Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over."

Transkript

1 Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående tal i hånden: a) 7, b) :, c), d) Opgave Reducér følgende udtryk mest muligt: b ) a a a. ) b a b 44 4 ) a a b b a. 5 4) ( y) ( y) 5) 6 4y 64y y 6 6) a 4 a a 4 5 a a. Ligninger og uligheder a) En funktion f er givet ved: f ( ). Løs ligningen f( ). b) Løs uligheden + 6 < ( ) c) Løs følgende ligninger ) = 0. ) 5

2 Opgave Løs ved hjælp af lige store koefficienters metode ligningssystemerne ) y y ) y y 0. Funktioner: Den rette linje, definitionsmængde, værdimængde, sammensatte funktioner, inverse funktioner, andengradspolynomiet, eksponentielle udviklinger og logaritmer. En ret linje l går gennem punktet P(,) og er vinkelret på linjen m givet ved: m : y Beregn ligningen for linjen l. Opgave To funktioner f og g er givet ved: f ( ) ln( ) og g( ). a) Bestem værdimængden for funktionen g. b) Bestem definitionsmængden for den sammensatte funktion f ( g( )) ( f g)( ). Opgave En funktion f er givet ved: f ( ) 5 a) Bestem definitionsmængden for funktionen f. b) Bestem en forskrift for den inverse funktion f til funktionen f. Opgave 4 Et andengradspolynomium f er givet ved: f ( ) 4. a) Bestem koordinatsættene til de punkter, hvor grafen for f skærer koordinatakserne. b) Bestem koordinatsættet til toppunktet for parablen, givet ved grafen for f. c) Bestem værdimængden for funktionen f.

3 Opgave 5 Løs følgende ligninger: a) 4 e 0. e b) ln + ln( + ) = ln. c) log( ) log =. d) log log Differentialregning Angiv den afledede funktion af hver af funktionerne f () =, f () = e e + f () = 5 e, f 4 () = ln ( ). Opgave En funktion f er givet ved: f ( ) ln( ). a) Bestem definitionsmængden for f. b) Bestem f '( ) og bestem en ligning for tangenten til grafen for f i punktet (, f ()). Opgave 4 En funktion f er givet ved: f ( ) 4. a) Bestem monotoniforholdene for f. b) Bestem koordinatsættene til de lokale ekstremumspunkter.

4 5. Trigonometri Løs følgende ligninger a) cos( ) 0, 75, 0;. b) cos( ) 0, 6 for 0,. c) sin( ) 0,4 for. Opgave En harmonisk svingning f er givet ved forskriften: f ( ) sin( ) 4. a) Bestem maksimums- og minimumsværdien samt perioden for f. b) Bestem f () og løs ligningen: f ( ) 0, for 0;. c) Løs ved beregning ligningen: sin ( ) sin( ) Integralregning Angiv 5 f() d, når f()d = f()d 5 =. Opgave Beregn følgende ubestemte integraler a) 6 d c) b) (cos ( ) ) sin( ) d. d) ( ) 6 e d. d Opgave Beregn følgende bestemte integraler 4 a) ln( ) d b) d b) ( ) d. c) d 0 0.

5 Opgave 4 To funktioner f og g er givet ved: f ( ) og g( ) 8, for 0 a) Tegn graferne for f og g i samme koordinatsystem, og gør rede for, at graferne skærer hinanden i punktet P(4, 4). Punktmængden M er afgrænset af graferne for f og g og y-aksen. b) Bestem ved hjælp af stamfunktion arealet af M. Punktmængden M drejes 60 om -aksen. Derved fremkommer et omdrejningslegeme. c) Bestem ved hjælp af stamfunktion volumenet af dette omdrejningslegeme. Punktmængden M er afgrænset af graferne for f og g og -aksen. d) Bestem ved hjælp af stamfunktion arealet af M. 7. Differentialligninger En differentialligning er givet ved: dy y e d. a) Bestem den fuldstændige løsning til differentialligningen. b) Bestem den partikulære løsning y f ( ) til differentialligningen, hvis graf i punktet P0, f (0) har en tangent med ligningen: y. Opgave dy En differentialligning er givet ved: cos( ) y cos( ) d a) Bestem ved beregning en ligning for tangenten til grafen i punktet P (, ) for den partikulære løsning, der går gennem punktet P. b) Bestem ved beregning den fuldstændige løsning til differentialligningen. En anden differentialligning er givet ved: dy d y c) Vis at f ( ) e ( ) er en løsning til differentialligningen.

6 8. Vektorer i planen og plangeometri Givet er linjen l med ligningen y 0 og punktet P(, ). a) Beregn afstanden mellem linjen l og punktet P. b) Bestem en ligning for den cirkel, som har centrum i P og tangerer linjen l. c) Bestem en ligning for den linje m, som går gennem punktet P og er ortogonal på linjen l. Opgave I planen er givet vektorerne: a 5 og b. a) Bestem arealet af den trekant som de to vektorer udspænder. b) Bestem projektionen af a på b. c) Bestem vinklen mellem a og a b. En linje l er givet ved ligningen: y 6 0. d) Bestem afstanden fra punktet P (8,4) til linjen l. 9. Vektorer i rummet og rumgeometri To vektorer er givet ved: a og b 0. 0 Vektoren n er givet ved: n a b a) Vis, at n 6., og et punkt er givet ved:,, P. b) Bestem en ligning for den plan, der indeholder P og har n som normalvektor.

7 Opgave En linje er givet ved: y 4 t, t R, z 7 og en plan er givet ved: y z. a) Bestem koordinatsættet til skæringspunktet mellem linjen og planen. b) Beregn afstanden mellem planen og punktet P (,4,0). c) Bestem den spidse vinkel mellem linjen og planen. d) Bestem en ligning for den kugle, der har centrum i P (, 4,0) og har planen som tangentplan. 0. Vektorfunktioner I et koordinatsystem i planen er en kurve givet ved parameterfremstillingen t t e y t t, t ;. a) Beregn koordinaterne til hvert af kurvens skæringspunkter med koordinatsystemets akser. b) Beregn hastighedsvektoren og vis, at kurven ikke har en tangent i punktet svarende til t-værdien. c) Beregn ligningen for tangenten til kurven i punktet svarende til t = 0. d) Bestem t-værdierene til kurvens skæringspunkter med linjen y =.

8 Facit. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion a) 49 b) (/) c) d) (/00) Opgave ) b a b + ) + ) a b 6 4) ( y)y 5) (y + 8) 6) a 5 a. Ligninger og uligheder a) =-8 b) ingen løsning c) ) =0 eller = ) =- eller =0 Opgave ) =, y= ) =, y=

9 . Funktioner: Den rette linje, definitionsmængde, værdimængde, sammensatte funktioner, inverse funktioner, andengradspolynomiet, eksponentialfunktioner, eksponentielle udviklinger og logaritmer. Opgave a) Vm [( 9 4 ), [ y = ( ) + b) Dm ], ( 7 )[ ]( 7 + )/, [ Opgave a) Dm [ 5, [ b) = f = y + 5 Opgave 4 a) (,0), (,0), (0,4) b) (, 9 ) c) Vm [ 9, [ Opgave 5 a) =0 b) = c) =00/0 d) =

10 4. Differentialregning f = 5 f = (e + ) e (e + ) f = (ln(5) + ) e (ln(5)+) f 4 = ( ) Opgave a) Dm ], [ b) f = c) y = Opgave a) f er voksende for ], ] [, + [ f er aftagende for [, ] b) (, ( 8 )) (, ( 8 ))

11 5. Trigonometri a) =,9. b) c) 0.79 Opgave a) Ma =, min = 6 og T = π. b) L = { π 4 ; π 4 } c) = π 4 6. Integralregning 5 f() d = 0. Opgave a) 6 d ln( ) c t b) (cos ( ) ) sin( ) d t c. c) d) ( ) d 6 e d = e t + c. = c

12 Opgave a) (ln()) ln( ) d 4 b) d ln(9) 0 c) ( ) d = 9. 0 d) d = ln(). Opgave 4 a) Hint: Løs ligning f() = g(). b) A(M ) = 40. c) V = 98 5 π. d) A(M ) = Differentialligninger a) y = e + + c e. b) f() = e + + e. Opgave a) y = + π +. b) y = + c e sin() c) Hint: Find f (). 8. Vektorer i planen og plangeometri a) dist(p, l) =. b) ( ) + (y ) = 9

13 Opgave a) b) a b = ( 5 ) c) v,4 d) dist(p, l) = 5 9. Vektorer i rummet og rumgeometri b) α: 6y z = 0. Opgave a)(, y, z) = (,7,0) b) dist(p, α) = 6 6 c)θ,0 d) ( ) + (y 4) + z = 6 0. Vektorfunktioner a) aksen: L = {,0}, y aksen: t = 0. b) Hint: Undersøg tangents hældning. c) y = d) L = {,}

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:

Læs mere

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex

ADGANGSKURSUS AALBORG UNIVERSITET. Formelsamling. Brush-up Flex ADGANGSKURSUS AALBORG UNIVERSITET Formelsamling Brush-up Flex 2016 Indholdsfortegnelse 1. Brøkregning... 2 2. Parenteser... 3 3. Kvadratsætningerne:... 3 4. Potensregneregler... 4 5. Andengradsligninger...

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2018 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2016 Institution Den Jyske Håndværkerskole Uddannelse Fag og niveau Lærer Hold EUX - Tømre Matematik

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Integralregning ( 23-27)

Integralregning ( 23-27) Integralregning ( -7) -7 Side Bestem ved håndkraft samtlige stamfunktioner til hver af funktionerne a) f() =, + 7 ) f() = 7 + 7 c) f() = ep() + ln() d) f() = e ep() + Bestem ved håndkraft samtlige stamfunktioner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2018 Rybners

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj-juni 2015 HTX Vibenhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Rybners HTX Esbjerg HTX Matematik A Henrik Lambæk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2008-juni 2011 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 til juli 2017 Institution Teknisk Gymnasium Sønderborg Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011-juni 2014 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2013/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen 7Ama1V13

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold December 2015 vinter VUC Vestegnen stx Mat A Gert Friis

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse Mat A 2007-2010

Undervisningsbeskrivelse Mat A 2007-2010 Undervisningsbeskrivelse Mat A 2007-2010 Termin Maj 2010 Institution HTX-Sukkertoppen Uddannelse HTX Fag og Niveau Matematik A Lærer Reza Farzin Hold HTX 3.L / science Titel 1 Titel 2 Titel 4 Titel 5 Titel

Læs mere

Matematik A eksamen 14. august Delprøve 1

Matematik A eksamen 14. august Delprøve 1 Matematik A eksamen 14. august 2014 www.matematikhfsvar.page.tl Delprøve 1 Info: I denne eksamensopgave anvendes der punktum som decimaltal istedet for komma. Eks. 3.14 istedet for 3,14 Opgave 1 - Andengradsligning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2009-juni 2012 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug. 14 jun.

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug. 14 jun. Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug. 14 jun. 16 Institution Uddannelse Fag og niveau Lærer(e) Hold Vid Gymnasier HTX Matematik B Morten Käszner og Niels

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Løsningsforslag MatB Jan 2011

Løsningsforslag MatB Jan 2011 Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2017 Institution Erhvervsgymnasiet Grindsted Uddannelse Fag og niveau Lærer(e) Htx Matematik A Anders

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010-juni 2013 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hf-enkeltfag Matematik B Gert

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 2014-maj 2017 Institution Uddannelse Fag og niveau Lærer(e) HTX Skjern Htx Matematik A Ole Egelund

Læs mere

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne 21 Matematik B Kurset svarer til det gymnasiale niveau B 21.2.2 Kernestof Kernestoffet er: regningsarternes hierarki, det udvidede

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2018 Institution Erhvervsgymnasiet Grindsted Uddannelse Fag og niveau Lærer(e) Htx Matematik A Anne

Læs mere

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Nihal Günaydin 1maA03

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2013 Københavns Tekniske Skole, HTX Vibenhus Uddannelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2017 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hold Hf-enkeltfag Matematik B

Læs mere

Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag:

Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag: Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag: Jeg ønsker at gå til eksamen i nedennævnte eksaminationsgrundlag (pensum), som skolen har lavet. Du skal ikke foretage dig yderligere

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Hold Rybners HTX Esbjerg HTX Matematik A Vicki Jacob

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns Tekniske Skole, HTX Vibenhus Uddannelse

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Angela

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 Maj/juni 2017 Institution Uddannelsescenter Ringkøbing-Skjern Uddannelse Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2017 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik A Kasper Huss

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2012 Institution Uddannelse Fag og niveau VUF - Voksenuddannelsescenter Frederiksberg GSK Matematik

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj 2013 HTX Vibenhus

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx10-mat/a-108010 Torsdag den 1. august 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015

DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.

Læs mere

gl. Matematik A Studentereksamen

gl. Matematik A Studentereksamen gl. Matematik A Studentereksamen gl-stx132-mat/a-14082013 Onsdag den 14. august 2013 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette

Læs mere

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave

Teknisk. Matematik FACITLISTE. Preben Madsen. 4. udgave Teknisk Preben Madsen Matematik 4. udgave FACITLISTE Indhold TAL OG ALGEBRA... LIGNINGER OG ULIGHEDER... GEOMETRI... 4 TRIGONOMETRI... 5 CIRKLEN... 5 6 OVERFLADER UDFOLDNINGER... 5 7 RUMFANG... 8 8 ANALYTISK

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar 2011-maj 2013 Institution Uddannelse Fag og niveau Lærer(e) HTX Skjern Htx Matematik A Ole Egelund

Læs mere

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet

GU HHX MAJ 2009 MATEMATIK A. Onsdag den 13. maj 2009. Kl. 9.00 14.00 GL091-MAA. Undervisningsministeriet GU HHX MAJ 2009 MATEMATIK A Onsdag den 13. maj 2009 Kl. 9.00 14.00 Undervisningsministeriet GL091-MAA Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og

Læs mere

Løsningsforslag MatB Juni 2012

Løsningsforslag MatB Juni 2012 Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2017 Institution Erhvervsgymnasiet Grindsted Uddannelse Fag og niveau Lærer(e) Htx Matematik A Anders

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juli-august 2011 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK-hold Oversigt over gennemførte undervisningsforløb

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 2014 Studenterkurset

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 13/14 Institution Grenaa HTX Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B Bo Paivinen Ullersted

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Termin hvori undervisningen afsluttes: maj juni 10 HTX Sukkertoppen,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2015-2016 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer Hold HF: E-learning Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)

Læs mere

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består

Læs mere

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011

Matematik A. Studentereksamen. Fredag den 9. december 2011 kl. 9.00-14.00. stx113-mat/a-09122011 Matematik A Studentereksamen stx113-mat/a-09122011 Fredag den 9. december 2011 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

MATEMATIK ( 5 h ) DATO: 4. juni 2010

MATEMATIK ( 5 h ) DATO: 4. juni 2010 EUROPÆISK STUDENTEREKSAMEN 2010 MATEMATIK ( 5 h ) DATO: 4. juni 2010 PRØVENS VARIGHED: 4 timer (240 minutter) TILLADTE HJÆLPEMIDLER Europaskolernes formelsamling Ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2018 Institution Hansenberg Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Thomas Voergaard

Læs mere