Lineær regression i SAS. Lineær regression i SAS p.1/20

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Lineær regression i SAS. Lineær regression i SAS p.1/20"

Transkript

1 Lineær regression i SAS Lineær regression i SAS p.1/20

2 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression i SAS p.2/20

3 Fitness data Evne til at forbruge oxygen - dyrt at bestemme! Ønsker at prædiktere denne evne på baggrund af kovariater: Run Rest Run Max Obs Age Weight Oxygen Time Pulse Pulse Pulse Lineær regression i SAS p.3/20

4 Simpel lineær regression Model: ε α N 0 β σ2 ε Modellen fittes i SAS: PROC REG DATA=fitness; MODEL Oxygen=RunTime; RUN; Lineær regression i SAS p.4/20

5 Simpel lineær regression, output (1) The REG Procedure Model: MODEL1 Dependent Variable: Oxygen Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Lineær regression i SAS p.5/20

6 Simpel lineær regression, output (2) Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 RunTime <.0001 ˆα ˆβ s F-test for modellen uden kovariater / T-test for β F 84 p 0 T 9 p : Lineær regression i SAS p.6/20

7 Diagnostics fra proc reg Datasæt diagnostics indeholder prædikterede værdier, residualer og standardiserede residualer: PROC REG DATA=fitness; MODEL Oxygen=RunTime; OUTPUT OUT=diagnostics PRED=predicted RESIDUAL=res STUDENT=st_res; RUN; Der findes andre diagnostics, se evt. SAS manualen. Lineær regression i SAS p.7/20

8 Diagnostics, output Datasættet diagnostics: R p e R M r R s u a e W O u t n x d e x n P P P i s i y T u u u c t O A g g i l l l t r r b g h e m s s s e e e s e t n e e e e d s s Lineær regression i SAS p.8/20

9 Diagnostics, redidualplot Mulighed 1: Benyt PROC GPLOT på datasættet diagnostics Mulighed 2: Benyt PROC REG direkte: PROC REG DATA=fitness; MODEL Oxygen=RunTime; PLOT Oxygen*RunTime student.*predicted.; RUN; Lineær regression i SAS p.9/20

10 Scatterplot med regressionslinie O x y g e n = R u n T i m e N 3 1 R s q A d j R s q R M S E O x y g e n R u n T i m e Lineær regression i SAS p.10/20

11 Residualplot O x y g e n = R u n T i m e 3 2 N 3 1 R s q A d j R s q R M S E S t u d e n t i z e d R e s i d u a l P r e d i c t e d V a l u e Lineær regression i SAS p.11/20

12 Plots Hvilken metode skal man bruge til at plotte? Et OUTPUT statement i PROC REG sammen med PROC GPLOT giver langt de fleste muligheder. Hurtigt og let at plotte direkte med PROC REG alene, men begrænsede muligheder. Lineær regression i SAS p.12/20

13 Plots vha. PROC GPLOT Regressionslinie indtegnet: SYMBOL1 V=CIRCLE I=RL; PROC GPLOT DATA=fitness; PLOT Oxygen*RunTime; RUN; 95% konfidensinterval for regressionslinien: SYMBOL1 V=CIRCLE I=RLCLM95; 95% prædiktionsinterval: SYMBOL1 V=CIRCLE I=RLCLI95; Lineær regression i SAS p.13/20

14 Regressionslinie O x y g e n R u n T i m e Lineær regression i SAS p.14/20

15 Regressionslinie med sikkerhedsgrænser O x y g e n R u n T i m e Lineær regression i SAS p.15/20

16 Regressionslinie med prædiktionsgrænser O x y g e n R u n T i m e Lineær regression i SAS p.16/20

17 Multipel lineær regression Model: α β 1 β 2 β 3 ε β 4 β 6 N 0 σ2 β 5 ε Modellen fittes i SAS: PROC REG DATA=fitness; MODEL Oxygen=RunTime Age Weight RunPulse RestPulse MaxPulse; RUN; Lineær regression i SAS p.17/20

18 Multipel lineær regression, output (1) The REG Procedure Model: MODEL1 Dependent Variable: Oxygen Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model <.0001 Error Corrected Total Root MSE R-Square Dependent Mean Adj R-Sq Coeff Var Lineær regression i SAS p.18/20

19 Multipel lineær regression, output (2) Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > t Intercept <.0001 RunTime <.0001 Age Weight RunPulse RestPulse MaxPulse ˆα ˆβ F-test for modellen uden kovariater: F p T-test for β 1 0: T 6 84 p s 2 32 Lineær regression i SAS p.19/20

20 Opsummering af syntax PROC REG DATA=data; MODEL respons=a b c; BY d; /* Kræver data sorteret efter d */ PLOT respons*a student.*predicted.; OUTPUT OUT=diagnostics PRED=predicted RESIDUAL=res STUDENT=st_res; RUN; SYMBOL1 V=CIRCLE I=RL /* RLCLM95/RLCLI95 */; PROC GPLOT DATA=data; PLOT respons*a; RUN; Lineær regression i SAS p.20/20

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1

β = SDD xt SSD t σ 2 s 2 02 = SSD 02 f 02 i=1 Lineær regression Lad x 1,..., x n være udfald af stokastiske variable X 1,..., X n og betragt modellen M 2 : X i N(α + βt i, σ 2 ) hvor t i, i = 1,..., n, er kendte tal. Konkret analyseres (en del af)

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1

n r x rs x r = 1 n r s=1 (x rs x r ) 2, s=1 (a) Denne opgave bygger på resultaterne fra 2 forsøg med epo-behandling af for tidligt fødte børn, idet gruppe 1 og 3 stammer fra første forsøg, mens gruppe 2 og 4 stammer fra det andet. Det må antages,

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S

Kursus i varians- og regressionsanalyse Data med detektionsgrænse. Birthe Lykke Thomsen H. Lundbeck A/S Kursus i varians- og regressionsanalyse Data med detektionsgrænse Birthe Lykke Thomsen H. Lundbeck A/S 1 Data med detektionsgrænse Venstrecensurering: Baggrundsstøj eller begrænsning i måleudstyrets følsomhed

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen

Filen indeholder variablenavne i første linie, og de ligger i rækkefølgen Opgavebesvarelse, Resting metabolic rate I filen T:\Basalstatistik\rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Regressionsanalyse i SAS

Regressionsanalyse i SAS Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse

Læs mere

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1

Naturvidenskabelig Bacheloruddannelse Forår 2006 Matematisk Modellering 1 Side 1 Matematisk Modellering 1 Side 1 I nærværende opgavesæt er der 16 spørgsmål fordelt på 4 opgaver. Ved bedømmelsen af besvarelsen vægtes alle spørgsmål lige. Endvidere lægges der vægt på, at det af besvarelsen

Læs mere

k normalfordelte observationsrækker (ensidet variansanalyse)

k normalfordelte observationsrækker (ensidet variansanalyse) k normalfordelte observationsrækker (ensidet variansanalyse) Lad x ij, i = 1,...,k, j = 1,..., n i, være udfald af stokastiske variable X ij og betragt modellen M 1 : X ij N(µ i, σ 2 ). Estimaterne er

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences

Basal Statistik. Simpel lineær regression. Simpel lineær regression. Data. Faculty of Health Sciences Faculty of Health Sciences Simpel lineær regression Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 21. februar 2017 Regression og korrelation Simpel lineær regression Todimensionale normalfordelinger

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

Besvarelse af opgave om Vital Capacity

Besvarelse af opgave om Vital Capacity Besvarelse af opgave om Vital Capacity hentet fra P. Armitage & G. Berry: Statistical methods in medical research. 2nd ed. Blackwell, 1987. Spørgsmål 1: Indlæs data og konstruer en faktor (klassevariabel)

Læs mere

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger.

Filen indeholder 45 linier, først en linie med variabelnavnene (bw og rmr) og derefter 44 datalinier, hver med disse to oplysninger. Opgavebesvarelse, Resting metabolic rate I filen rmr.txt findes sammenhørende værdier af kropsvægt (bw, i kg) og hvilende stofskifte (rmr, kcal pr. døgn) for 44 kvinder (Altman, 1991 og Owen et.al., Am.

Læs mere

Faculty of Health Sciences. Basal Statistik. Regressionsanalyse. Lene Theil Skovgaard. 26. september 2017

Faculty of Health Sciences. Basal Statistik. Regressionsanalyse. Lene Theil Skovgaard. 26. september 2017 Faculty of Health Sciences Basal Statistik Regressionsanalyse. Lene Theil Skovgaard 26. september 2017 1 / 85 Simpel lineær regression Regression og korrelation Simpel lineær regression Todimensionale

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2007. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 8 sider.

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE

Køn. Holdning Mænd Kvinder Ialt JA NEJ VED IKKE Økonomisk Kandidateksamen Teoretisk Statistik Eksamenstermin: Sommer 2004, dato: 3. juni 4 timers prøve med alle hjælpemidler, besvarelse på Dansk Opgave En simpel tilfældig stikprøve på 500 udtrukket

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014

Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Vejledende besvarelse af hjemmeopgave, efterår 2016

Vejledende besvarelse af hjemmeopgave, efterår 2016 Vejledende besvarelse af hjemmeopgave, efterår 2016 Udleveret 4. oktober, afleveres senest ved øvelserne i uge 44 (1.-4. november) Normal aktivitet af enzymet plasma kolinesterase er en forudsætning for

Læs mere

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger

Øvelser til basalkursus, 5. uge. Opgavebesvarelse: Knogledensitet hos unge piger Øvelser til basalkursus, 5. uge Opgavebesvarelse: Knogledensitet hos unge piger I alt 112 piger har fået målt knogledensitet (bone mineral density, bmd) i 11-års alderen (baseline værdi). Pigerne er herefter

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1

Opgaver til ZAR II. Afdeling for Anvendt Matematik og Statistik Michael Sørensen Oktober Opgave 1 Københavns Universitet Afdeling for Anvendt Matematik og Statistik Statistik for biokemikere Inge Henningsen Michael Sørensen Oktober 2003 Opgaver til ZAR II Opgave 1 Et datasæt består af 20 observationer.

Læs mere

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007

Variansanalyse i SAS 1. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 1 Ensidet variansanalyse Bartlett s test Tukey s test PROC

Læs mere

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet

Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Reeksamen i Statistik for biokemikere. Blok 3 2007.

Reeksamen i Statistik for biokemikere. Blok 3 2007. Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for biokemikere. Blok 3 2007. Opgave 1. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet

Læs mere

Basal statistik. 21. oktober 2008

Basal statistik. 21. oktober 2008 Basal statistik 21. oktober 2008 Den generelle lineære model Repetition af variansanalyse og multipel regression Interaktion Parametriseringer Kovariansanalyse Esben Budtz-Jørgensen, Biostatistisk Afdeling

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2015

Vejledende besvarelse af hjemmeopgave, forår 2015 Vejledende besvarelse af hjemmeopgave, forår 2015 En stikprøve bestående af 65 mænd og 65 kvinder er blevet undersøgt med henblik på at se på en evt. sammenhæng mellem kropstemperatur og puls. På hjemmesiden

Læs mere

Kursus 02402/02323 Introducerende Statistik

Kursus 02402/02323 Introducerende Statistik Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 009 Danmarks Tekniske Universitet 2800 Lyngby Danmark

Læs mere

Basal Statistik - SPSS

Basal Statistik - SPSS Faculty of Health Sciences Basal Statistik - SPSS Kovariansanalyse. Lene Theil Skovgaard 3. oktober 2017 1 / 12 APPENDIX med instruktioner til SPSS-analyse svarende til nogle af slides Bland-Altman plot,

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt

enote 5: Simpel lineær regressions analyse Kursus 02402/02323 Introducerende Statistik Oversigt enote 5: Simpel lineær regressions analse Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression To variable: og Beregn mindstekvadraters estimat af ret linje Inferens med

Læs mere

Program. Indhold af kursus i overskrifter. Farlighed af GM-majs? (Ingeniøren Generel lineær model/multipel regression

Program. Indhold af kursus i overskrifter. Farlighed af GM-majs? (Ingeniøren Generel lineær model/multipel regression Program Indhold af kursus i overskrifter 1. overblik over kursus (opgaver fra sidst samt huspriser som eksempler). 2. p-værdi 3. uformel evaluering 1. sandsynlighedsregning sandsynlighedsfordelinger (normal,

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og

Model. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister) og Model M 0 : X hi N(α h + β h t hi,σ 2 h ), h = 1,...,m, i = 1,...,n h. m separate regressionslinjer. Behandles som i afsnit 3.3. (m separate analyser). I vores eksempel er m = 2, n 1 = 13 (13 journalister)

Læs mere

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere. Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Københavns Universitet Det Naturvidenskabelige Fakultet Eksamen i Statistik for biokemikere. Blok 2 2006. 3 timers skriftlig prøve. Alle hjælpemidler - også blyant - er tilladt. Opgavesættet er på 6 sider.

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017

Faculty of Health Sciences. Basal statistik. Den generelle lineære model mv. Lene Theil Skovgaard. 14. marts 2017 Faculty of Health Sciences Basal statistik Den generelle lineære model mv. Lene Theil Skovgaard 14. marts 2017 1 / 96 Den generelle lineære model mv. Ikke-lineære sammenhænge Opbygning af modeller Sammenligning

Læs mere

Basal Statistik. Simpel lineær regression. Problemstillinger ved multipel regression. Multipel regression. Faculty of Health Sciences

Basal Statistik. Simpel lineær regression. Problemstillinger ved multipel regression. Multipel regression. Faculty of Health Sciences Faculty of Health Sciences Simpel lineær regression Basal Statistik Multipel regressionsanalyse. Lene Theil Skovgaard 10. oktober 2017 Multipel regression Regression med to kvantitative kovariater: Eksempel

Læs mere

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data.

Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. Økonometri: Lektion 7 Emne: Prædiktionsintervaller, RESET teset, proxy variable og manglende data. 1 / 32 Motivation Eksempel: Savings = β 0 + β 1 Income + u Vi ved allerede, hvordan vi estimerer regresseionlinjen:

Læs mere

CLASS temp medie; MODEL rate=temp medie/solution; RUN;

CLASS temp medie; MODEL rate=temp medie/solution; RUN; Ugeopgave 2.1 Bakterieprøver fra patienter transporteres ofte til laboratoriet ved stuetemperatur samt mere eller mindre udsat for luftens ilt. Dette er især uheldigt for prøver som indeholder anaerobe

Læs mere

Statistik og skalavalidering Synopsis. Eksamensnumre 15, 33 og 45

Statistik og skalavalidering Synopsis. Eksamensnumre 15, 33 og 45 Statistik og skalavalidering Synopsis Københavns Universitet Folkesundhedsvidenskab, 7. semester Typografiske enheder: 22.615 December 2010 Indholdsfortegnelse 1.0 Indledning... 3 1.1 Karakteristika af

Læs mere

Økonometri Lektion 1 Simpel Lineær Regression 1/31

Økonometri Lektion 1 Simpel Lineær Regression 1/31 Økonometri Lektion 1 Simpel Lineær Regression 1/31 Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Statistisk model: Vi antager at sammenhængen

Læs mere

Vejledende besvarelse af hjemmeopgave

Vejledende besvarelse af hjemmeopgave Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2013 Udleveret 1. oktober, afleveres senest ved øvelserne i uge 44 (29. oktober-1. november) I forbindelse med en undersøgelse af vitamin

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer

Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer Program Simpel og multipel lineær regression Helle Sørensen E-mail: helle@math.ku.dk Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Vejledende besvarelse af hjemmeopgave, forår 2016

Vejledende besvarelse af hjemmeopgave, forår 2016 Vejledende besvarelse af hjemmeopgave, forår 2016 Udleveret 1. marts, afleveres senest ved øvelserne i uge 13 (29. marts-1. april) Denne opgave fokuserer på at beskrive niveauet af hormonet AMH (højt niveau

Læs mere

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3.

Model. k = 3 grupper: hvor ǫ ij uafhængige og normalfordelte med middelværdi nul og varians σi 2, i = 1,2,3. Model Program (8.15-10): 1. ensidet variansanalyse. 2. forsøgsplanlægning: blocking. Bruger nu to indices: i = 1,...,k for gruppenr. og j = 1,...,n i for observation indenfor gruppe. k = 3 grupper: µ 1

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Anvendt statistik Anders Tolver Jensen Institut for Grundvidenskab og Miljø Onsdag d. 25/2-2009 ATJ (IGM KU-LIFE) Logistisk regression Anvendt statistik 25/2-2009 1 / 12 (Multinomial)

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Phd-kursus i Basal Statistik, Opgaver til 2. uge

Phd-kursus i Basal Statistik, Opgaver til 2. uge Phd-kursus i Basal Statistik, Opgaver til 2. uge Opgave 1: Sædkvalitet Filen oeko.txt på hjemmesiden indeholder datamateriale til belysning af forskellen i sædkvalitet mellem SAS-ansatte og mænd, der lever

Læs mere

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling

Faculty of Health Sciences. Regressionsanalyse. Simpel lineær regression, Lene Theil Skovgaard. Biostatistisk Afdeling Faculty of Health Sciences Regressionsanalyse Simpel lineær regression, 28-2-2013 Lene Theil Skovgaard Biostatistisk Afdeling 1 / 67 Simpel lineær regression Regression og korrelation Simpel lineær regression

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Basal statistik. 2. oktober Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol

Basal statistik. 2. oktober Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Basal statistik 2. oktober 2007 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Lene Theil Skovgaard, Biostatistisk Afdeling Institut

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder

Basal statistik. Logaritmer og kovariansanalyse. Nyt eksempel vedr. sammenligning af målemetoder. Scatter plot af de to metoder Faculty of Health Sciences Logaritmer og kovariansanalyse Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 Parret sammenligning, målemetoder med logaritmer Tosidet variansanalyse

Læs mere

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015

Faculty of Health Sciences. Basal statistik. Logaritmer. Kovariansanalyse. Lene Theil Skovgaard. 29. september 2015 Faculty of Health Sciences Basal statistik Logaritmer. Kovariansanalyse Lene Theil Skovgaard 29. september 2015 1 / 84 Logaritmer og kovariansanalyse Parret sammenligning, målemetoder med logaritmer Tosidet

Læs mere

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium?

Basal statistik 3. oktober Typiske problemstillinger: Hvordan afhænger behandlingens effekt af sygdomsstadium? variansanalyse, oktober 2006 1 Basal statistik 3. oktober 2006 Variansanalyse Sammenligning af flere grupper Ensidet variansanalyse Tosidet variansanalyse Interaktion Modelkontrol Lene Theil Skovgaard

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j

Hypoteser om mere end to stikprøver ANOVA. k stikprøver: (ikke ordinale eller højere) gælder også for k 2! : i j Hypoteser om mere end to stikprøver ANOVA k stikprøver: (ikke ordinale eller højere) H 0 : 1 2... k gælder også for k 2! H 0ij : i j H 0ij : i j simpelt forslag: k k 1 2 t-tests: i j DUER IKKE! Bonferroni!!

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere