Z 0 -bosonens Henfaldskanaler. Casper Drukier Andreas Hasseriis Kamstrup Peter Krogstrup Kim Georg Lind Pedersen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Z 0 -bosonens Henfaldskanaler. Casper Drukier Andreas Hasseriis Kamstrup Peter Krogstrup Kim Georg Lind Pedersen"

Transkript

1 Z 0 -bosonens Henfaldskanaler Casper Drukier Andreas Hasseriis Kamstrup Peter Krogstrup Kim Georg Lind Pedersen 4. april 2005

2 Resumé I det følgende projekt bestemmes først forgreningsforholdet mellem Z 0 hadron og Z 0 lepton henfald ved hjælp af billeder fra ALEPH detektoren i CERN. Udfra samme data bestemmes andelen af b-henfald i forhold til det samlede antal kvarkhenfald. Forgreningsforholdet bestemmes til 6.6 ±0.6 stat ±1.2 sys, mens R b bestemmes til R b = ± stat ± sys

3 Indhold 1 Indledning Problemformulering Standardmodellen Partikelindhold Feynman diagrammer Quantum Chromodynamics (QCD) Farveladning Den stærke vekselvirkning Den svage vekselvirkning LEP og ALEPH LEP ALEPH Forgreningsforhold Teoretisk udledning af forgreningsforholdet Dataindsamling Databehandling B-kvarkens forgreningsforhold Teoretisk udledning af R b Eksperimentel bestemmelse af R b Monte Carlo simulationer Det neurale netværk Udregninger Databehandling Monte Carlo (MC) Data fra ALEPH Konklusion 21 A Ordliste 22 1

4 INDHOLD 2 B Billeder 24 B.0.3 Billeder fra dalinew - ALEPH

5 Kapitel 1 Indledning I 1989 blev den store LEP-accellerator i CERN taget i brug. Formålet var blandt andet at eftervise Standardmodellens forudsigelser vedrørende Z 0 -bosonens karakteristika - herunder forløbet af dens henfald. Man ønsker at sammenligne eksperimentielle data med simulerede - såkaldte Monte Carlo - data, for at kunne præcisere hvor Standardmodellen har stærk forudsigelseskraft - og måske vigtigere - hvor den endnu ikke er fyldestgørende. Altså ønsker vi at underkaste Standardmodellen et kritisk blik, ved at undersøge forskellige egenskaber ved elektron-positron sammenstød ved en energi på Z 0 -bosonens hvilemasse - 91, 1888(44)GeV (idet vi benytter gængs notation opgives masser almindeligivs i GeV, dvs. vi sætter c = 1). 1.1 Problemformulering Vi ønsker at undersøge forgreningsforholdet mellem Z 0 hadron og Z 0 lepton henfald. Ligeledes vil vi bestemme forholdet mellem henfald til b-kvarker og det totale antal kvark-henfald. Indledende vil vi give læseren et kort indblik indblik i den teori, hvorunder projektet udfoldes. For at kunne behandle data er det nødvendigt først at beskrive LEP og ALEPH. Udfra disse data beregnes forgreningsforholdet og senere forholdet mellem Z-henfald der resulterer i b-kvarker hhv. samtlige kvarker. Herunder en kort præsentation af det brugte neurale netværk. Slutteligt konkluderes på projektets formål. Dette projekt benytter notationen * efter ord, der kræver særlig forklaring. Disse ord uddybes i en ordliste, der forefindes i bilag A. Endvidere afsluttes hvert kapitel med henvisning til det i kapitlet benyttede litteratur. En fuld litteraturliste forefindes bagerst i opgaven. 3

6 Kapitel 2 Standardmodellen 2.1 Partikelindhold Stof består af atomer - byggesten af størrelsesorden m. Dog har det vist sig at atomer er sammensat af en række mere elementære partikler. Den almindelig anerkendte teori, om hvordan disse partikler vekselvirker kaldes Standardmodellen. Standardmodellen er en kvantefeltteori*, og den er derfor både konsistent med den specielle relativitetsteori og kvantemekanikken. Den giver en beskrivelse af 3 af de 4 grundlæggende kræfter, de stærke, svage og elektromagnetiske, men er ikke komplet, først og fremmest fordi den ikke er forenelig med tyngdekraften. Den elektrosvage teori (QED*) beskriver bl.a. hvordan de svage kernekræfter formidles af 3 forskellige kraftbærende partikler, kaldet Z 0 og W ±. ALEPH detektoren* - som er en del af LEP* projektet i CERN* - blev bygget netop for at detektere disse partikler og dermed undersøge Standardmodellens gyldighed indenfor disse områder. De fundamentale partikler, elementarpartiklerne, er opdelt i to klasser; fermioner og bosoner. Fermioner er partikler med halvtalligt spin i og udgør f.eks. forskellige former for stof, mens bosoner har heltalligt spin og bl.a. omfatter de kraftbærende partikler. Der findes ifølge Standardmodellen følgende elementære fermioner Fermioner Generation Elektrisk ladning Kvarker up (u) charm (c) top (t) 2/3 down (d) strange (s) bottom (b) 1/3 Leptoner elektronneutrino (ν e ) myneutrino (ν µ ) tauneutrino (ν τ ) 0 elektron (e) myon (µ) tau (τ) 1 En kvark kan ikke detekteres direkte idet den ikke kan leve alene ii - Kvarker findes kun i bundter som hadroner iii. Disse bundter kaldes enten baryoner eller mesoner. Baryoner består af tre kvarker mens mesoner kun består af to. Til hver fermion svarer endvidere en antipartikel med samme masse, men med modsat ladning. iv Ud over fermioner findes der altså som nævnt bosoner. En gauge-boson* er en kraftbærende boson med heltalligt spin. De kendte gauge-bosoner er i i enheder af ii dette skyldes en egenskab ved den stærke kraft kaldet confinement. Mere herom senere iii dette er ikke helt sandt, idet det er tilladt for dem at leve virtuelt i et tidsinterval som blot ikke overskrider Heisenbergs ubestemthedsrelationer E t 2 iv Et eksempel er positronen, som er elektronens antipartikel. 4

7 2.2. Feynman diagrammer 5 Boson γ Z 0, W ± gluoner gravitoner Krafttype Elektromagnetiske kraft Svage kernekraft Stærke kernekraft gravitation Den elektromagnetiske kraft virker mellem ladede partikler, den stærke kraft mellem kvarker mens den svage virker mellem både kvarker og leptoner v. 2.2 Feynman diagrammer Vekselvirkninger mellem de elementære partikler beskrives som regel vha. Feynman diagrammer*. Eksempelvis kan elektron-positron afbøjning beskrives med nedenstående diagram. e + γ e Tid forløber fra venstre mod højre i diagrammet. En pil i tidens retning angiver en partikel, mens en pil rettet modsat tiden angiver en antipartikel. Udover elektronen og positronen indeholder diagrammet også en såkaldt virtuel foton. Virtuelle partikler kan ikke detekteres direkte, og for vituelle partikler gælder i almindelighed, at de ikke overholder impuls- og energibevarelse. Hver knude kan tilskrives en sandsynlighed for at netop knudereaktionen sker. Kvantemekanisk set er denne sandsynlighed givet ved en kompleks amplitude i bølgefunktionen*. Amplituderne for vekselvirkninger mellem elementarpartikler er givet som kvadratroden af de såkaldte koblingskonstanter α. 2.3 Quantum Chromodynamics (QCD) Farveladning For at vende tilbage til Standardmodellens beskrivelse af hadroner, viste denne sig yderst succesfuld, indtil man blandt andet fandt ++ -partiklen bestående af tre up-kvarker. Eksistensen af en sådan partikel strider direkte mod Pauli princippet*, ifølge hvilket det er umuligt for to fermioner at befinde sig i samme kvantetilstand. Dette førte i 1964 til at Greenberg fremlagde sin farvehypotese. Ifølge hypotesen besidder hver kvark udover rum- og spinfrihedsgrader endnu en frihedsgrad, som kaldes farve og benævnes χ C. Ifølge farveteorien kan enhver kvark q = u, d, c,... eksistere i seks forskellige farvetilstande χ C = r, g, b, r, ḡ, b (rød, grøn, blå, anti-rød, anti-grøn og anti-blå). Man kan til hver farvetilstand knytte specifikke værdier for hyperladningen* og isospinnet*, benævnt hhv. med Y C og I C 3. Nedenstående tabel viser disses værdier for forskellige farvetilstande. v gravitationen er dog endnu ikke omfattet af Standardmodellen.

8 2.4. Den svage vekselvirkning 6 Farve I C 3 Y C r 1/2 1/3 g 1/2 1/3 b 0 2/3 r 1/2 1/3 ḡ 1/2 1/3 b 0 2/3 Værdierne for Y C og I C 3 for hadroner og andre tilstande sammensat af kvarker og antikvarker kan nu let findes, idet hyperladningen og isospinnet er additive kvantetal vi. I farvehypotesen antages det at enhver ikke-virtuel hadron må have farveladning Y C = I C 3 = 0 (2.1) Altså at enhver observeret tilstand har farveladning 0. Dette er netop hypotesen om confinement. Udfra dette kan det vises at den eneste kombination af m kvarker og n antikvarker, benævnt ved q m q n, som ifølge (2.1) tillades, er (3q) p (q q) n, p N og n 0 (2.2) Fra (2.2) følger at hadroner som qq, qq q, qqqq er forbudte, dvs. ikke kan observeres, mens hadroner som q q og qqq er tilladte Den stærke vekselvirkning Quantum Chromodynamics (QCD*) beskriver interaktioner som medieres af masseløse spin-1 bosoner vii der kaldes gluoner. Gluoner har, som fotoner, ingen elektrisk ladning. Men de kobles ikke til elektrisk ladning som fotonerne, men derimod til farveladningen. Med kobles menes at udøve interaktioner. Dette medfører at forskellige kvarktyper alle vil vekselvirke stærkt på samme måde, hvilket skyldes at alle kvarker kan eksistere i de samme tre farvetilstande, og derfor ifølge ovenstående tabel kun vil have de samme farveladninger. Det bør bemærkes at omend vi har sammenlignet gluoner i QCD med fotoner fra QED er der en vigtig forskel. Mens fotoner, som kobler til den elektriske ladning, er elektrisk neutrale, har gluonerne selv en farveladning 0. Udfra dette fremgår det, at gluoner nødvendigvis også må koble til andre gluoner. Det kan vises at dette fører til confinement og en egenskab kaldet asymptotisk frihed*. 2.4 Den svage vekselvirkning Den svage vekselvirkning medierer vha. Z 0 og W ± den svage kernekraft og er bl.a. ansvarlig for β-henfald. Z 0 -bosonen blev oprindeligt introduceret for at forklare problemmer ved produktion af W-bosoner ved neutrino-antineutrino spredning. Ved høje energier divergerede denne produktion nemlig. Indførelsen af en neutral gauge-boson som Z 0 -bosonen, kunne forhindre dette samt ligeså forhindre en divergerende opførsel af W produktion via en virtuel foton i e + e spredning. Z 0 -bosonens masse er, som tidligere nævnt, (44)GeV, hvorimod W-bosonerne har masser på GeV. vi man skal altså blot addere kvantetallene for at finde kvantetallet for den sammensatte tilstand vii i QED er en foton et eksempel på en sådan boson

9 2.4. Den svage vekselvirkning 7 Ved at lade en elektron og en positron kollidere ved en samlet energi på Z 0 -bosonens masse kan der derfor dannes en Z 0 -boson. Derefter kan denne henfalde til forskellige partikler. Betragter vi først tilfældet hvor Z 0 henfalder til kvark og en antikvark, ser de tilhørende Feynman-diagrammer således ud. e + + e Z q q e + e Z 0 hadroner q q hadroner e + Z 0 e 2 jet 3 jet q q g hadroner hadroner hadroner Hver af de ovenstående reaktioner kan opdeles i to trin. Først kolliderer elektronen og positronen e + + e q + q Herefter følger en proces kaldet fragmentering, som omdanner kvark-antikvark parret til jets bestående af hadroner. I tilfældet med to jets, vil disse grundet impulsbevarelse bevæge sig ud i hver sin retning i Center-of-Mass systemet. En 3-jet dannes når der før fragmenteringen emiteres en gluon med høj impuls i en stor vinkel fra kvarken eller antikvarken. Gluonen vil, idet denne ikke kan observeres som en fri isoleret partikel, manifestere sig som en jet af hadroner. viii Endvidere kan Z 0 -bosonen henfalde til leptoner på følgende måde e + e + Z lepton + lepton e + e + Z τ + τ + e + e, µ e + ν Z 0 Z 0 π + e e +, µ + e τ Ifølge Standardmodellen vil lige store mængder af henfaldene vil resulterer i hhv. e-, µ- og τ-leptoner. Dette fænomen er kendt som lepton-universalitet. Det skyldes som sagt at amplituderne for de forskellige henfald alle er givet ved α w 4/137. Ved kollision af e + e, kan der videre ske følgende viii Det er muligt at bestemme den stærke koblingskonstant ud fra forholdet mellem 2- og 3-jets henfald. Det huskes at amplituden for emitering af en gluon er givet ved kvadratroden af den stærke koblingskonstrant α s. Føromtalte forhold er da givet ved α s.

10 2.4. Den svage vekselvirkning 8 e + e + e + e + e + e + e + e + + f + f e + e + γ γ fermion fermion e e Her annihilerer elektronen og positronen ikke med hinanden, men spredes blot under udveksling af en virtuel foton. Denne form for spredning benævnes i almindelighed Bhabha-spredning ix. I det andet tilfælde (fremover benævnt γγ), vekselvirker de to virtuelle fotoner hvilket resulterer i to fermioner. [2] - [7] - [9] - [10] - [12] ix efter den indiske fysiker Homi Bhabha

11 Kapitel 3 LEP og ALEPH 3.1 LEP I den store LEP accelerator i CERN bliver elektroner og positroner accelereret til meget høje energier (i Z 0 -bosonens tilfælde ca. 45 GeV hver), hvorefter de bringes til sammenstød med en Center-of-Mass energi på Z 0 -bosonens hvilemasse - 91 GeV i I et stærkt elektrisk felt accellereres elektronerne og positronerne til den ønskede energi. De fastholdes i deres 27 km lange cirkulære bane af et stærkt magnetfelt. Selve sammenstødet forløber ved et tryk på under atm. 3.2 ALEPH Selve ALEPH detektoren er stedet hvor de højenergetiske sammenstød registreres og måles. Detektoren er cylindrisk og symmetrisk opbygget omkring de kolliderende partiklers retning - beamrøret. Uden om beamrøret findes forskellige subdetektorer som gør det muligt at bestemme bl.a. energien, impulsen og partikeltypen. I ALEPH-dektoren er der følgende subdetektorer (gennemgået indefra og ud): Tættest på beamrøret er Vertex Detektoren, bestående af silicon-strip detektorer, som gør det muligt at afgøre om et spor stammer fra et primært eller sekundært vertex* ii Inner Tracking Chamber er et driftkammer primært bestående af Argon og Carbondioxid. Når denne gas ioniseres af forbipasserende ladede partikler registreres det af supertynde ledende metaltråde med et potentiale op til 1000 V. På den måde er det muligt at fastlægge op til otte punkter for hvert partikelspor. I Time Projektion Chamber måles - igen ved hjælp af gas, ionisering og ledende metaltråde - partiklers sted og specifikke energitab. Det inderste kalorimeter er det Elektromagnetiske Kalorimeter(ECAL), som måler byger af partikler fra indkommende elektroner og fotoner. Dvs. at dette kalorimeter kan detektere energien af både elektroner og fotoner som sådan. ECAL består af skiftende lag af gas proportionaltællere og bly. De tungere hadroner og myoner forsætter gennem ECAL. Magnetspolen rundt om ECAL skaber det magnetfelt, der gør det muligt at måle partiklernes impuls og ladning. Magnetfeltet er parallelt med beamrøret, således at magnetfeltet ikke påvirker e + e strålerne inden sammenstødet iii. i senere øgedes energien for også at undersøge W partiklerne ii vertex er det punkt i rumtiden hvor partikler dannes. iii idet vi minder om, at Lorenzkraften, der virker mellem et magnetfelt med fluxtætheden B og en partikel med ladning q og hastighed v, er giver ved F lorentz = q v B, så når v og B er parallelle, er F lorentz = 0 9

12 3.2. ALEPH 10 Uden om magnetspolen findes det Hadroniske Kalorimeter(HCAL) som registrer partikler opbygget af kvarker. HCAL består primært af jern, som bremser de hadroniske partikler, under denne opbremsning udsendes en kaskade af nye partikler der så detekteres i HCAL. Det yderste kammer er myonkammeret, hvor der udelukkende detekteres myoner. At dette kammer ikke også registrerer τ-leptoner, der slipper gennem HCAL, skyldes τ-leptonernes korte levetid. Normalt har hadroner (en τ-lepton kan f.eks. henfalde til en π-meson) større masse end myonen, men de slipper jvf. ovenstående ikke gennem HCAL, da de vekselvirker ved de stærke kernekræfter - de ladede leptoner vekselvirker kun ved de svage og de elektromagnetiske kræfter. Udover de ovennævnte detektorer findes også et luminositetskalorimeter, der benyttes til at bestemme det absolutte tværsnit ved at bestemme luminositeten. I dette projekt er vi dog kun interesserede i det relative tværsnit og skal derfor ikke bruge luminositeten. Den eneste Standardmodel partikel, der ikke registreres i detektoren er neutrinoen, idet den kun vekselvirker meget svagt - dog kan man indirekte udlede, om der blev dannet neutrioner ved kollisionen, idet den målte energi og impuls da vil være lavere end forventet. Se evt. figur B.1. [6] - [13]

13 Kapitel 4 Forgreningsforhold 4.1 Teoretisk udledning af forgreningsforholdet Z 0 -bosonens kobling til fermioner kan beskrives ved en vektorkobling og en axialvektorkobling* (disse benævnes hhv. c V og c A ), givet ved c V = I 3 2Qsin 2 (θ W ) og c A = I 3 (4.1) Idet tredjekomponenten af isospinnet for den enkelte fermion i benævnes I 3, Q er ladningen, og sin 2 (θ W ) er eksperimentelt bestemt til Nedenstående tabel viser tredjekomponenten af isospinnet for de enkelte fermioner, som forudsagt i Standardmodellen ii. Fermion I 3 ν e, ν µ, ν τ 1/2 e L, µ L, τ L 1/2 u L, c L, t L 1/2 d L, s L, b L 1/2 e R, µ R, τ R 0 u R, c R, t R 0 d R, s R, b R 0 Som det fremgår af ovenstående tabel varierer isospinnet for venstre- hhv. højrehåndede fermioner*, idet L angiver en venstrehåndet fermion og R angiver en højrehåndet fermion. En venstrehåndet hhv. højrehåndet kobling kan nu skrives som c L = 1 2 (c V + c A ) samt c R = 1 2 (c V c A ) (4.2) Lad Γ betegne henfaldssandsynligheden. Da er den totale henfaldssandsynlighed for henfald til fermioner givet ved Γ(Z fermioner) (c 2 L + c 2 R)N(χ c ) (4.3) idet vi benævner antallet af farvevarianter med N(χ c ). Ved sammensætning af ovenstående ligninger fås i se afsnit 2.3 ii vi minder om at isospinnet er et additivt kvantetal. Γ(Z fermioner) = κ (c 2 A + c 2 V )N(χ c ) (4.4) 11

14 4.2. Dataindsamling 12 I vores tilfælde kan Z 0 -bosonen henfalde til tre typer leptoner (µ, τ, e) hvorfor N(χ c ) = 3, således at Γ(Z leptoner) = κ 3 ( ( ) ) = κ GeV (4.5) Idet der er seks typer kvarker, der hver kan have tre forskellig farver, fås for henfald til jets af hadroner Γ(Z hadroner) = κ 3 ( 2 [ ( ) ] [ 2 ( ) ]) = κ GeV Det viser sig at proportionalitetskonstanten κ er uafhængig af henfaldstypen, og det er udfra (4.5) og (4.6) givet at (4.6) Γ(Z hadroner) Γ(Z leptoner) = GeV GeV = (4.7) som er det søgte forhold. 4.2 Dataindsamling På computere på Niels Bohr Instistuttet, findes en samling runs fra ALEPH detektoren. Runs som hver især består af bundter af events. En event registreres hver gang ALEPH måler en aktivitet iii. Vi har benyttet programmet dalinew til at undersøge events. Ud over at indtegne de registrerede partikler viser Dalinew - ALEPH - også energien og impulsen af hver enkelt event. Som tidligere beskrevet kan Z 0 -bosonen henfalde på 6 forskellige måder, og det var derfor nødvendigt at identificere disse for at bestemme forgreningsforholdet mellem hadron- og leptonhenfald K Γ(Z hadroner) Γ(Z leptoner) I kapitel 3 så vi hvordan ALEPH detektoren - og de forskellige subdetektorer - virker. Dette gør os nu i stand til at skelne mellem de forskellige henfald. Z 0 -bosonens hadronhenfald kan som sagt inddeles i 2-jet og 3-jet. For disse begivenheder ligger energien højt. Dvs. mellem 80 og 110 GeV. Ved en 2-jet registreres mellem 10 og 20 spor fra vertex, imens 3-jets har mere end 20 spor. Disse peger ud fra vertex i 2 hhv. 3 jets. I Dalinew har det dog været umuligt at gøre adskillelsen mellem 2-jets og 3-jets til andet end et kvalitativt forehavende - vi har ganske enkelt vurderet hvornår der var 2 og hvornår der var 3 jets. Både 2- og 3-jets registreres hovedsagelig i ECAL og HCAL, og nogle gange også i myonkammeret (hvis der eksempelvis dannes en tung kvark, som senere henfalder til en myon). iv Når Z 0 -bosonen henfalder til leptoner (e, µ eller τ), viser Dalinew to spor, der udgår fra det primære vertex (midten af beamaksen). e-henfaldet vil afsætte to tydelige spor i ITC og TPC og afgive ca. 45 GeV (al deres energi) i ECAL. τ -henfaldet kan til tider være svært at skelne fra e-henfaldet rent grafisk. Dog kan τ-leptonen henfalde til andre partikler som f.eks. en π-meson eller en myon. Derfor vil τ-henfald som det eneste give anledning til to partikelspor der hver afsætter sin energi i forskellige kalorimetre. Ved sådanne henfald af τ-leptoner vil der endvidere udsendes neutrinoer og den målte energi vil derfor være mindre. iii selv meget små aktiviteter kan resultere i en event hvorfor hovedparten af events er næsten uden målepunkter. iv dette vil dog stadig klassificeres som et 2- eller 3-jet.

15 4.3. Databehandling 13 µ -henfaldet kan let identificeres idet myonen er den eneste af de tre leptoner, der detekteres i myonkammeret Ved kollisionen kan der som tidligere nævnt også ske en såkaldt γγ-reaktion. Da der ved γγ-reaktioner ikke dannes en Z 0 -boson er γγ ikke relevant i dette projekts perspektiv. Derfor er det vigtigste ikke at forveksle γγ med τ, da disse to rent grafisk kan minde en del om hinanden. Idet elektronen og postitronen kun afbøjes ved γγ-reaktioner måles en langt lavere energi end ved τ-henfald - hvorved de kan udelades fra den endelige statistik. Ydermere registrerer ALEPH også når der sker en Bhabha-spredning, under hvilken elektronen og positronen skyder tæt forbi hinanden og derfor ikke danner en Z 0 -boson. Ved Bhabha-spredning er både energi og impuls bevaret, og den grafiske repræsentation af spredningen minder meget om Z 0 - bosonens henfald til e + e. Man kan dog skelne mellem de to reaktionstyper ved at betragte spredningsvinklen, θ, dvs. vinklen mellem beamrøret elektronsporet. for en lille spredningsvinkel (θ < 45 o ) har vi klassificeret eventen som Bhabha-spredning, mens en stor spredningsvinkel (θ > 45 o ) er et tegn på Z 0 e + + e. I den forbindelse er det nødvendigt også at nævne det, vi har kaldt for beamgas-events. En sådan event skyldes som regel at elektronen eller positronen inden sammenstødet har kollideret med en gasrest i beamrøret. I dalinew ses partikelspor som ikke udgår fra midten af detektoren. Udover den meget tydelige forskydning af det primære vertex er den registrerede energi væsentlig mindre end elektronens og positronens samlede energi, hvorfor beamgas-events let skelnes fra de øvrige events. Slutteligt eksisterer der også en meget almindelig event, som vi har benævnt baggrund. Denne kan tydeligt identificeres, idet de målte spor (næsten) aldrig passerer gennem beamrøret, men altid regisreres i myonkammeret. Der er tale om kosmiske myoner, der trænger ind detektoren via en sprække i klippeformationen, hvorunder LEP-ringen løber. Dette forklarer også, hvorfor sporene fra disse kosmiske myoner næsten altid fandtes i samme retning. Det er klart, at vi - da vi kun havde dalinew billederne til rådighed - har måtte forlade os på kvalitative vurderinger i mange tilfælde. I CERN har man selvfølgelig behov for en større stringens, således at klassificeringen af de forskellige events bliver så præcise som muligt. Idet vi som nævnt også benytter energibetragtninger til at klassificere henfaldstyperne, kan vores metode til dels sammenlignes med CERNs. Dog har CERN langt højere krav til hvad der måles i de enkelte kamre og kalorimetre for at en event kan specificeres yderligere. Derudover er sporets vinkel med beamrøret også vigtig for klassificeringen. Se evt. figur B.2, figur B.3, figur B.4, figur B.5 og figur B Databehandling Alt i alt har vi set følgende Type Antal Hyppighed 2-jets 869 ± 29 stat jets 70 ± 8 stat e + e 50 ± 7 stat ± 24 sys µ + µ 44 ± 7 stat τ + τ 48 ± 7 stat Bhabha 47 ± 7 stat ± 25 sys I alt De opgivne statistiske usikkerheder er beregnet som kvadratroden af antallet af målinger, mens der ved skellet mellem Z 0 e + e og Bhabha-spredning er en stor systematisk usikkerhed, groft vurderet som ca. halvdelen af de optalte værdier. I øvrigt viser det sig at vores målinger stemmer ganske godt overens med princippet om leptonuniversalitet, idet standardafvigelsen, σ, for antallet af henfald til hver lepton-type er meget mindre end deres gennemsnit, µ.

16 4.3. Databehandling 14 σ = 2.5 og σ µ = 5.3% Af tabellen ses endvidere K N had = N lep = hvilket giver en afvigelse på afv [K] = = 1.3% Vha. ophobningsloven er det muligt at beregne den statistiske usikkerhed på K K(stat) = = = ( K N had ) 2 N 2 had N 2 lep N had + N 2 had N lep Nhad ( ) 2 K + N 2 lep N lep Udfra ovenstående betragtninger estimeres den systematiske fejl på K til K(sys) 1.2 ( Nhad N lep ) (sys) = N had N lep ± N lep (sys) = 2 N lep (sys)n had (N lep + N lep (sys))(n lep N lep (sys)) Vi ser altså at vi får et forhold på K = 6.6 ± 0.6 stat ± 1.2 sys og vi kan altså konludere at vores udregning af K ligger indenfor usikkerheden. Udover usikkerheden på skellet mellem Z 0 e + e og Bhabha-spredning har systematiske fejlkilder været negligible. Der har været tilfælde hvor detektoren ikke har registreret et sammenstød, eksempelvis hvis partikelsporet efter sammenstødet ligger for tæt op af beamrøret, men ellers har fejlene som sagt været negligible. [2]

17 Kapitel 5 B-kvarkens forgreningsforhold Vi ønsker nu at bestemme R b Γ(Z b b) Γ(Z hadroner) (5.1) Dvs. hvor stor en andel af Z 0 -bosonens henfald der resulterer i b-kvarker i forhold til det antal der henfalder til kvarker totalt set. 5.1 Teoretisk udledning af R b Vi minder om at der for b-kvarker gælder (jvf. afsnit 4.1) Fermion I 3 b L 1/2 b R 0 b-kvarken kan endvidere befinde sig i tre farvetilstande, hvorfor det udfra (4.4) ses at Γ(Z b b) = κ (c 2 A + c 2 V )N(χ c ) = κ 3 hvorfor den teoretiske værdi for R b er givet ved i R b ( 1 ( ) ) = κ GeV (5.2) Γ(Z b b) GeV = Γ(Z hadroner) GeV = (5.3) 5.2 Eksperimentel bestemmelse af R b At man i forbindelse med Z 0 -henfald har en speciel interesse i b-kvarken, skyldes at denne lettere kan skelnes fra de øvrige kvarker Monte Carlo simulationer Første skridt på vejen til at undersøge Standardmodellens forudsigelser for R b er udfra tifældigt genererede tal at computersimulere Z 0 -bosonens henfald til kvarker. Denne simulering er kun baseret på Standardmodellen. i det bemærkes at vi tidligere har fundet Γ(Z hadroner) 15

18 5.2. Eksperimentel bestemmelse af R b Det neurale netværk Man ønsker nu at finde en sammenhæng mellem Z 0 -bosonens henfald til b-kvarker og simulationernes udseende. Det er hidtil ikke lykkedes at finde en pålidelig lineær sammenhæng mellem eventuelle variable som kunne karakterisere b-kvarken og og en optimal enkelt-variabel, der måler b-agtigheden af en jet (i det følgende benævnt som b tag ) ii. Det er her det neurale netværk kommer ind i billedet. Den vigtigste egenskab ved et neuralt netværk, er at det kan bruges til at at tage optimale beslutninger på baggrund af input-variable, som ikke kan kombineres lineært til en optimal diskriminerende variabel. For at gøre netværket i stand til at træffe rigtige afgørelser, bruger man en algoritme kaldet backwardspropagation, dvs. man fortæller netværket et tilstækkeligt antal sammenhørende inputs og outputs baseret på data fra Monte Carlo simulationen*, hvor det korrekte svar er kendt, og dermed træner netværket. Når dette er gjort tilstrækkelig mange gange, bliver netværket i stand til at levere outputs udfra variable inputs, hvilket vi i vores tilfælde får brug for, for at bestemme b tag et (final-output). De input/output data til backwardspropagation man bruger i vores tifælde, får vi fra kendskabet til b-kvarker. Når Z 0 -bosonen henfalder til kvarker dannes der som sagt jets. De målte spor opdeles i to hemisfærer (halvkugler), begge med centrum i det primære vertex og en jet i hver. Hver hemisfære kan nu tilskrives 6 variable, hvoraf de 2 relaterer til kvarkens levetid, 3 til massen og 1 til impulsen af det elementære lepton-henfald. Alle disse input-tags bliver normaliseret til værdier i intervallet [0,1], ligesom outputet. Levetiden:lifetime tag og secondary vertex tag. Levetiden af kvarken kan måles af placeringen af det sekundære vertex og af flyvelængden. B-kvarken har en levetid på ca. 1 ps. Massen: track multiplicity tag, summed pt-squared tag, boosted sphericity tag. Disse 3 variable udtrykker, på hver sin måde fraværet af kollimering af jetten til en snæver stråle. Rundheden af jetten er karakteristisk for henfaldet af en tung partikel, og derfor har disse tags en høj værdi for b-kvarker. B-kvarkens masse er ca. 5 GeV. P T lepton tag. På grund af b-kvarkens høje masse, vil en eventuel lepton fra det elementære henfald typisk have en høj impuls-komponent vinkelret på thrustaksen*, og derfor et højt input. Kort sagt tilegner netværket et b tag mellem 0 og 1 til hver hemisfære, alt efter jettens b-agtighed. Uheldigvis er det ikke alle events hverken i de simulerede begivenheder eller i de faktiske data som besidder data nok til udføre de nødvendige beregninger. Og i de faktiske data ønsker vi jo kun at betragte henfald til kvarker. Det er derfor nødvendigt at opstille visse udvælgelseskriterier. I vores tilfælde er de Der er mindst fire målte punkter i TPC. Summen af energier på alle ladede spor er mindst 10 % af center-of-mass energien. cos(jettens vinkel med beamrøret) < 0.9. Der er mindst to jets med energier større end 10 GeV. Der er ingen hemisfærer med b tag < Og det antages at denne udvælgelse er uafhængig af kvarkens type Udregninger Sandsynligheden for at en jet fra en b-kvark således har et b tag > cut kan beskrives ved en effektivitet ǫ b = N(b : b tag > cut) N(b) (5.4) ii dette kunne jo ellers være ønskværdigt da en lineær sammenhæng ville være den mest simple sammenhæng

19 5.3. Databehandling 17 hvor N(b : b tag > cut) betegner antallet af b-kvarker med b tag > cut. Ligledes gælder for de øvrige kvarktyper q ǫ q = N(q : b tag > cut) N(q ) (5.5) En Z 0 -begivenhed resulterer som før nævnt almindeligvis i 2 jets. Andelen af begivenheder for hvilke begge jets har et b tag > cut er da givet ved hvor R b er givet ved (5.1), og R q er defineret tilsvarende med R ++ = R b ǫ 2 b + R q ǫ2 q (5.6) R q Γ(Z q q ) Γ(Z hadroner) ligeledes må andelen af henfald hvor b tag > cut for kun den ene jet være givet ved R + = 2R b (1 ǫ b )ǫ b + 2R q (1 ǫ q )ǫ q (5.7) Idet N(Z b b) + N(Z q q ) = N(Z hadroner), gælder det åbenlyst at R b + R q = 1 (5.8) Bestemmes ǫ q ud fra de simulerede Monte Carlo begivenheder, og vi udfra data beregner R ++ og R + er det vha. (5.6),(5.7) og (5.8) muligt at bestemme R b = R R ++R + 8 ǫ q R ++ + R R + ǫ q + 4 ǫ 2 q R ++ 2ǫ q R ++ R + ǫ q + ǫ 2 q ǫ b = 2 R ++ ǫ q (2 R ++ + R + ) 2R ++ + R + 2 ǫ q (5.9) (5.10) Idet ǫ q << 1 indgår denne kun med ringe vægtning i bestemmelsen af R b, hvilket også er ønskværdigt idet vi da forlader os minimalt på de simulerede begivenheder. 5.3 Databehandling Vi har to datasamples til rådighed: Monte Carlo simulationer Da der er tale om simuleret data, vides hvordan forskellige henfald vil registeres. Udfra Monte Carlo er det derfor muligt at undersøge den algoritme som optæller begivenhederne. Målt data fra Aleph Monte Carlo (MC) Det første nødvendige skridt i vores databehandling er at vælge et cut. I princippet er det optimale valg af cut den værdi der minimerer den statistiske fejl - hvis altså den systematiske fejl er uafhængig af cuttet (hvad den ikke helt er på grund af ǫ q ). Dette cut søges valgt således at ǫ b er maksimalt og ǫ q minimalt. Det vil sige antallet af henfald for hvilke b tag > cut er maksimalt for b b-henfald og minimalt for henfald til de øvrige kvark-typer. Det optimale cut kan selvfølgelig

20 5.3. Databehandling 18 Figur 5.1: Øverste historgram viser b tag for Z 0 b b, mens det nedeste viser b tag for de øvrige kvarptyper. udregnes, men udregningerne er på ingen måde simple, og i vores tilfælde må vi derfor blot forlade os på et kvalificeret gæt. Ovenstående histogrammer viser b tag for jets fra forskellige Monte Carlo-beginvenheder for hhv. b- og q -henfald. Herudfra vælges Endvidere er det muligt at optælle følgende cut (b tag ) = 0.98 Antal hadron-henfald N had = ± Antal b-henfald N b = ± Antal hemisfærer fra b-henfald, for hvilke b tag > cut N hb = ± Antal hemisfærer fra q -henfald, for hvilke b tag > cut N hq = ± Dette giver let, idet som dagt R b = N b /N had. R b (direkte) = ± ǫ b (direkte) = ± ǫ q (direkte) = ± Her er usikkerhederne på hhv. R ++ og R + givet ved R = R N had iii Og tilsvarende for ǫ b og ǫ q. Lad os nu udføre de i afsnit beskrevne udregninger på dataene fra MC. Optælling og udregning giver iii Det er ikke nødvendigt at regne med usikkerhed på N tot idet N had >> R + + R +, hvorfor variationer i denne ikke vil betyde der store for de beregnede usikkerheder.

21 5.3. Databehandling 19 N ++ = ± N + = ± R ++ = ± R + = ± R b (beregnet) = ± ǫ b (beregnet) = ± Den statiske usikkerhed på R b og ǫ b er beregnget vha. ophobningsloven. For R b ser udregningerne således ud R b (stat) = ( ) 2 ( ) 2 Rb R++ 2 R Rb R R + = (4 R R + 5 R+ 2 16(R ++ R + ) 2 R ++ + (8 R R + R+ 2 16(R ++ R + ) 2 R + = Idet effektiviteten for at tagge c-kvarker og de lette kvarker er lille kan usikkerheden på ǫ q negligeres, hvorfor vi sætter ǫ q 0. Det bemærkes at der er en diskrepans mellem de to fundne værdier for hhv. ǫ b og R b. Dette må skyldes en fejl i enten udregningsmetoden eller optællingsalgoritmen. Denne fejl benævnes bias, og det er givet at R b (bias) = R b (direkte) R b (udregnet) = = Data fra ALEPH For at løse ligningerne i afsnit er det som sagt nødvendigt at benytte den værdi for ǫ q, vi fandt da vi undersøgte dataene baseret på MC simulationerne. Denne er givet ved Optællinger på data giver disse resultater ǫ q = N tot = ± N ++ = ± N + = ± R ++ = ± R + = ± ǫ b (målt) = ± R b (målt) = ± Idet der korrigeres for den bias der fandtes vha. MC R b (korreleret) = R b (målt) + R b (bias) = = Ovenstående resultater er i fremragende overenstemmelse med de teoretiske forudsigelser fra ligning (5.3), idet der blot er en afvigelse fra denne på afv[r b ] = R b(korreleret) R b (teori) R b (teori) = %

22 5.3. Databehandling 20 For den omtalte bias, beregnet ved MC simulering, anslår vi den systematiske usikkerhed til at være ca. halvdelen af værdien for bias. Hvorfor det er lykkedes at bestemme R b (sys) R b(bias) 2 = R b = ± stat ± sys med en afvigelse fra den teoretisk forudsagte værdi meget mindre end usikkerheden. Historisk set så bestemmelsen af R b længe ud til at være et stort problem for Standardmodellen, idet målinger viste relativt store uoverensstemmelser med det af Standardmodellen forudsagte resultat. Men som det fremgår af ovensående, viste nyere målinger at disse afvigelser forsvandt. [2] - [3] - [11] - [12]

23 Kapitel 6 Konklusion Vi har bestemt forgreningsforholdet K til 6.6 ± 0.6 stat ± 1.2 sys, hvilket giver en afvigelse fra den teoretiske værdi på 1.3%. Dette ligger indenfor usikkerheden. At vi har får en værdi så tæt op af den teoretiske værdi (på 6.697) er overraskende, vores kvalitative fremgangsmåde taget i betragtning. Ligeledes har vi fundet R b = ± stat ± sys hvilket er en afvigelse på 0.05% fra den teoretiske værdi. Dette må siges at være en meget lille afvigelse og vi ligger desuden indenfor usikkerhederne. Vi ønskede at kaste et kritisk blik på Standardmodellen, men har dog undervejs, idet vores data i høj grad er funderet i kvalitative observationer, måttet erkende, at vi snarere har arbejdet indenfor rammerne af standardmodellens forudsigelser - vi har altså ikke direkte eftervist Standardmodellen, men vi har ej heller observeret ting, der direkte falsificerer den. En stor tak rettes til vores vejleder - Peter Hansen - som med stort engagement har inspireret, forklaret og hjulpet, når det har været tiltrængt. 21

24 Bilag A Ordliste ALEPH: ALEPH er en af fire dektorer ved LEP accelleratoren. De andre 4 er DELPHI, L3 og OPAL. Asymptotisk Frihed: Asymptotisk frihed er det fænomen at den potentielle energi mellem partikler vokser proportionalt med afstanden mellem dem. En analogi kan drages til en elastik hvor dette er ligeledes er tilfældet når elastiken strækkes Axialvektor: Også kaldet pseudovektor. En axialvektor er et objekt med vektorlignende egenskaber som er invariant under inversion af koordinatakserne. Angulær hastighed og arealer er eksempler på axialvektorer. Bølgefunktion: I kvantemekanikken beskrives partikler udfra deres bølefunktion. Kvadratet på amplituden bestemmer sandsynligheden for at partiklen befinder sig i en bestemt del af rummet. CERN: L Organisation Européenne pour la Recherche Nucléair. CERN er et internationalt center for partikelfysik lokaliseret i Geneve. Feynman diagram: Fysikeren Richard Feynman introducerede disse diagrammer, for at overskueliggøre processer på subatomart plan. Tiden læses fra venstre mod højre, og hver linie representer en partikel, hvor pilens retning angiver om den er partikel eller antipartikel. Den bølget linie angiver en boson, i vores tilfælde Z 0 -bosonen. Gauge-bosoner: De 3 fundamentale vekselvirkninger: de elektromagnetiske, de stærke og de svage, formidles af bosoner der under et kaldes gauge-bosoner. De stærke og svage kræfter kan man redegøre for ved hjælp af en slags felter, der har meget til fælles med almindelige elektriske og magnetiske felter, men som på flere punkter generaliserer og komplicerer dem. Teorien for den slags er helt entydigt fastlagt af generelle principper, og kaldes for gaugeteorier (af eng. gauge:justere). Helicitet: Heliciteten er defineret ved spinnets projektion på partiklens bevægelsesretning[6]. Hemisfære: Vi deler thrustaksen op i to hemisfærer med et ortogonalt tværsnit gennem det primære vertex. Hyperladning: Kvantetal defineret ved Y 2 (Q I 3 ) hvor Q er ladningen og I 3 er tredjekomponenten af isospinet. Højre- og venstrehåndet fermion: En masseløse fermion kaldes højre- hhv. venstrehåndet såfremt dens helicitet*, er positiv hhv. negativ. Isospin: Isospin er et indre kvantetal, der giver et mål for symmetrien af tilstande opbygget af systemer bestående af fermioner. Kvantefeltteori: Teori der er konsistent med kvantemekanikken og den speciele relativitetsteori. Kvantefeltteori er den del af kvantemekanikken der har at gøre med felter. Den blev motiveret af spørgsmålet om hvordan et atom udsender lys når en elektron hopper fra en exciteret tilstand. 22

25 23 Kvantetilstand: Kvantetilstand beskriver en tilstand af et kvantesystem, som opfylder de tilladte diskrete værdier. LEP: LEP står for Large Electron-Positron Collider. Ved at støde partikel og antipartikel sammen, annihileres begge partikler og energi kan bruges til at skabe nye partikler. LEP startede i 1989 og har siden da stødt elektroner og positroner sammen. Monte Carlo: Ved at anvende Monte Carlo simuleringer er det muligt at beregne parametre som ellers ville være utilgængelige. Man skal dog huske på, at Monte Carlo programmer altid skal valideres gennem sammenligning med eksperimentelle data, da de tager udgangspunkt i kendt teori, i vores tilfælde standardmodellen, den vi vil eftervise. Vi søger derfor at minimerer betydningen af simulationen ved at vælge at simulere den variabel, som har mindst indflydelse på resultatet. Pauli princippet: Ifølge Paulis udelukkelsesprincip kan to fermioner ikke være i samme kvantetilstand. Primært og sekundært vertex: Det primære vertex er det punkt i rumtiden hvor partiklerne dannes. Det sekundære vertex er da det punkt i rumtiden hvor de dannede partikler henfalder igen. QCD: Quantum Chromodynamics er teorien der omhandler de stærke vekselvirkninger. Disse vekselvirkninger beskrives vha. masseløse spin-1 bosoner kaldet gluoner (eng: glue). QED: Quantum Electrodynamics var den første vellykkede kvantefeltteori. Den forener Maxwell s elektromagnetiske teori, som er umiddelbar konsistent med den specielle relativitetsteori, med kvanteteorien. Thrustaksen: Den akse hvor projektionen af partiklernes impuls har maksimal værdi.

26 Bilag B Billeder Figur B.1: Skematisk tegning af ALEPH-detektoren ved CERN. 24

27 25 B.0.3 Billeder fra dalinew - ALEPH Figur B.2: 2 jets Figur B.3: 3 jets

28 26 Figur B.4: Z 0 henfald til µ µ Figur B.5: Z 0 henfald til e + e

29 Figur B.6: γγ (idet der er tale om henfald til tau, hvor energien ikke er den samme som center-of-mass energien) 27

30 Litteratur [1] K. F. Riley, M. P. Hobson og S. J. Bence. Mathematical Methods for Physics and Engineering. Cambridge University Press, 2. udgave, [2] W. E. Burcham og M. Jobes. Nuclear and Particle Physics. Addison Wesley Longman Limitid, Edinburgh Gate, [3] Glen Cowan. Statistical Data Analysis. Oxford University Press, Oxford, [4] Jogn Cullerne og Valerie Illingworth. Dictionary of Physics Penguin Books, London, 3. udgave, [5] Richard P. Feynman, R. B. Leighton og M. Sands. The Feynman Lectures, Volume 3. Addison- Wesley, USA, [6] Morten Gersborg-Hansen, Lærke Bang Jacobsen, Niels Vestergaard Jensen og Malene Erup Larsen. Måling af τ-polarisation i Z 0 henfald. Bachelorproject ved Niels Bohr Institutet, Københavns Universitet, maj [7] Francis Halzen og Allan D. Martin. QUARKS AND LEPTONS: An Introductory Course in Modern Particle Physics. John Wiley and Sons, [8] Stephen W. Hawking. Hawkings Univers illustreret. Gyldendal, 199. [9] B. R. Martin og G. Shaw. Particle Physics. John Wiley and Sons, 2. udgave, [10] Particle Data Group. Particle Physics Booklet. Lawrence Berkeley National Laboratory, juli 2004, Berkeley. [11] John R. Taylor. An Indtroduction to Error Analysis. University Science Books, Sausalito, Californien, [12] J. Tran Thann Vân. Z 0 Physics - Proceedings of the XXVth RENCONTRE DE MORIOND. Editions Frontières, [13] The ALEPH-project at CERN. 28

Standardmodellen og moderne fysik

Standardmodellen og moderne fysik Standardmodellen og moderne fysik Christian Christensen Niels Bohr instituttet Stof og vekselvirkninger Standardmodellen Higgs LHC ATLAS Kvark-gluon plasma ALICE Dias 1 Hvad beskriver standardmodellen?

Læs mere

Tillæg til partikelfysik (foreløbig)

Tillæg til partikelfysik (foreløbig) Tillæg til partikelfysik (foreløbig) Vekselvirkninger Hvordan afgør man, hvilken vekselvirkning, som gør sig gældende i en given reaktion? Gravitationsvekselvirkningen ser vi bort fra. Reaktionen Der skabes

Læs mere

Test af en simpel kvarkmodel for hadronmasser

Test af en simpel kvarkmodel for hadronmasser Test af en simpel kvarkmodel for hadronmasser S. Holbek, A. Karlberg, S. Nissen & R. Viskinde 10. april 2008 Indhold 1 Introduktion 3 2 Teori 3 2.1 Standardmodellen 1.............................. 3 2.2

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q3-1 Large Hadron Collider (10 point) Læs venligst de generelle instruktioner fra den separate konvolut, før du starter på denne opgave. Denne opgave handler om fysikken bag partikelacceleratorer LHC (Large

Læs mere

På jagt efter Higgs-bosonen

På jagt efter Higgs-bosonen På jagt efter Higgs-bosonen Af Stefania Xella, Niels Bohr Institutet Higgs-bosonen er den eneste partikel forudsagt af partikelfysikkens Standardmodel, som ikke er blevet observeret eksperimentelt endnu.

Læs mere

Partikelfysikkens Hvad & Hvorfor

Partikelfysikkens Hvad & Hvorfor Jagten på universets gåder Rejsen til det ukendte Standardmodellens herligheder Og dens vitale mangler Partikelfysikkens Hvad & Hvorfor Jørgen Beck Hansen Niels Bohr Institutet Marts 2016 Vores nuværende

Læs mere

Standardmodellen. Allan Finnich Bachelor of Science. 4. april 2013

Standardmodellen. Allan Finnich Bachelor of Science. 4. april 2013 Standardmodellen Allan Finnich Bachelor of Science 4. april 2013 Email: Website: alfin@alfin.dk www.alfin.dk Dette foredrag Vejen til Standardmodellen Hvad er Standardmodellen? Basale begreber og enheder

Læs mere

Frie øvelser Fysik 3 Elementarpartiklers Henfald

Frie øvelser Fysik 3 Elementarpartiklers Henfald Frie øvelser Fysik 3 Elementarpartiklers Henfald Alexander S Christensen Asger E. Grønnow Magnus E. Bøggild Peter D. Pedersen xkcd.com Københavns Universitet Forår 2010 Indhold 1 Indledning 2 2 Standardmodellen

Læs mere

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter.

Naturkræfter Man skelner traditionelt set mellem fire forskellige naturkræfter: 1) Tyngdekraften Den svageste af de fire naturkræfter. Atomer, molekyler og tilstande 3 Side 1 af 7 Sidste gang: Elektronkonfiguration og båndstruktur. I dag: Bindinger mellem atomer og molekyler, idet vi starter med at se på de fire naturkræfter, som ligger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommereksamen 2015 Institution Thy-Mors HF & VUC Uddannelse Fag og niveau Lærer(e) Hold STX Fysik A Knud Søgaard

Læs mere

LHC, Higgs-partiklen og et stort hul i Texas

LHC, Higgs-partiklen og et stort hul i Texas LHC, Higgs-partiklen og et stort hul i Texas Af Mads Toudal Frandsen Mads Toudal Frandsen er PhD på NBI og SDU, hvor han arbejder på Theory and Phenomenology of the Standard Model and Beyond. E-mail: toudal@

Læs mere

Moderne Fysik 8 Side 1 af 9 Partikelfysik og kosmologi

Moderne Fysik 8 Side 1 af 9 Partikelfysik og kosmologi Moderne Fysik 8 Side 1 af 9 I dag: Noget om det allermest fundamentale i naturen; nemlig naturens mindste byggesten og de fundamentale naturkræfter, som styrer al vekselvirkning mellem stof. Desuden skal

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Rela2vitetsteori (iii)

Rela2vitetsteori (iii) Rela2vitetsteori (iii) Einstein roder rundt med rum og.d Mogens Dam Niels Bohr Ins2tutet Udgangspunktet: Einsteins rela2vitetsprincip Einsteins postulater: 1. Alle iner*alsystemer er ligeværdige for udførelse

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Holder Standardmodellen? Folkeuniversitetet, Århus, 10. marts 2014 Ved Christian Bierlich, Ph.D.-studerende, Lund Universitet

Holder Standardmodellen? Folkeuniversitetet, Århus, 10. marts 2014 Ved Christian Bierlich, Ph.D.-studerende, Lund Universitet Holder Standardmodellen? Folkeuniversitetet, Århus, 10. marts 2014 Ved Christian Bierlich, Ph.D.-studerende, Lund Universitet Velkommen Om mig Kandidat i eksperimentel partikelfysik fra KU Laver Ph.D i

Læs mere

CERN og partikelfysikken Af Peter Hansen

CERN og partikelfysikken Af Peter Hansen CERN og partikelfysikken Af Peter Hansen CERNs fødsel I 2008 vil den største atomknuser, som verden endnu har set, begynde at kollidere protoner mod hinanden med hver en energi på 7 TeV, d.v.s. energien

Læs mere

Velkommen til CERN. Enten p-p, p-pb eller Pb-Pb collisioner. LHC ring: 27 km omkreds. LHCb CMS ATLAS ALICE. Jørn Dines Hansen 1

Velkommen til CERN. Enten p-p, p-pb eller Pb-Pb collisioner. LHC ring: 27 km omkreds. LHCb CMS ATLAS ALICE. Jørn Dines Hansen 1 Velkommen til CERN LHCb CMS ATLAS Enten p-p, p-pb eller Pb-Pb collisioner ALICE LHC ring: 27 km omkreds Jørn Dines Hansen 1 CERN blev grundlagt i 1954 af 12 europæiske lande. Science for Peace ~ 2300 staff

Læs mere

Undervisningsbeskrivelse for: gsfya403 S13/14 Fysik B->A, STX

Undervisningsbeskrivelse for: gsfya403 S13/14 Fysik B->A, STX Undervisningsbeskrivelse for: gsfya403 S13/14 Fysik B->A, STX Fag: Fysik B->A, STX Niveau: A Institution: Københavns VUC - Sankt Petri Passage 1 (280103) Hold: Fysik B-A 4 uger Termin: August 2013 Uddannelse:

Læs mere

Kapitel 6. CERN og partikelfysikken. Af Peter Hansen. CERNs fødsel

Kapitel 6. CERN og partikelfysikken. Af Peter Hansen. CERNs fødsel Kapitel 6 CERN og partikelfysikken Af Peter Hansen CERNs fødsel I 2008 vil den største atomknuser, som verden endnu har set, begynde at kollidere protoner mod hinanden med hver en energi på 7 TeV, dvs.

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for

Læs mere

July 23, 2012. FysikA Kvantefysik.notebook

July 23, 2012. FysikA Kvantefysik.notebook Klassisk fysik I slutningen af 1800 tallet blev den klassiske fysik (mekanik og elektromagnetisme) betragtet som en model til udtømmende beskrivelse af den fysiske verden. Den klassiske fysik siges at

Læs mere

Mørkt stof i Universet Oprindelsen af mørkt stof og masse

Mørkt stof i Universet Oprindelsen af mørkt stof og masse Mørkt stof i Universet Oprindelsen af mørkt stof og masse Mads Toudal Frandsen m.frandsen1@physics.ox.ac.uk NSFyn, SDU, 10 April, 2012! Outline! Introduction til universets sammensætning! Universet, mikroskopisk!

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Universets opståen og udvikling

Universets opståen og udvikling Universets opståen og udvikling 1 Universets opståen og udvikling Grundtræk af kosmologien Universets opståen og udvikling 2 Albert Einstein Omkring 1915 fremsatte Albert Einstein sin generelle relativitetsteori.

Læs mere

24 Jagten på de ekstra dimensioner

24 Jagten på de ekstra dimensioner Jagten på de ekstra dimensioner Af Jørgen Beck Hansen, Niels Bohr Institutet, Københavns Universitet. Idéen om ekstra dimensioner ud over vores, fra dagligdagen, velkendte fire dimensioner, har eksisteret

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Higgs Hunting. Separation af Simulerede Data i Søgen efter Higgs-bosonen. Førsteårsprojekt i fysik ved Niels Bohr Instituttet i København.

Higgs Hunting. Separation af Simulerede Data i Søgen efter Higgs-bosonen. Førsteårsprojekt i fysik ved Niels Bohr Instituttet i København. Separation af Simulerede Data i Søgen efter Higgs-bosonen Jerôme Baltzersen, Morten Hornbech, Mona Kildetoft og Kim Petersen Førsteårsprojekt i fysik ved Niels Bohr Instituttet i København. 6. februar

Læs mere

Myonens Levetid. 6. december 2017

Myonens Levetid. 6. december 2017 Myonens Levetid 6. december 2017 Det er en almindelig opfattelse at rigtigheden af relativitetsteorien nødvendigvis er vanskelig at eftervise eksperimentelt. Det er den faktisk ikke. Et lille eksperiment

Læs mere

Den specielle rela2vitetsteori

Den specielle rela2vitetsteori Den specielle rela2vitetsteori Einstein roder rundt med -d og rum Mogens Dam Niels Bohr Ins2tutet Hvor hur2gt bevæger du dig netop nu?? 0 m/s i forhold 2l din stol 400 m/s i forhold 2l Jordens centrum

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Løsning til eksamen d.27 Maj 2010

Løsning til eksamen d.27 Maj 2010 DTU informatic 02402 Introduktion til Statistik Løsning til eksamen d.27 Maj 2010 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th edition]. Opgave I.1

Læs mere

Atomer, molekyler og tilstande 1 Side 1 af 7 Naturens byggesten

Atomer, molekyler og tilstande 1 Side 1 af 7 Naturens byggesten Atomer, molekyler og tilstande 1 Side 1 af 7 I dag: Hvad er det for byggesten, som alt stof i naturen er opbygget af? [Elektrondiffraktion] Atomet O. 400 fvt. (Demokrit): Hvis stof sønderdeles i mindre

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Coulombs lov. Esben Pape Selsing, Martin Sparre og Kristoffer Stensbo-Smidt Niels Bohr Institutet F = 1 4πε 0

Coulombs lov. Esben Pape Selsing, Martin Sparre og Kristoffer Stensbo-Smidt Niels Bohr Institutet F = 1 4πε 0 Coulombs lov Esben Pape Selsing, Martin Sparre og Kristoffer Stensbo-Smidt Niels Bohr Institutet 14-05-2007 1 Indledning 1.1 Formål Formålet er, at eftervise Coulombs lov; F = 1 4πε 0 qq r 2 ˆr, hvor F

Læs mere

Om stof, atomer og partikler. Hans Buhl Steno Museet Aarhus Universitet

Om stof, atomer og partikler. Hans Buhl Steno Museet Aarhus Universitet Om stof, atomer og partikler Hans Buhl Steno Museet Aarhus Universitet Hvad består alting af? Thales fra Milet (ca. 635-546 f.kr.) Alt er vand Første eks. på reduktionisme Fra mytisk til rationel verdensforståelse

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Skriftlig Eksamen i Moderne Fysik

Skriftlig Eksamen i Moderne Fysik Moderne Fysik 10 Side 1 af 7 Navn: Storgruppe: i Moderne Fysik Spørgsmål 1 Er følgende udsagn sandt eller falsk? Ifølge Einsteins specielle relativitetsteori er energi og masse udtryk for det samme grundlæggende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Studenterkurset

Læs mere

Røntgenspektrum fra anode

Røntgenspektrum fra anode Røntgenspektrum fra anode Elisabeth Ulrikkeholm June 24, 2016 1 Formål I denne øvelse skal I karakterisere et røntgenpektrum fra en wolframanode eller en molybdænanode, og herunder bestemme energien af

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommereksamen 2016 Institution Thy-Mors HF & VUC Uddannelse Fag og niveau Lærer(e) Hold STX Fysik A Knud Søgaard

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Atomer og kvantefysik

Atomer og kvantefysik PB/2x Febr. 2005 Atomer og kvantefysik af Per Brønserud Indhold: Kvantemekanik og atommodeller side 1 Elektronens bindingsenergier... 9 Appendiks I: Bølgefunktioner 12 Appendiks II: Prikdiagrammer af orbitaler

Læs mere

Optisk gitter og emissionsspektret

Optisk gitter og emissionsspektret Optisk gitter og emissionsspektret Jan Scholtyßek 19.09.2008 Indhold 1 Indledning 1 2 Formål og fremgangsmåde 2 3 Teori 2 3.1 Afbøjning................................... 2 3.2 Emissionsspektret...............................

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14

Kernefysik og dannelse af grundstoffer. Fysik A - Note. Kerneprocesser. Gunnar Gunnarsson, april 2012 Side 1 af 14 Kerneprocesser Side 1 af 14 1. Kerneprocesser Radioaktivitet Fission Kerneproces Fusion Kollisioner Radioaktivitet: Spontant henfald ( af en ustabil kerne. Fission: Sønderdeling af en meget tung kerne.

Læs mere

Partiklers energitab i boblekammer. Mads Sørensen, Jacob Svensmark og Rune Boas 27. marts 2006

Partiklers energitab i boblekammer. Mads Sørensen, Jacob Svensmark og Rune Boas 27. marts 2006 Partiklers energitab i boblekammer Mads Sørensen, Jacob Svensmark og Rune Boas 27. marts 2006 1 Indhold 1 Indledning 3 2 Boblekammeret 3 2.1 Boblekammeret............................ 3 2.2 SHIVA.................................

Læs mere

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet

Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet Mørk energi Anja C. Andersen, Dark Cosmology Centre, Niels Bohr Institutet, Københavns Universitet En af de mest opsigtsvækkende opdagelser inden for astronomien er, at Universet udvider sig. Det var den

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Øvelse 2: Myonens levetid

Øvelse 2: Myonens levetid Øvelse 2: Myonens levetid Det er en almindelig opfattelse at rigtigheden af relativitetsteorien nødvendigvis er vanskelig at eftervise eksperimentelt. Det er den faktisk ikke. Et lille eksperiment (og,

Læs mere

Laboratorieøvelse Kvantefysik

Laboratorieøvelse Kvantefysik Formålet med øvelsen er at studere nogle aspekter af kvantefysik. Øvelse A: Heisenbergs ubestemthedsrelationer En af Heisenbergs ubestemthedsrelationer handler om sted og impuls, nemlig at (1) Der gælder

Læs mere

Acceleratorer og detektorer

Acceleratorer og detektorer Børge Svane Nielsen, Niels Bohr Institutet Acceleratorer og detektorer CERN, 16. marts 2016 Børge Svane Nielsen, Niels Bohr Institutet, København Naturens byggestene Børge Svane Nielsen, Niels Bohr Institutet

Læs mere

Elementarpartikler. Om at finde orden i partikel Zoo

Elementarpartikler. Om at finde orden i partikel Zoo Elementarpartikler Om at finde orden i partikel Zoo Da man begyndte at kollidere partikler i accelleratorer, fandt man et hav af nye partikler. Først da kvarkerne blev fundet, var man nået til standardmodellen,

Læs mere

Lærebogen i laboratoriet

Lærebogen i laboratoriet Lærebogen i laboratoriet Januar, 2010 Klaus Mølmer v k e l p Sim t s y s e t n a r e em Lærebogens favoritsystemer Atomer Diskrete energier Elektromagnetiske overgange (+ spontant henfald) Sandsynligheder,

Læs mere

Fysik 3 Førsteårsprojekt

Fysik 3 Førsteårsprojekt Fysik 3 Førsteårsprojekt Arvid Böttiger Nikolaj Korolev Jesper Mathias Nielsen Martin Cramer Pedersen Københavns Universitet Indhold 1 Indledning 2 2 Standardmodellen 2 3 BRAHMS-detektoren 3 3.1 Generelt

Læs mere

Videregående kernefysik 1/6 september 2013 / Henning Schou

Videregående kernefysik 1/6 september 2013 / Henning Schou Videregående kernefysik 1/6 september 2013 / Henning Schou Retningsafhængighed af annihilationskvanter I dette eksperiment demonstreres, at gammakvanterne fra annihilationen af en positron er kraftigt

Læs mere

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler,

Læs mere

Moderne Fysik 1 Side 1 af 7 Speciel Relativitetsteori

Moderne Fysik 1 Side 1 af 7 Speciel Relativitetsteori Moderne Fysik 1 Side 1 af 7 Hvad sker der, hvis man kører i en Mazda med nærlysfart og tænder forlygterne?! Kan man se lyset snegle sig afsted foran sig...? Klassisk Relativitet Betragt to observatører

Læs mere

LYS I FOTONISKE KRYSTALLER 2006/1 29

LYS I FOTONISKE KRYSTALLER 2006/1 29 LYS I FOTONISKE KRYSTALLER OG OPTISKE NANOBOKSE Af Peter Lodahl Hvordan opstår lys? Dette fundamentale spørgsmål har beskæftiget fysikere gennem generationer. Med udviklingen af kvantemekanikken i begyndelsen

Læs mere

Sandsynlighed og Statistik

Sandsynlighed og Statistik 36 Sandsynlighed og Statistik 6.1 Indledning Denne note beskriver de statistiske begreber og formler som man med rimelig sandsynlighed kan komme ud for i eksperimentelle øvelser. Alt er yderst korfattet,

Læs mere

Øvelse i kvantemekanik Kvantiseret konduktivitet

Øvelse i kvantemekanik Kvantiseret konduktivitet 29 Øvelse i kvantemekanik Kvantiseret konduktivitet 5.1 Indledning Denne øvelse omhandler et fænomen som blandt andet optræder i en ganske dagligdags situation hvor et mekanisk relæ afbrydes. Overraskende

Læs mere

Stern og Gerlachs Eksperiment

Stern og Gerlachs Eksperiment Stern og Gerlachs Eksperiment Spin, rumkvantisering og Københavnerfortolkning Jacob Nielsen 1 Eksperimentelle resultater, der viser energiens kvantisering forelå, da Bohr opstillede sin Planetmodel. Her

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de M svingninger i en sortlegeme-kavitet som fotoner.

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2...

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... Introduktion til kvantemekanik Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... 6 Hvordan må bølgefunktionen se ud...

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

FYSIK? JA, HVORFOR FYSIK? JEG HAR TÆNKT OVER DET

FYSIK? JA, HVORFOR FYSIK? JEG HAR TÆNKT OVER DET FYSIK? JA, HVORFOR FYSIK? JEG HAR TÆNKT OVER DET IGEN OG IGEN, LIGE SIDEN JEG SOM 16 ÅRIG FALDT PLA- DASK FOR FYSIK, PARTIKLERNE OG DET STORE UNIV- ERS. IKKE NOK MED, AT JEG KAN HUSKE, HVILKET ÅR JEG FANDT

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

Appendiks 1. I=1/2 kerner. -1/2 (højere energi) E = h ν = k B. 1/2 (lav energi)

Appendiks 1. I=1/2 kerner. -1/2 (højere energi) E = h ν = k B. 1/2 (lav energi) Appendiks NMR-teknikken NMR-teknikken baserer sig på en grundlæggende kvanteegenskab i mange atomkerner, nemlig det såkaldte spin som kun nogle kerner besidder. I eksemplerne her benyttes H og 3 C, som

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Fremtidige acceleratorer

Fremtidige acceleratorer Fremtidige acceleratorer Af Mogens Dam, Discovery Center, Niels Bohr Institutet, Københavns Universitet Med Large Hadron Collider har CERN et banebrydende fysik-program, der strækker sig omkring to årtier

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Undersøgelse af lyskilder

Undersøgelse af lyskilder Felix Nicolai Raben- Levetzau Fag: Fysik 2014-03- 21 1.d Lærer: Eva Spliid- Hansen Undersøgelse af lyskilder bølgelængde mellem 380 nm til ca. 740 nm (nm: nanometer = milliardnedel af en meter), samt at

Læs mere

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen

Vægte motiverende eksempel. Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl. Vægtet model. Vægtrelationen Vægte motiverende eksempel Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - kkb@mathaaudk Institut for Matematiske Fag Aalborg Universitet Højdeforskellen mellem punkterne P

Læs mere

2 X 2 = Antal mygstik på enpersoniløbetaf1minut

2 X 2 = Antal mygstik på enpersoniløbetaf1minut Opgave I I mange statistiske undersøgelser bygger man analysen på anvendelse af normalfordelingen til (eventuelt tilnærmelsesvist) at beskrive den tilfældige variation. Spørgsmål I.1 (1): Forén af følgende

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Den klassiske oscillatormodel

Den klassiske oscillatormodel Kvantemekanik 6 Side af 8 n meget central model inden for KM er den såkaldte harmoniske oscillatormodel, som historisk set spillede en afgørende rolle i de banebrydende beskrivelser af bla. sortlegemestråling

Læs mere

Rækkevidde, halveringstykkelse og afstandskvadratloven

Rækkevidde, halveringstykkelse og afstandskvadratloven Rækkevidde, halveringstykkelse og afstandskvadratloven Eval Rud Møller Bioanalytikeruddannelsen VIA University College Marts 008 Program Indledende kommentarer. Rækkevidde for partikelstråling Opbremsning

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling

Statistisk mekanik 10 Side 1 af 7 Sortlegemestråling og paramagnetisme. Sortlegemestråling Statistisk mekanik 0 Side af 7 Sortlegemestråling I SM9 blev vibrationerne i et krystalgitter beskrevet som fononer. I en helt tilsvarende model beskrives de EM svingninger i en sortlegeme-kavitet som

Læs mere

Metoder og struktur ved skriftligt arbejde i idræt.

Metoder og struktur ved skriftligt arbejde i idræt. Metoder og struktur ved skriftligt arbejde i idræt. Kort gennemgang omkring opgaver: Som udgangspunkt skal du når du skriver opgaver i idræt bygge den op med udgangspunkt i de taksonomiske niveauer. Dvs.

Læs mere

Superstrenge: I grove træk (1)

Superstrenge: I grove træk (1) Superstrenge Superstrenge Superstrenge i grove træk Kendte ubesvarede spørgsmål Standard modellen Hvorfor superstrenge? Historik og teori Hvor er fysikken? Det sidste; M-branes Hvad forklarer strengteori?

Læs mere

OPGAVE I FYSIK 315. Introduktion. Partikelfysik historie CARSTEN FRIGAARD. Atommodeller, 1911

OPGAVE I FYSIK 315. Introduktion. Partikelfysik historie CARSTEN FRIGAARD. Atommodeller, 1911 OPGVE I FYSIK 315 DET 20. ÅRHUNDREDES EKSPERIMENTLFYSIK HISTORIE BSERET PÅ RTIKLEN DETECTION OF THE FREE NTINEUTRINO F F. REINES, C.L. COWN, JR., F.B. HRRISON,.D. MCGUIRE OG H.W. KRUSE CRSTEN FRIGRD KØBENHVNS

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Note om Monte Carlo metoden

Note om Monte Carlo metoden Note om Monte Carlo metoden Kasper K. Berthelsen Version 1.2 25. marts 2014 1 Introduktion Betegnelsen Monte Carlo dækker over en lang række metoder. Fælles for disse metoder er, at de anvendes til at

Læs mere

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger

Anvendt Statistik Lektion 2. Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Anvendt Statistik Lektion 2 Sandsynlighedsregning Sandsynlighedsfordelinger Normalfordelingen Stikprøvefordelinger Sandsynlighed: Opvarmning Udfald Resultatet af et eksperiment kaldes et udfald. Eksempler:

Læs mere

Hvordan blev Universet og solsystemet skabt? STEEN HANNESTAD INSTITUT FOR FYSIK OG ASTRONOMI

Hvordan blev Universet og solsystemet skabt? STEEN HANNESTAD INSTITUT FOR FYSIK OG ASTRONOMI Hvordan blev Universet og solsystemet skabt? STEEN HANNESTAD INSTITUT FOR FYSIK OG ASTRONOMI HVAD BESTÅR JORDEN AF? HVILKE BYGGESTEN SKAL DER TIL FOR AT LIV KAN OPSTÅ? FOREKOMSTEN AF FORSKELLIGE GRUNDSTOFFER

Læs mere

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke.

Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. Program: 1. Repetition: fordeling af observatorer X, S 2 og t. 2. Konfidens-intervaller, hypotese test, type I og type II fejl, styrke. 1/23 Opsummering af fordelinger X 1. Kendt σ: Z = X µ σ/ n N(0,1)

Læs mere

Lineære systemer med hukommelse.

Lineære systemer med hukommelse. Lineær Response Teori. I responseteorien interesserer man sig for, hvad der kan siges generelt om sammenhængen mellem input φ(t) og output γ(t) for et system. Valg af variable. Det betragtede systems forskellige

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere