Supplerende noter II til MM04

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Supplerende noter II til MM04"

Transkript

1 Supplerede oter II til MM4 N.J. Nielse 1 Uiform koverges af følger af fuktioer Vi starter med følgede defiitio: Defiitio 1.1 Lad S være e vilkårlig mægde og (X, d et metrisk rum. E følge (f af fuktioer fra S til X siges at kovergere uiformt mod e fuktio f : S X, hvis der gælder: ε > N s S : d(f(s, f (s < ε. (1.1 Bemærk, at det er det samme, som ka bruges for alle s S, hvilket gør uiform koverges betydeligt stærkere ed blot at kræve, at f (s f(s for alle s S (puktvis koverges. I det følgede lader vi S betege et topologisk rum og (X, d et metrisk rum. De første sætig giver, at kotiuitet bibeholdes uder uiform koverges. Sætig 1.2 Hvis (f er e følge af kotiuerte fuktioer fra S til X, som kovergerer uiformt mod e fuktio f : S X, så er f kotiuert. Bevis: Lad s S være et vilkårligt pukt; vi skal vise, at f er kotiuert i s. Lad ε > være vilkårligt. Da (f går mod f uiformt, ka vi fide et N, således at d(f(s, f (s < ε for alle og alle s S. (1.2 Da f er kotiuert i s, ka vi fide e omeg V om s, således at: d(f (s, f (s < ε for alle s V. (1.3 For vilkårlige s V fider vi, at d(f(s, f(s d(f(s, f (s + d(f (s, f (s + d(f (s, f(s < 3ε, (1.4 hvor det første og det sidste led vurderes ved hjælp af (1.2, medes det midterste led vurderes ved (1.3. 1

2 Da ε var vilkårlig viser (1.4, at f er kotiuert i s. Hvis S er kompakt, er uiform koverges det samme som koverges i rummet C(S, X, hvilket de æste sætig viser. Sætig 1.3 Hvis S er kompakt, (f C(S, X og f C(S, X, så er følgede udsag ækvivalete: (i f f i C(S, X (ii (f kovergerer uiformt mod f. Bevis: Lad først (i gælde og lad ε > være vilkårligt. Da d (f, f for, ka vi fide et N, således at d (f, f < ε for alle. (1.5 Samme med defiitioe på d giver (1.5, at d(f (s, f(s d (f, f < ε for alle s S og alle, (1.6 hvilket viser, at (f går mod f uiformt. Lad os u atage, at (ii gælder og lad ε > være vilkårligt. Vi ka da fide et N, således at d(f(s, f (s < ε for alle s S og alle, (1.7 som medfører, at d (f, f = sup{d(f (s, f(s s S} ε for alle. (1.8 Dette viser, at d (f, f for. Lad u (f være e følge af fuktioer fra S til C og sæt s (x = k=1 f k(x for alle x S. Vi siger, at række =1 f kovergerer puktvist, hvis række =1 f (x er koverget for ethvert x S (d.v.s., at følge (s (x er koverget for ethvert x S. Række =1 f siges at kovergere uiformt, hvis følge (s er uiformt koverget. De sidste sætig i dette afsit giver et kriterium for uiform koverges af e række af fuktioer. Sætig 1.4 (Weierstrass M test Lad (f være e følge af fuktioer fra S til C og lad (M R +, således at (i f (x M for alle x S og alle N (ii =1 M er koverget. 2

3 Da vil række =1 f kovergere uiformt og absolut på S. Bevis: Lad os først vise, at række kovergerer absolut, d.v.s. vi skal vise, at =1 f (x er koverget for ethvert x S. Dette følger imidlertid direkte af (i og (ii og sammeligigskriteriet for rækker (se opgave 16 i de udleverede opgaver. Det følger derefter af opgave 15 i samme sæt, at også række =1 f (x er koverget for ethvert x S. Vi sætter u f(x = f (x for alle x S (1.9 =1 Vi vil vise, at =1 f kovergerer uiformt mod f, så lad dertil ε > være vilkårligt. Da (ii gælder, ka vi fide et N, således at = M < ε. Med dette valg af fider vi, at der for alle og alle x S gælder: f(x f k (x = k=1 k=+1 f k (x k=+1 k=+1 f k (x (1.1 M k < ε (1.1 viser, at følge ( k=1 f k kovergerer uiformt mod f. 2 Addedum til beviset for oteres Lemma 5.1 Vi vil bruge samme otatio som i otere. Beviset for Lemma 5.1 giver, at række =1 x kovergerer uiformt for x [ 1, 1] mod e fuktio f : [ 1, 1] R. Sætig 1.2 giver, at f er kotiuert. Vi magler at vise, at f(x = (1 + x 1/2 for alle x [ 1, 1]. Vi viser først, at f(x = (1 + x 1/2 for alle x ] 1, 1[. E sætig om potesrækker, som vi ikke vil vise her, giver, at f er differetiabel i ] 1, 1[, og differetialkvotiete fås ved at differetiere række ledvist. For ethvert gælder der: = 1/2 + 1, +1 således at vi har: ( 1/2 1/2 ( 1/2 = ( (2.1 3

4 Lad u x ] 1, 1[ vaere vilkårlig. Ved differetiatio fider vi: 1/2 = f (x = x x =1 =1 x 1 = eller med adre ord at f opfylder differetialligige: f (x = ( 1/2 ( + 1 x = ( = x 1 = 1/2f(x xf (x, 1 f(x for alle x ] 1, 1[ (2.3 2(1 + x Det ses umiddelbart, at fuktioe (1 + x 1/2 er løsig til dee ligig, og da f( = 1, fås af etydighedssætige for løsiger til differetialligiger (det er faktisk MAT A stof, me sætige i vore oter ka aturligvis også beyttes!, at f(x = (1 + x 1/2 for alle x ] 1, 1[. Da begge fuktioer er kotiuerte, er mægde A = {x [ 1, 1] f(x (1 + x 1/2 = } e lukket delmægde af itervallet [ 1, 1]. Da ] 1, 1[ A, må A = [ 1, 1]. Vi har dermed vist, at f(x = (1 + x 1/2 for alle x [ 1, 1] 3 Bemærkiger til oteres Eksempel 5.1 Vi ka formulere koklusioe i eksemplet i følgede sætig: Sætig 3.1 Lad S = {z C z 1}, og lad A være delalgebrae af C(S, C beståede af alle polyomier i de variable z. Hvis f C(S, C er defieret ved f(z = z for alle z S, så vil f A. A er altså ikke tæt i C(S, C til trods for, at de ideholder de kostate fuktioer og separerer pukter i S. Bevis: Lad of atage, at f A. Vi ka da fide et polyomium P, således at Hvis er grade af polyomiet, så har P forme z P (z < 1/2 for alle z S. (3.1 P (z = a k z k for alle z S, (3.2 hvor {a, a 2,,, a } C Hvis t 2π, sætter vi e it = cos t + i si t. Der gælder da, at e it = 1, e it = e it og (e it k = e ikt (de sidste ligig vises ved iduktio og beyttelse af additiosformlere for cos og si. 4

5 Idsætter vi z = e it i (3.1, fås: e it a k e ikt < 1/2 for alle t [, 2π]. (3.3 Ved multiplikatio af dee ligig med e it = 1, fider vi at: 1 a k e it(k+1 < 1/2 for alle t [, 2π]. (3.4 Det følger umiddelbart af defiitioe, at 2π e ikt dt = for alle hele tal k med k. Ved beyttelse af dette får vi ved itegratio af (3.4: 2π = 2π (1 a k e i(k+1t dt 2π 1 a k e i(k+1t dt < π, (3.5 hvilket klart er e modstrid. 5

cos(t), v(t) = , w(t) = e t, z(t) = e t.

cos(t), v(t) = , w(t) = e t, z(t) = e t. Aalyse Øvelser Rasmus Sylvester Bryder. og. oktober 3 Bevis for Cotiuity lemma Theorem. Geemgås af Michael Staal-Olse. Bevis for Lemma.8 Dee har vi faktisk allerede vist; se Opgave 9.5 fra Uge. Det er

Læs mere

Sandsynlighedsteori 1.2 og 2 Uge 5.

Sandsynlighedsteori 1.2 og 2 Uge 5. Istitut for Matematiske Fag Aarhus Uiversitet De 27. jauar 25. Sadsylighedsteori.2 og 2 Uge 5. Forelæsiger: Geemgage af emere karakteristiske fuktioer og Mometproblemet afsluttes, og vi starter på afsittet

Læs mere

Analyse 1, Prøve maj 2009

Analyse 1, Prøve maj 2009 Aalyse, Prøve 5. maj 009 Alle hevisiger til TL er hevisiger til Kalkulus (006, Tom Lidstrøm). Direkte opgavehevisiger til Kalkulus er agivet med TLO, ellers er alle hevisiger til steder i de overordede

Læs mere

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier Noter om polyomier, Kirste Rosekilde, Marts 2006 1 Polyomier Disse oter giver e kort itroduktio til polyomier, og de fleste sætiger æves ude bevis. Udervejs er der forholdsvis emme opgaver, mes der til

Læs mere

Baggrundsnote til sandsynlighedsregning

Baggrundsnote til sandsynlighedsregning Baggrudsote til sadsylighedsregig Kombiatorik. Multiplikatiospricippet E mægde beståede af forskellige elemeter kaldes her e -mægde. Elemetere i e m-mægde og elemetere i e -mægde ka parres på i alt m forskellige

Læs mere

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation.

De reelle tal. Morten Grud Rasmussen 5. november Se Sætning 3.6 og 3.7 for forskellige formuleringer af egenskaben og dens negation. De reelle tal Morte Grud Rasmusse 5. ovember 2015 Ordede mægder Defiitio 3.1 (Ordet mægde). pm, ăq kaldes e ordet mægde såfremt: For alle x, y P M gælder etop ét af følgede: x ă y, x y, y ă x @x, y, z

Læs mere

Talfølger og -rækker

Talfølger og -rækker Da Beltoft og Klaus Thomse Aarhus Uiversitet 2009 Talfølger og -rækker Itroduktio til Matematisk Aalyse Zeos paradoks om Achilleus og skildpadde Achilleus løber om kap med e skildpadde. Achilleus løber

Læs mere

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner

Projekt 4.8 De reelle tal og 1. hovedsætning om kontinuerte funktioner Projekter: Kapitel 4 Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Projekt 48 De reelle tal og hovedsætig om kotiuerte fuktioer Kotiuitet og kotiuerte fuktioer Ord som kotiuert og kotiuerlig

Læs mere

Sandsynlighedsteori 1.2

Sandsynlighedsteori 1.2 Forelæsigsoter til Sadsylighedsteori.2 Sved Erik Graverse Jauar 2006 Istitut for Matematiske Fag Det Naturvideskabelige Fakultet Aarhus Uiversitet. Mometproblemet. I dette afsit beteger X e stokastisk

Læs mere

Projekt 4.11 Produkt- og brøkreglerne for differentiation

Projekt 4.11 Produkt- og brøkreglerne for differentiation ISBN 978-87-766-98- Projekter: Kapitel. Projekt. Produkt- o brøkrelere for differetiatio Projekt. Produkt- o brøkrelere for differetiatio Materialere i dette projekt idår for e stor del i rudboe til A-iveau.

Læs mere

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0}

Opgave 1. a) f : [a, b] R er en begrænset funktion for hvilken. A ε = {x [a + ε, b] f(x) 0} Opgve ) f : [, b] R er e begræset fuktio for hvilke er edelig for ethvert < ε < b. Vi skl vise t f er itegrbel og t A ε = { [ + ε, b] } d =. Vi bemærker først t f er itegrbel på [, b] hvis og ku hvis de

Læs mere

MOGENS ODDERSHEDE LARSEN. Fourieranalyse

MOGENS ODDERSHEDE LARSEN. Fourieranalyse MOGENS ODDERSHEDE LARSEN Fourieraalyse. udgave 7 FORORD Dette otat giver e kort idførig i teorie for fourierrækker og fouriertrasformatio. Det forudsættes i dette otat, at ma har rådighed over matematiklommeregere

Læs mere

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n!

r n E[ X n ]/n! for alle r > 0 ifølge monoton konvergens, giver potensrækketeori, at ( ) er ækvivalent med, at ρ n E[ X n ]/n! Mometproblemet. Lad i dette afsit X betege e stokastisk variabel med mometer af ehver orde. Mometfølge (E[X ]) er derfor e vel defieret reel talfølge bestemt ved fordelige, og spørgsmålet om, de omvedt

Læs mere

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter

Matematikkens mysterier - på et obligatorisk niveau. 7. Ligninger, polynomier og asymptoter Matematikkes mysterier - på et obligatorisk iveau af Keeth Hase 7. Ligiger, polyomier og asymptoter Hvad er e asymotote? Og hvorda fides de? 7. Ligiger, polyomier og asymptoter Idhold 7.0 Idledig 7.1 Udsag

Læs mere

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n.

Om Følger og Rækker. Nyttige Grænseværdier. Nyttige Rækker. Carsten Lunde Petersen. lim. lim = 0. lim (1 + x n n )n = e x. n n n. IMFUFA Carste Lude Peterse Om Følger og Ræer Nyttige Græseværdier lim = 1 lim! = x = 0! lim lim (1 + x ) = e x! lim = e 1 Nyttige Ræer 1 p < p > 1 1 log p ( + 1) < p > 1 x = = x 1 x for x < 1 og Z, diverget

Læs mere

antal gange krone sker i første n kast = n

antal gange krone sker i første n kast = n 1 Uge 15 Teoretisk Statistik, 5. april 004 1. Store tals lov Eksempel: møtkast Koverges i sadsylighed Tchebychevs ulighed Sætig: Store tals lov. De cetrale græseværdisætig 3. Approksimatio af sadsyligheder

Læs mere

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen

Denne kaldes også potensmængden over Ω og betegnes ofte 2 Ω. Notationen beror på, at man via relationen Idledig. De modere sadsylighedsteori, hvis aksiomatiske basis blev formuleret af russere A.N. Kolmogorov i 1933 i boge Grudbegriffe der Wahrscheilichkeitrechug, er bygget op omkrig et tripel ofte beteget

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Repetitio: Normalfordelige Ladmåliges fejlteori Lektio Trasformatio af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/udervisig/lf13 Istitut for Matematiske Fag Aalborg Uiversitet

Læs mere

Elementær Matematik. Polynomier

Elementær Matematik. Polynomier Elemetær Matematik Polyomier Ole Witt-Hase 2008 Køge Gymasium Idhold 1. Geerelle polyomier...1 2. Divisio med hele tal....1 3. Polyomiers divisio...2 4. Polyomiers rødder....4 5. Bestemmelse af røddere

Læs mere

Indre, ydre, rand og afslutning 2.2. Åbne og afsluttede mængder 2.3. Topologiske begreber. Ækvivalente metrikker 2.4.

Indre, ydre, rand og afslutning 2.2. Åbne og afsluttede mængder 2.3. Topologiske begreber. Ækvivalente metrikker 2.4. MATEMATIK 2~ MATEMATISK ANALYSE 1984-85 Kapitel I. METRISKE RUM 1. Metriske rum. Normerede rum. 1. 1. Metrik 1.2. Normeret rum 1. 3. Kugler i et metrisk rum 1.4. Kovergete følger Opgaver til 1 r. 1.1 r.

Læs mere

Bjørn Grøn. Analysens grundlag

Bjørn Grøn. Analysens grundlag Bjør Grø Aalyses grudlag Aalyses grudlag Side af 4 Idholdsfortegelse Kotiuerte og differetiable fuktioer 3 Differetial- og itegralregiges udviklig 5 3 Hovedsætiger om differetiable fuktioer 8 Opgaver til

Læs mere

StudyGuide til Matematik B.

StudyGuide til Matematik B. StudyGuide til Matematik B. OVERSIGT. Dee study guide ideholder følgede afsit Geerel itroduktio. Emeliste. Eksame. Bilag 1: Udervisigsmiisteriets bekedtgørelse for matematik B. Bilag 2: Bilag 3: Uddrag

Læs mere

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen

Rettevejledning til HJEMMEOPGAVE 1 Makro 1, 2. årsprøve, foråret 2007 Peter Birch Sørensen Rettevejledig til HJEMMEOPGAVE Makro, 2. årsprøve, foråret 2007 Peter Birch Sørese Opgave... Udsaget er forkert. De omtalte skatteomlægig må atages at øge beskæftigelse p.gr.a. e positiv substitutioseffekt

Læs mere

Den flerdimensionale normalfordeling

Den flerdimensionale normalfordeling De flerdimesioale ormalfordelig Stokastiske vektorer Ved e stokastisk vektor skal vi forstå e vektor, hvor de ekelte kompoeter er sædvalige stokastiske variable. For de stokastiske vektor Y = Y,..., Y

Læs mere

Deskriptiv teori: momenter

Deskriptiv teori: momenter Kapitel 13 Deskriptiv teori: mometer Vi vil i dette og det følgede kapitel idføre e række begreber der bruges til at beskrive sadsylighedsmål på (R, B). Samtlige begreber udspriger i e eller ade forstad

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6. enote 5 enote 5 Determiater I dee enote ser vi på kvadratiske matricer. Deres type er altså for 2, se enote 4. Det er e fordel, me ikke absolut ødvedigt, at kede determiatbegrebet for (2 2)-matricer på

Læs mere

Lys og gitterligningen

Lys og gitterligningen Fysik rapport: Lys og gitterligige Forfatter: Bastia Emil Jørgese.z Øvelse blev udført osdag de 25. jauar 202 samme med Lise Kjærgaard Paulse 2 - Bastia Emil Jørgese Fysik rapport (4 elevtimer), februar

Læs mere

MOGENS ODDERSHEDE LARSEN. Komplekse tal

MOGENS ODDERSHEDE LARSEN. Komplekse tal MOGENS ODDERSHEDE LARSEN Komplekse tal a b. udgave 004 FORORD Dette otat giver e kort idførig i teorie for komplekse tal, regeregler, røddere i polyomier bl.a. med heblik på avedelser ved løsig af lieære

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet. Matematik A Studetereksame Forsøg med digitale eksamesopgaver med adgag til iterettet Forberedelsesmateriale Vejledede opgave Forår 0 til stx-a-net MATEMATIK Der skal afsættes 6 timer af holdets sædvalige

Læs mere

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen Dages eer afsit 5.3 og 5.4 Siultae kotiuerte fordeliger P(X dx,y dy = f(x,ydxdy Sadsylighedsregig 9. forelæsig Bo Friis Nielse Mateatik og Coputer Sciece Daarks Tekiske Uiversitet 8 Kgs. Lygby Daark Eail:

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Riemann-integraler. enote Indledning

Riemann-integraler. enote Indledning enote 1 1 enote 1 Riema-itegraler I dee enote vil vi opstille og give eksempler på de tekikker, metoder, og resultater, som er helt ødvedige hjælpemidler år vi skal fide lægder af kurver, arealer af plae

Læs mere

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006 Dages program Økoometri De multiple regressiosmodel 5. februar 006 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.-3.3+appedix E.-E.) Defiitio og motivatio Fortolkig af parametree

Læs mere

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen

Forelæsningsnoter til Stokastiske Processer E05. Svend-Erik Graversen Revideret af Jan Pedersen Kapitel 12 og Appendix B og G af Jan Pedersen Forelæsigsoter til Stokastiske Processer E5 Sved-Erik Graverse Revideret af Ja Pederse Kapitel 12 og Appedix B og G af Ja Pederse 16. august 25 Forord Nærværede otesæt skal bruges i forbidelse med kurset

Læs mere

og Fermats lille sætning

og Fermats lille sætning Projekter: Kaitel 0. Projekt 0. Modulo-regig, restklassegruer og Fermats lille sætig Projekt 0. Modulo-regig, restklassegruere ( { 0 }, ) og Fermats lille sætig Vi aveder moduloregig og restklasser mage

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Diskrete og kontinuerte stokastiske variable

Diskrete og kontinuerte stokastiske variable Diskrete og kotiuerte stokastiske variable Beroulli Biomial fordelig Negativ biomial fordelig Hypergeometrisk fordelig Poisso fordelig Kotiuerte stokastiske variable Uiform fordelig Ekspoetial fordelig

Læs mere

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro

Dagens forelæsning. Claus Munk. kap. 1-3. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro. Obligationer Grundlæggende Intro Dages forelæsig Grudlæggede itroduktio til obligatioer Claus Muk kap. - 3 Betaligsrækker og låeformer Det daske obligatiosmarked Effektive reter 2 Obligatioer Grudlæggede Itro Obligatioer Grudlæggede Itro

Læs mere

Claus Munk. kap. 1-3

Claus Munk. kap. 1-3 Claus Muk kap. 1-3 1 Dages forelæsig Grudlæggede itroduktio til obligatioer Betaligsrækker og låeformer Det daske obligatiosmarked Pris og kurs Effektive reter 2 1 Obligatioer Grudlæggede Itro Debitor

Læs mere

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504) Gamle eksamesopgaver Diskret Matematik med Avedelser (DM72) & Diskrete Strukturer(DM504) Istitut for Matematik& Datalogi Syddask Uiversitet, Odese Alle sædvalige hjælpemidler(lærebøger, otater etc.), samt

Læs mere

Undersøgelse af numeriske modeller

Undersøgelse af numeriske modeller Udersøgelse af umeriske modeller Formål E del af målsætige med dette delprojekt er at give kedskab til de begræsiger, fejl og usikkerheder, som optræder ved modellerig. I de forbidelse er følgede udersøgelse

Læs mere

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren

Kvantemekanik 4 Side 1 af 11 Energi og tid. Hamiltonoperatoren Kvateekaik 4 Side 1 af 11 ergi og tid Hailtooperatore Af KM3 fregik det, at ehver observabel er repræseteret ved e operator, f.eks. jf. udtryk (3.1) og (3.). Ispireret af det klassiske udtryk for kietisk

Læs mere

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer Statistik Lektio 7 Hpotesetest og kritiske værdier Tpe I og Tpe II fejl Strke af e test Sammeligig af to populatioer 1 Tri I e Hpotesetest E hpotesetest består af 5 elemeter: I. Atagelser Primært hvilke

Læs mere

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353

Tankegangskompetence. Kapitel 9 Algebraiske strukturer i skolen 353 Takegagskompetece Hesigte med de følgede afsit er først og fremmest at skabe klarhed over de mere avacerede regeregler i skole og give resultatet i de almee form, der er karakteristisk for algebra. Vi

Læs mere

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith

Georg Mohr Konkurrencen Noter om uligheder. Søren Galatius Smith Georg Mohr Kokurrece Noter om uligheder Søre Galatius Smith. juli 2000 Resumé Kapitel geemgår visse metoder fra gymasiepesum, som ka bruges til at løse ulighedsopgaver, og ideholder ikke egetligt yt stof.

Læs mere

Kvadratisk 0-1 programmering. David Pisinger

Kvadratisk 0-1 programmering. David Pisinger Kvadratisk - programmerig David Pisiger 27-8 MAX-CUT problemet Givet e ikke-orieteret graf G = (V, E) er MAX-CUT problemet defieret som MAX-CUT = {< G > : fid et sit S, T i grafe G som maksimerer atal

Læs mere

Motivation. En tegning

Motivation. En tegning Motivatio Scatter-plot at det mådelige salg mod det måedlige reklamebudget. R: plot(salg ~ budget, data = salg) Økoometri Lektio Simpel Lieær Regressio salg 400 450 500 550 20 25 30 35 40 45 50 budget

Læs mere

De Platoniske legemer De fem regulære polyeder

De Platoniske legemer De fem regulære polyeder De Platoiske legemer De fem regulære polyeder Ole Witt-Hase jauar 7 Idhold. Polygoer.... Nogle topologiske betragtiger.... Eulers polyedersætig.... Typer af et på e kugleflade.... Toplasvikle i e regulær

Læs mere

Renteformlen. Erik Vestergaard

Renteformlen. Erik Vestergaard Reteformle Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2010. Billeder: Forside: istock.com/ilbusca Side 4: istock.com/adresrimagig Desude ege illustratioer. Erik Vestergaard

Læs mere

Asymptotisk optimalitet af MLE

Asymptotisk optimalitet af MLE Kapitel 4 Asymptotisk optimalitet af MLE Lad Y 1, Y 2,... være uafhægige, idetisk fordelte variable med værdier i et rum (Y,K). Vi har givet e model (ν θ ) θ Θ for fordelige af Y 1 (og dermed også for

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Dages program Kvatitative metoder De multiple regressiosmodel 6. februar 007 Emet for dee forelæsig er de multiple regressiosmodel (Wooldridge kap 3.- 3.+appedix E.) Defiitio og motivatio Fortolkig af

Læs mere

Bachelorprojekt for BSc-graden i matematik

Bachelorprojekt for BSc-graden i matematik D E T N A T U R V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Bachelorprojekt for BSc-grade i matematik Mikkel Abrahamse & Sue Precht Reeh Ekstremal grafteori Vejleder:

Læs mere

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R.

Eksempel 10.1 En autoregressiv proces af orden 1 (ofte blot kaldet en AR(1)- proces) pårhar et opdateringsskema (10.1) med funktionen. for y R. Kapitel 0 Markovkæder Vi vil i det følgede studere processer Y 0, Y, Y 2,... med værdier irgivet på forme Y = f (Y +ǫ for =, 2,... (0. Her erǫ,ǫ 2,... e følge af iid støjvariable med middelværdi 0, alle

Læs mere

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968)

Analyse af algoritmer. Algoritmedesign med internetanvendelser ved Keld Helsgaun. Køretid. Algoritmebegrebet D. E. Knuth (1968) Algoritmedesig med iteretavedelser ved Keld Helsgau Aalyse af algoritmer Iput Algoritme Output E algoritme er e trivis metode til løsig af et problem i edelig tid 1 2 Algoritmebegrebet D. E. Kuth (1968)

Læs mere

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet

DATV: Introduktion til optimering og operationsanalyse, 2007. Følsomhed af Knapsack Problemet DATV: Itroduktio til optimerig og operatiosaalyse, 2007 Følsomhed af Kapsack Problemet David Pisiger, Projektopgave 1 Dette er de første obligatoriske projektopgave på kurset DATV: Itroduktio til optimerig

Læs mere

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18

Termodynamik. Indhold. Termodynamik. Første og anden hovedsætning 1/18 ermodyamik. Første og ade hovedsætig /8 ermodyamik Idhold. Isoterme og adiabatiske tilstadsædriger for gasser...3 3. ermodyamikkes. hovedsætig....5 4. Reversibilitet...6 5. Reversibel maskie og maksimalt

Læs mere

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert.

Analyse 1, Prøve maj Lemma 2. Enhver konstant funktion f : R R, hvor f(x) = a, a R, er kontinuert. Alyse, Prøve. mj 9 Alle hevisiger til TL er hevisiger til Klkulus 6, Tom Lidstrøm. Direkte opgvehevisiger til Klkulus er givet med TLO, ellers er lle hevisiger til steder i de overordede fsit. Hevises

Læs mere

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset. STATISTIK Skriftlig evaluerig, 3. semester, madag de 30. auar 006 kl. 9.00-3.00. Alle hælpemidler er tilladt. Opgaveløsige forsyes med av og CPR-r. OPGAVE Ved e produktio af viduer er der mulighed for,

Læs mere

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik

Noter om kombinatorik, Kirsten Rosenkilde, februar 2008 1. Kombinatorik Noter om ombiatori, Kirste Roseilde, februar 008 Kombiatori Disse oter er e itrodutio til ombiatori og starter helt fra bude, så e del af det idledede er siert edt for dig allerede, me der ommer også hurtigt

Læs mere

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning) Dages program Estimatio: Kapitel 9.4-9.7 Eksempler på middelrette og/eller kosistete estimator (de sidste fra sidste forelæsig) Ko desiterval for store datasæt kap. 9.4 Ko desiterval for små datasæt kap.

Læs mere

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende

Forslag til besvarelser af opgaver m.m. i ε-bogen, Matematik for lærerstuderende Forslag til besvarelser af opgaver m.m. i ε-boge, Matematik for lærerstuderede Dette er førsteudgave af opgavebesvarelser udarbejdet i sommere 008. Dokumetet ideholder forslag til besvarelser af de fleste

Læs mere

x-klasserne Gammel Hellerup Gymnasium

x-klasserne Gammel Hellerup Gymnasium SANDSYNLIGHEDSREGNING OG KOMBINATORIK x-klassere Gammel Hellerup Gymasium Idholdsfortegelse SANDSYNLIGHEDSREGNING... 3 SANDSYNLIGHEDSFELT... 3 DE STORE TALS LOV... 4 Sadsyligheder og frekveser:... 4 STOKASTISK

Læs mere

Stikprøvefordelinger og konfidensintervaller

Stikprøvefordelinger og konfidensintervaller Stikprøvefordeliger og kofidesitervaller Stikprøvefordelige for middelværdi De Cetrale Græseværdi Sætig Egeskaber Ved Estimatore Kofidesitervaller t-fordelige Estimator og estimat E stikprøve statistik

Læs mere

Statistik Lektion 8. Test for ens varians

Statistik Lektion 8. Test for ens varians Statitik Lektio 8 Tet for e varia ra tidligere Hvi populatioe er ormalfordelt med varia, å gælder ( ) S ~ χ hvor er tikprøve tørrele og S er tikprøvevariae. χ -fordelig med - frihedgrader χ Tet af Variae

Læs mere

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager

Velkommen. Program. Statistik og Sandsynlighedsregning 2 Sandsynlighedstætheder og kontinuerte fordelinger på R. Praktiske ting og sager Program Statistik og Sadsylighedsregig 2 Sadsylighedstætheder og kotiuerte fordeliger på R Helle Sørese Uge 6, madag Velkomme I dag: Praktiske bemærkiger Hvad skal vi lave på SaSt2? Sadsylighedstætheder

Læs mere

Asymptotisk estimationsteori

Asymptotisk estimationsteori Kapitel 5 Asymptotisk estimatiosteori De fleste eksperimeter har e idbygget størrelse, som regel kaldet eller N. Dette repræseterer typisk atallet af foretage måliger, atallet af udersøgte idivider, atallet

Læs mere

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger

Program. Ensidet variansanalyse Normalfordelingen. Antibiotika og nedbrydning af organisk materiale. Tegninger Faculty of Life Scieces Program Esidet variasaalyse Normalfordelige Claus Ekstrøm E-mail: ekstrom@life.ku.dk Esidet variasaalyse (oe-way ANOVA) Hvilke type data? Hvad er problemstillige? Variatio mellem

Læs mere

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium

KOMPLEKSE TAL x-klasserne Gammel Hellerup Gymnasium KOMPLEKSE TAL x-klassere Gammel Hellerup Gymasium Idholdsfortegelse E kort historie om imagiært og virkeligt... Tallegemet De Komplekse Tal... Idførelse af realdel og imagiærdel samt i... 8 Subtraktio,

Læs mere

Øvelser til fremme af forståelsen af den kvantemekaniske bølgemekanik

Øvelser til fremme af forståelsen af den kvantemekaniske bølgemekanik Syddask Uiversitet, Tekisk Fakultet Øvelser til fremme af forståelse af de kvatemekaiske bølgemekaik FY521, projekt r.1 Simo Holst Traberg-Larse og Søre Emil Weger Peterse d. 15. februar 2013 Dette projektdokumet

Læs mere

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk! Test i to populatioer Hypotesetest for parrede observatioer Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og

Læs mere

Prisfastsættelse af digitale goder - Microsoft

Prisfastsættelse af digitale goder - Microsoft Iteretøkoomi: risfastsættelse af digitale goder Afleveret d. 9 maj 003 Af Julie ech og Malee Aja org risfastsættelse af digitale goder - Microsoft Af Julie ech og Malee Aja org.0.0 DIGITALE GODER....0.0

Læs mere

Kompendie Komplekse tal

Kompendie Komplekse tal Kompedie Komplekse tal Prebe Holm 08-06-003 "!#!%$'&($)+*-,. cos(s + t) )0/ si(s + t) Trigoometri er måske ikke så relevat, år ma såda umiddelbart sakker om komplekse tal. Me faktisk avedes de trigoometriske

Læs mere

Kap. 1: Integralregning byggende på stamfunktioner.

Kap. 1: Integralregning byggende på stamfunktioner. - - Kp. : Itegrlregig yggede på stmfuktioer... Specielle egesker ved fuktioer. Defiitio... E fuktio f siges t være egræset i et itervl I, hvis f er defieret i itervllet, og hvis der fides to tl k og K,

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1 Økoometri 1 Iferes i de lieære regressiosmodel 9. september 006 Økoometri 1: F7 1 Dages program Opsamlig af hemmeopgave om Mote Carlo eksperimeter Mere om hypotesetest: Ekelt lieær restriktio på koefficieter

Læs mere

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n Ladmåliges fejlteori Lektio 3 Estimatio af σ Dobbeltmåliger Geometrisk ivellemet Lieariserig - rw@math.aau.dk Istitut for Matematiske Fag Aalborg Uiversitet Repetitio: Middelværdi og Varias Sætig: Middelværdi

Læs mere

Introduktion til uligheder

Introduktion til uligheder Itroduktio til uligheder, marts 0, Kirste Rosekilde Itroduktio til uligheder Dette er e itroduktio til ogle basale uligheder om det aritmetiske geemsit, det geometriske geemsit, det harmoiske geemsit og

Læs mere

STATISTISKE GRUNDBEGREBER

STATISTISKE GRUNDBEGREBER MOGENS ODDERSHEDE LARSEN STATISTISKE GRUNDBEGREBER 18 15 1 9 6 3 0 Histogram for ph 6,9 7,1 7,3 7,5 7,7 7,9 ph 13 udgave 013 FORORD Der er i dee bog søgt at give letlæst og askuelig fremstillig af de statistiske

Læs mere

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik. Epidemiologi og biostatistik Forelæsig Uge 1, torsdag. februar 006 ichael Væth, Afdelig for Biostatistik. Sammeligig af to middelværdier sikkerhedsitervaller statistisk test Sammeligig af to proportioer

Læs mere

Matematik 6, Esben Kehlet Noter til Matematik 6

Matematik 6, Esben Kehlet Noter til Matematik 6 Matematik 6, 1962 63 Esbe Kehlet Noter til Matematik 6 Fuktioalaalyse Mat. 6, 1962-63 K Idholdsfortegelse I II III IV v VI Itegratio 1 Afsluttet begræset iterval 2 Åbet iterval Forskellige forberedelser

Læs mere

Løsninger til kapitel 7

Løsninger til kapitel 7 Løsiger til kapitel 7 Opgave 7.1 a) HpoStat giver resultatet: Pop. varias er ukedt, me 30, så Normalf. bruges approksimativt = 54,400 s 1.069,90 = 00,000 0,95 49,868 58,93 Dette betder, at med 95% sikkerhed

Læs mere

Sammenligning af to grupper

Sammenligning af to grupper Sammeligig af to gruer Reetitio, heruder om kritiske værdier Sammeligig af to gruer Sammeligig af to middelværdier Sammeligig af to adele Sammeligig af to variaser yoteser og hyotesetest. E hyotese er

Læs mere

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne.

3y MA, Steen Toft Jørgensen side 1/5 Helsingør Gymnasium. Definitioner, formler, sætninger og ideen i beviserne så det er muligt at huske beviserne. 3y MA, Stee Toft Jørgese side /5 Helsigør Gymasium Vektorregig i 3D Formålet er at skabe overblik over emet. Boge Mat3A af Jes Carstese, kapitel 3 og 4, side 83-5. Defiitioer, formler, sætiger og idee

Læs mere

Den grådige metode 2

Den grådige metode 2 Algoritmedesig 1 De grådige metode De grådige metode Et problem løses ved at foretage e række beslutiger Beslutigere træffes e ad gage i e eller ade rækkefølge Hver beslutig er baseret på et grådighedskriterium

Læs mere

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside : Statistiske test Efteråret 00 Jes Friis, AAU Hjemmeside : http://akaaudk/jfj Kotiuerte fordeliger Defiitio: Tæthedsfuktio E sadsylighedstæthedsfuktio på R er e itegrabel fuktio f : R [0; [ hvor f d = Defiitio:

Læs mere

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog

- et værktøj til fejlrettende QR-koder. Projekt 0.3 Galois-legemerne. Indhold. Hvad er matematik? A, i-bog Projekt 0.3 Galois-legemere GF é ëp û - et værktøj til fejlrettede QR-koder Idhold De karakteristiske egeskaber ved de tre mest almidelige talsystemer, og... De kommutative, associative og distributive

Læs mere

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra

Skitse til notat om hvor de forskellige sandsynlighedsfordelinger kan tænkes at komme fra E6 efterår 1999 Notat 8 Jørge Larse 12. oktober 1999 Skitse til otat om hvor de forskellige sadsylighedsfordeliger ka tækes at komme fra I statistik opererer ma i vid udstrækig med et lille atal»stadardfordeliger«.

Læs mere

Den hurtige Fouriertransformation

Den hurtige Fouriertransformation Polyomier De hurtige Fouriertrasformatio Polyomium: Geerelt: p + 2 3 4 ( x) = 5 + 2x + 8x + 3x 4x p(x) =! " eller x i p(x) = a + a x + a 2 x 2 +!+ a! x! Jea Baptiste Joseph Fourier (768-83) 2 Evaluerig

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydigslove Når e bølge, fx e lysbølge, rammer e græseflade mellem to stoffer, vil bølge ormalt blive spaltet i to: Noget af bølge kastes tilbage (spejlig), hvor udfaldsvikle u er de samme

Læs mere

Supplement til Kreyszig

Supplement til Kreyszig Supplemet til Kreyszig Forelæsigsoter til Matematik F Idholdsfortegelse side 1. Numerisk itegratio. Fejlvurderig af trapez og Simpso algoritmere 1. Dekompoerig af brøker (Laplace trasformatio) 3. Permutatioer

Læs mere

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk! Statistik Lektio 8 Parrede test Test for forskel i adele Test for es varias Gesy med flyskræk! Afhægige og uafhægige stikprøver Ved e uafhægig stikprøve udtages e stikprøve fra hver gruppe.. Mæd og kviders

Læs mere

Kontinuitet og Konvergens. Matematik: Videnskaben om det uendelige 5

Kontinuitet og Konvergens. Matematik: Videnskaben om det uendelige 5 Kotiuitet og Koverges Matemati: Videsabe om det uedelige 5 2 Newtos Fluet og Fluio E variabel størrelse, z, aldes e fluet, og des ædrigstilstad (rate of chage) aldes des fluio, og beteges ż. De fluet,

Læs mere

Vejledende opgavebesvarelser

Vejledende opgavebesvarelser Vejledede opgavebesvarelser 1. Atal hæder er lig med K(52,5), altså 2598960. Ved brug af multiplikatiospricippet ka atal hæder med 3 ruder og 2 spar udreges som K(13, 3) K(13, 2), hvilket giver 22308.

Læs mere

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol Simpel Lieær Regressio Opsplitig af variatioe Determiatios koefficiet Variasaalse F-test Model-kotrol Opbgig af statistisk model Specificer model Ligiger og atagelser Estimer parametre Modelkotrol Er modelle

Læs mere

Introduktion til Statistik

Introduktion til Statistik Itroduktio til Statistik 4. udgave Susae Ditlevse og Helle Sørese Susae Ditlevse, susae@math.ku.dk Helle Sørese, helle@math.ku.dk Istitut for Matematiske Fag Købehavs Uiversitet Uiversitetsparke 5 2100

Læs mere

Finitisme og Konstruktivisme. 22. November 2010

Finitisme og Konstruktivisme. 22. November 2010 Fiitisme og Kostruktivisme 22. November 2010 Frktler Hilbert Mdelbrot Feigebum Lorez Lorez-Ligigere σ = 10 β = 8/3 ρ =28 Logistisk vækst x -> rx(1-x) Mdelbrots frktl z -> P c (z) = z 2 +c 0-> P c (0) ->P

Læs mere

Generelle lineære modeller

Generelle lineære modeller Geerelle lieære modeller Regressiosmodeller med é uafhægig itervalskala variabel: Y e eller flere uafhægige variable: X,..,X k De betigede fordelig af Y givet X,..,X k atages at være ormal med e middelværdi,

Læs mere

GENEREL INTRODUKTION.

GENEREL INTRODUKTION. Study Guide til Matematik C. OVERSIGT. Dee study guide ideholder følgede afsit - Geerel itroduktio. - Emeliste. - Eksame. - Bilag. Udervisigsmiisteriets bekedtgørelse for matematik C. GENEREL INTRODUKTION.

Læs mere

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6

Formelskrivning i Word 2. Sådan kommer du i gang 4. Eksempel med skrivning af brøker 5. Brøker skrevet med småt 6. Hævet og sænket skrift 6 Dee udgave er til geemkig på ettet. Boge ka købes for kr. 5 hos EH-Mat. E y og udvidet udgave med title»symbol- og formelskrivig«er udkommet september 00. Se mere om de her. Idholdsfortegelse Formelskrivig

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere