosenquis Daniel Skogemann Lise Pedersen Maria Rasmussen Susanne

Læs mere

Finanspolitik i makroøkonomiske modeller

Finanspolitik i makroøkonomiske modeller 33 Finanspoliik i makroøkonomiske modeller Jesper Pedersen, Økonomisk Afdeling 1 1. INDLEDNING OG SAMMENFATNING Finanspoliik og pengepoliik er radiionel se de o vigigse økonomiske insrumener il sabilisering

Læs mere

Prisdannelsen i det danske boligmarked diagnosticering af bobleelement

Prisdannelsen i det danske boligmarked diagnosticering af bobleelement Hovedopgave i finansiering, Insiu for Regnskab, Finansiering og Logisik Forfaer: Troels Lorenzen Vejleder: Tom Engsed Prisdannelsen i de danske boligmarked diagnosicering af bobleelemen Esimering af dynamisk

Læs mere

Indekserede Obligationer

Indekserede Obligationer Insiu for Finansiering Cand. Merc. 3. emeser Lærer: vend Jacobsen Forfaere: Per Frederisen Torben Peersen Indeserede Obligaioner - En analyse af den implicie opions enise aspeer og anvendelsesmuligheder

Læs mere

c. Godkendelse af dagsordenen ( ) d. Godkendelse af referat fra UDDU møde februar 2015 Ingen indsigelser

c. Godkendelse af dagsordenen ( ) d. Godkendelse af referat fra UDDU møde februar 2015 Ingen indsigelser : Dao for møde: Side Dagsorden il møde i UDDU maj 2015 07.05.15 1/7 Referen: Udfærdige dao : Mødesed Tilsedeværende: Søren Kold, Susanne Malle, Marie Fridberg,, Jakob Kli,, 1.0 Formalia a. Valg af dirigen

Læs mere

ktion MTC 12 Varenr. 572178 MTC12/1101-1

ktion MTC 12 Varenr. 572178 MTC12/1101-1 Brugervejledning kion & insrukion MTC 12 Varenr. 572178 MTC12/1101-1 INDHOLD Indeks. 1: Beskrivelse 2: Insallaion 3: Programmering 4: Hvordan fungerer syringen 4.1 Toggle ermosa 4.2 1 rins ermosa 4.3 Neuralzone

Læs mere

Er det den samme hund?

Er det den samme hund? B Er de den samme hund? 1 3 1 Hvor mange fliser? 1 Her kan du se Familien Tals legeplads. Der skal lægges fliser i de gule områder. De ser sådan ud: Tegn, hvordan fliserne kan være lag. Fx a b c d e f

Læs mere

GEODÆTISK INSTITUT FØR OG EFTER GIER

GEODÆTISK INSTITUT FØR OG EFTER GIER Geodæisk Insiu før og efer GIER GEODÆTISK INSTITUT FØR OG EFTER GIER Sasgeodæ, dr. scien. Knud Poder 1 Beregningsopgave med konsekvenser 1.1 Opgaven I 1953 fik Geodæisk Insius afdeling GA1 en sørre beregningsopgave,

Læs mere

Moderne Fysik 1 Side 1 af 7 Speciel Relativitetsteori

Moderne Fysik 1 Side 1 af 7 Speciel Relativitetsteori Moderne Fysik 1 Side 1 af 7 Hvad sker der, hvis man kører i en Mazda med nærlysfart og tænder forlygterne?! Kan man se lyset snegle sig afsted foran sig...? Klassisk Relativitet Betragt to observatører

Læs mere