Matematikken bag satellitnavigation GPS - GLONASS - GALILEO

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Matematikken bag satellitnavigation GPS - GLONASS - GALILEO"

Transkript

1 GPS - GLONASS - GALILEO Johan P. Hansen 1 1 Institut for Matematik, Aarhus Universitet

2 Disposition 1 Retningsbestemt navigation 2 Hyperbel navigation - DECCA og LORAN 3 Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Matematikken centralt i spil Rumlig triangulering Matematisk synkronisering af ure 4 Bestemmelse af tidsforskel Lineære skifte registre

3 Pejling Tag pejling af 2 kendte punkter Bestem skæringspunktet mellem de 2 tilsvarende rette linier på et passende kort

4 Mercator projektion: Verdenskort 1569 Samme kurs svarer til en ret linie på kortet En pejlet vinkel svarer til den samme vinkel på kortet

5 Hyperbel navigation - DECCA og LORAN Hyperbler Konstante afstandsforskelle til 2 givne punkter Kendt afstandsforskel bestemmer, hvilken hyperbelgren i nettet man er på Bestemmelse i forhold til mindst 2 hyperbelnet bestemmer positionen I praksis (DECCA) bruges 3 hyperbelnet

6 Hyperbel navigation - DECCA og LORAN DECCA og LORAN hyperbelnavigation DECCA Landgangen Normandiet 1944 Night Passage to Normandy, Lieutenant-Commander Oliver Dawkins, R.N.V.R, Decca, 1969 The Decca Navigator System on D-Day, 6 June 1944, An Acid Test, Commander Hugh St. A. Malleson, R.N. (Ret.) DECCA-net i drift i Danmark masteren var på Samsø og slaverne ved Møn, Tønder og Hjørring LORAN. USA, Japan, Norge og Rusland har LORAN stationer i drift. Norge har en station på Jan Mayen. De lang-bølgede radiosignaler kan modtages under vand, og er derfor nyttige til ubåde.

7 USA/USSR/EU forskellige motiver Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Som en del af den kolde krigs våbenkapløb besluttede US Department of Defense at udvikle et positionssystem (GPS), der gjorde det muligt for en ubåd hurtigt og præcist at bestemme sin position og affyre sine våben. Raketter var allerede så præsice, at de kunne ramme, hvad som helst blot de kendte affyringspositionen. Det kostede 12 milliarder US dollars og er nu tilgængeligt for alle. USSR har et tilsvarende militært system (GLONASS). GALILEO er et nyt europæisk system under udvikling med et kommercielt sigte. Systemet vil kunne arbejde sammen med og supplere GPS og GLONASS.

8 Galileo - mål Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Galileo er et satelitte navigationssystem som bygges af European Union (EU) og European Space Agency (ESA). Budget på 20 milliader EURO. Brugen vil være gratis for brugeren. Præcisionen bedre end 1 meter - såvel vandret som lodret. Bedre dækning på den nordligste del af den nordlige halvkugle end de øvrige systemer. Et af målene er at få et europæisk system uafhængigt af GLONASS (russisk), GPS (amerikansk) og Compass (kinesisk).

9 Galileo - status Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure 21 oktober 2011 blev de første 2 af 4 satelliter opsendt med henblik på at validere systemet de 2 næste følger i Begyndende drift forventes i midten af dette årti. Fuld drift med 30 satelitter (27 aktive og 3 i reserve) forventes i 2019.

10 Rumlig triangulering Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure I GPS 1 bestemmer modtageren afstandene til 3 af satelitterne ved at bestemme tiden, det tager for et signal at komme frem. Det giver 3 ligninger til at bestemme de 3 koordinater til positionen (x, y, z). Geometrisk udtrykker ligningerne, at positionen er på fællesmængden af 3 kugleflader - altså forventeligt 2 løsninger, hvoraf den ene kan forkastes udfra en rimelighedsbetragtning. 1 I Galileo regnes der ikke med atstande til satelitter; men med forskelle på afstande

11 Rumlig triangulering - nøjagtige ure! Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Princippet er enkelt, men forudsætter at den personlige modtager har et MEGET nøjagtigt ur, der går fuldstændigt synkront med urene i satellitterne. En fejl på 10 3 sekund resulterer i en positionsfejl på 300 km. at der er en effektiv og nøjagtig metode til afstandsbestemmelse under forudsætning af synkrone ure.

12 Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Virkemåde - synkronisering af det lokale ur Det meget præsice ur haves selvsagt ikke på den lokale modtager til en pris af 1000 kr.; men kan laves på en elegant matematisk måde. Betragt fejlen på uret i din lokale modtager som en variabel. Mål ikke til 3 men til 4 satelitter for at opstille 4 ligninger til bestemmelse af de 4 variable x, y, z,. En lokal modtager bestemmer altså ikke blot positionen; men er også et meget nøjagtigt ur, fordi det ved hjælp af matematik synkroniserer til satellit-urene. Nu skal vi se hvordan.

13 Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Ligningerne til bestemmelse af position og fejlen på det lokale ur Lad (x, y, z) være koordinaterne til den ukendte position og (x k, y k, z k ), i = 1, 2, 3, 4 de kendte koordinater til 4 satelitter. Fejlen i uret på den lokale modtager, betegner vi, så vi måler med en fejl på d = c, hvor c er lysets hastighed. Den målte afstand er derfor d k = (x x k ) 2 + (y y k ) 2 + (z z k ) 2 + d som medfører, at (x 2 k +y 2 k +z 2 k d 2 k ) 2(x k x +y k y +z k z d k d)+(x 2 +y 2 +z 2 d 2 ) = 0 Disse 4 sammenhørende ligninger kan med fordel løses ved skift til matrix notation. Bemærk, at vi vil bestemme de med rødt angivne variable.

14 Matematisk reformulering af ligningerne I Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Definer et skalarprodukt på R 4 ved a, b := a t Mb, M = x r = y z, r k = d x k y k z k d k

15 Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure I denne notation kan ligningerne skrives 1 2 r k, r k r k, r + 1 r, r = 0 2

16 Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Matematisk reformulering af ligningerne II Med notationen x 1 y 1 z 1 d 1 r 1, r 1 1 B := x 2 y 2 z 2 d 2 x 3 y 3 z 3 d 3, α = r 2, r 2 r 3, r 3, e = r1 1, Λ := 1 r, r 2 x 4 y 4 z 4 d 4 r 4, r 4 1 kan ligningerne skrives α BMr + Λe = 0 og løsningen bliver r = MB 1 (Λe + α).

17 Løsning Militær og kommerciel baggrund GALILEO et kommercielt/offentligt europæisk projekt - nu i EU regi Rumlig triangulering Matematisk synkronisering af ure Sætter vi ovenstående udtryk for r ind i Λ := 1 2 r, r får vi, idet vi udnytter at M(a), M(b) = a, b, en andengradsligning til bestemmelse af Λ B 1 e, B 1 e Λ B 1 e, B 1 α Λ + B 1 α, B 1 α = 0

18 Bestemmelse af tidsforskel Bestemmelse af tidsforskel Lineære skifte registre Måler den tid et radiosignal er undervejs fra satelit til modtager. Dertil bruges en generator af tilfældige tal. Satellitten udsender følgende: et tal for hvert klokkeslag GPS-modtageren har samme generator. GPS-modtageren sammenligner egen følge med den modtagne. En forskydning her er udtryk for en tidsforsinkelse.

19 Lineære skifte registre Bestemmelse af tidsforskel Lineære skifte registre Generatoren af tilfældige tal er et Lineært skifte register af bloklængde 10. Faktisk bruges der 2 registre og militæret bruger et af længde 12. Det virker sådan her: Registret har en starttilstand Første tal udlæses, de øvrige flyttes en plads til venstre. Sidste plads gives en værdi svarende til en bestemt lineær sum af de 10 foregående tal, hele tiden beregnet modulo 2. Det kunne for eksempel være summen af 3. og 10. tal hvilket faktisk er den ene af de to, der bruges i GPS. Efter 1023 klokkeslag, står vi med det register vi startede med.

20 Registre og maksimal periode Bestemmelse af tidsforskel Lineære skifte registre De værdier, som registret af bloklængde r udlæser udgør en følge af binære tal a 0, a 1, a 2,... og der er en rekursionsligning: a n = c 1 a n 1 + c 2 a n c r a n r mod 2, hvor c i er konstanter lig med 0 eller 1. Startværdierne benævnes a r,..., a 1. For et register af længde r er der 2 r mulige tilstande, idet der på hver af de r pladser kan stå enten 0 eller 1. Specialtilfældet, hvor alle pladserne er 0, har periode 1. For andre er det maksimale antal tilstande 2 r 1, som dermed er den maksimale periode for et register.

21 Genererende funktion Bestemmelse af tidsforskel Lineære skifte registre Den genererende funktion er G(x) := a nx n. n=0 Vi har r r G(x) = c i a n i x n = c i x i r a n i x n i = c i x i (a i x i + + a 1 x 1 + G(x)) n=0 i=1 i=1 n=0 i=1 Vi får, at ri=1 c i x i (a i x i + + a 1 x 1 ) G(x) = 1 r i=1 c i x i Polynomiet r f (x) = 1 c i x i i=1 i nævneren kaldes det karakteristiske polynomium for registret.

22 Bestemmelse af tidsforskel Lineære skifte registre De karakteristiske polynomier i GPS De to registre, der bruges i GPS-systemets civile del, har de karakteristiske polynomier : 1 + x 3 + x x 2 + x 3 + x 8 + x 9 + x 10 Ved en kombination af de to registre sender satellitten et periodisk signal med en periode på ca. 1,5 sek., svarende til ca km. (Militærets signal har en periode på ca. en uge).

23 Perioden I Bestemmelse af tidsforskel Lineære skifte registre Sætning. Antag a 1 = a 2 = = a r+1 = 0, a r = 1. Perioden er lig med det mindste hele tal p, så det karakteristiske polynomium f (x) er en divisor i 1 x p. Bevis: Med de givne startværdier og periode p har vi, at G(x) = 1 f (x) = a 0 + a 1 x +... a p 1 x p 1 + x p (a 0 + a 1 x +... a p 1 x p 1 ) + x 2p (a 0 + a 1 x +... a p 1 x p 1 ) +... = (a 0 + a 1 x +... a p 1 x p 1 ) 1 1 x p Så f (x)(a 0 + a 1 x +... a p 1 x p 1 ) = 1 x p og f (x) er en divisor i 1 x p.

24 Perioden II Bestemmelse af tidsforskel Lineære skifte registre Antag omvendt, at f (x) er en divisor i 1 x q. Altså, at f (x)(b 0 + a 1 x +... b p 1 x p 1 ) = 1 x q. Så er G(x) = 1 f (x) = b p a 1 x +... b p 1 x 1 x q = (b 0 + a 1 x +... b p 1 x p 1 )(1 + x q + x 2q + x 3q +... ) Da G(x) = a 0 + a 1 x + a 2 x har vi, at q = p, at a i = b i for alle i og at perioden er lig med p.

25 Perioden Bestemmelse af tidsforskel Lineære skifte registre Hvis registret har maksimal periode, så er det karakteristiske polynomium irreducibelt. Vises ved brug af ovenstående sætning. Det omvendte gælder ikke: 1 + x + x 2 + x 3 + x 4 er irreducibelt; men registret har kun periode 5. Hvis det karakteristiske polynomium er irreducibelt, så er perioden en divisor i 2 r 1. Hvis 2 r 1 er et primtal, så giver ethvert irreducibelt polynomium anledning til et register af maksimal længde 2 r 1. Primtal på formen 2 r 1 kaldes Mersenne primtal. Det største man kender er og det er ogsaa det største kendte primtal (det vil kræve 3461 sider at skrive dette tal med 75 cifre pr. linie og 50 linier pr. side).

26 Ved at betragte fejlen på dit lokale ur som en variable, er det muligt af bestemme såvel fejlen som positionen på en og samme gang ved at løse 4 ligninger med 4 ubekendte Lineære skifte registre giver et matematisk værktøj til af måle tidsforskelle og dermed afstande.

Matematikken navigation Kronometer - Mercator - Hyperbel GPS/Galileo

Matematikken navigation Kronometer - Mercator - Hyperbel GPS/Galileo Matematikken navigation Kronometer - Mercator - Hyperbel GPS/Galileo Johan P. Hansen 1 1 Institut for Matematik, Aarhus Universitet Disposition 1 Kuglen - koordinater 2 3 Hyperbel navigation - DECCA og

Læs mere

Matematiklærerdag 11. marts 2005

Matematiklærerdag 11. marts 2005 Global Position System - Galileo Matematiklærerdag 11. marts 2005 Johan P. Hansen matjph@imf.au.dk Institut for Matematiske Fag Aarhus Universitet matematikdag.tex Global Position System - Galileo Johan

Læs mere

Mikkel Gundersen Esben Milling

Mikkel Gundersen Esben Milling Mikkel Gundersen Esben Milling Grundregel nr. 1 En GPS kan og må ikke erstatte navigation med kort og kompas! Kurset Basal brug af GPS Hvad er en GPS og hvordan virker systemet Navigation og positionsformater,

Læs mere

En studerende der har gennemført Geodæsi elementet af kurset vil kunne følgende:

En studerende der har gennemført Geodæsi elementet af kurset vil kunne følgende: Geodæsi Lars Stenseng stenseng@space.dtu.dk Læringsål En studerende der har genneført Geodæsi eleentet af kurset vil kunne følgende: Beskrive den grundlæggende virkeåde for GNSS systeer Beskrive de tre

Læs mere

Foredrag i Eulers Venner 30. nov. 2004

Foredrag i Eulers Venner 30. nov. 2004 BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen matjph@imf.au.dk

Læs mere

GPS og geometri - 1 Baggrund. lineære og ikke-lineære ligninger. Køreplan 01005 Matematik 1 - FORÅR 2007

GPS og geometri - 1 Baggrund. lineære og ikke-lineære ligninger. Køreplan 01005 Matematik 1 - FORÅR 2007 GPS og geometri - lineære og ikke-lineære ligninger Køreplan 01005 Matematik 1 - FORÅR 2007 1 Baggrund GPS (Global Positioining System) er et system, der ved hjælp af 24 satellitter i kredsløb om jorden,

Læs mere

himlen - og hvad så? Anna B.O. Jensen

himlen - og hvad så? Anna B.O. Jensen Nye GNSS satellitter på himlen - og hvad så? Anna B.O. Jensen DdL Fagligt Møde, 31. januar 2014 Hvem er foredragsholderen? Uddannet: Landinspektør i 1994 Ph.d. i geodæsi fra Københavns Universitet Ansat:

Læs mere

Introduktion til GPS. Søren P. Petersen / dvl-lyngby.dk

Introduktion til GPS. Søren P. Petersen / dvl-lyngby.dk Introduktion til GPS Søren P. Petersen / dvl-lyngby.dk Hvad bruges en håndholdt GPS til? Måle tilbagelagt distance og fart Optage spor og markere punkter Navigere til et punkt efter et spor efter en rute

Læs mere

Autonavigatør til mindre Fartøjer

Autonavigatør til mindre Fartøjer Fra det historiske hjørne. af Carl-Ove Thor (bragt i DFÆL-Bladet nr. 111 i forkortet udgave her i fuld version) Denne gang handler det om Decca systemet og en artikel i Sejl og Motor fra januar 1946. Artiklen

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. DATALOGI V - Introduktion til Scientific Computing. Projektopgaven 2007

Københavns Universitet, Det naturvidenskabelige Fakultet. DATALOGI V - Introduktion til Scientific Computing. Projektopgaven 2007 Københavns Universitet, Det naturvidenskabelige Fakultet 1 DATALOGI V - Introduktion til Scientific Computing Projektopgaven 2007 Om selve opgaven Formålet med denne opgave er at give kursusdeltagerne

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe. 0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Kursus i Landmåling, Cad og GIS (LCG) Vej og Trafik, 5. semester og Byggeri og Anlæg, 1. semester

Kursus i Landmåling, Cad og GIS (LCG) Vej og Trafik, 5. semester og Byggeri og Anlæg, 1. semester Kursus i Landmåling, Cad og GIS (LCG) Vej og Trafik, 5. semester og Byggeri og Anlæg, 1. semester LCG-2 Introduktion til GPS 1. Observationsteknikker og GPS-koncepter 2. Absolut positionering baseret på

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!

Matematik A STX december 2016 vejl. løsning  Gratis anvendelse - læs betingelser! Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da

Læs mere

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014

Matematik A. Studentereksamen. Torsdag den 22. maj 2014 kl. 09.00-14.00. Digital eksamensopgave med adgang til internettet. 1stx141-MATn/A-22052014 Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx141-MATn/A-22052014 Torsdag den 22. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget

Læs mere

4. Funktioner lineære & hyperbel

4. Funktioner lineære & hyperbel 4. 4.1 Tegn følgende lineære funktioner: a. y = 2 +1 b. y = 3 c. y = 3 d. y = ½ + 2 e. y = 2 + 350 f. y = -25 + 4200 g. y = 125-375 4.2 Tegn følgende lineære funktioner. Det er en stor fordel at isolere

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Anvendelse af matematik til konkrete beregninger

Anvendelse af matematik til konkrete beregninger Anvendelse af matematik til konkrete beregninger ved J.B. Sand, Datalogisk Institut, KU Praktisk/teoretisk PROBLEM BEREGNINGSPROBLEM og INDDATA LØSNINGSMETODE EVT. LØSNING REGNEMASKINE Når man vil regne

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Positionering Nokia N76-1

Positionering Nokia N76-1 Nokia N76-1 2007 Nokia. Alle rettigheder forbeholdes. Nokia, Nokia Connecting People, Nseries og N76 er varemærker eller registrerede varemærker tilhørende Nokia Corporation. Andre produkter og firmanavne,

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen Landmålingens fejlteori Lektion Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet En stokastisk variabel er en variabel,

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Løsning til aflevering uge 11

Løsning til aflevering uge 11 Løsning til aflevering uge 11 100011/nm Opg.1 Beregninger på Foucaults pendul. Først en skitse A B c l a b l d C l c l E h d D 0.m Vandrette udsving a m a) Længden af pendulet kan beregnes ved at isolere

Læs mere

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær.

DesignMat Uge 2. Preben Alsholm. Efterår Lineære afbildninger. Preben Alsholm. Lineære afbildninger. Eksempel 2 på lineær. er DesignMat Uge 2 er er lineær lineær lineær lineære er I smatrix lineære er II smatrix I smatrix II Efterår 2010 Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge).

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Nyt fra satellitternes fagre verden

Nyt fra satellitternes fagre verden KTH ROYAL INSTITUTE OF TECHNOLOGY Nyt fra satellitternes fagre verden Anna B.O. Jensen, Afdelingen for Geodæsi og Satellitpositionering, KTH Hvem er foredragsholderen? Siden 2014 professor i geodæsi og

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Gert Friis Nielsen

Læs mere

Differentialligninger med TI-Interactive!

Differentialligninger med TI-Interactive! Differentialligninger med TI-Interactive! Jan Leffers (2008) Indholdsfortegnelse Indholdsfortegnelse...3 1. ordens differentialligninger... 4 Den fuldstændige løsning... 4 Løsning med bibetingelse...4

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13 En funktion beskriver, hvordan en afhængig variabel afhænger af en uafhængig variabel. Læringsmål Forstå koordinatsystemet Vide hvad 1. og 2. aksen er Vide at x er 1. akse og y er 2. akse Forståelsen for

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

fortsætte høj retning mellem mindre over større

fortsætte høj retning mellem mindre over større cirka (ca) omtrent overslag fortsætte stoppe gentage gentage det samme igen mønster glat ru kantet høj lav bakke lav høj regel formel lov retning højre nedad finde rundt rod orden nøjagtig præcis cirka

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2010 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin august 2015 maj 2016 Institution Rybners Uddannelse Fag og niveau Lærer(e) HTX A Steffen Podlech Hold 2.E Oversigt over gennemførte undervisningsforløb Titel 1 Titel 2 Titel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 11/12 Institution Vejle HF og VUC/ Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Ringe og Primfaktorisering

Ringe og Primfaktorisering Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - rw@math.aau.dk Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til. Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Jeg ønsker at aflægge prøve på nedenstående eksaminationsgrundlag. Jeg har foretaget ændringer i vejlederens fortrykte forslag: nej ja Dato: Underskrift HUSK at

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag:

Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag: Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag: Jeg ønsker at gå til eksamen i nedennævnte eksaminationsgrundlag (pensum), som skolen har lavet. Du skal ikke foretage dig yderligere

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen stx13-mat/b-1408013 Onsdag den 14. august 013 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Jeg foretager her en kort indføring af polynomier over såvel de reelle som

Jeg foretager her en kort indføring af polynomier over såvel de reelle som Polynomier, rødder og division Sebastian Ørsted 20. november 2016 Jeg foretager her en kort indføring af polynomier over såvel de reelle som de komplekse tal, hvor fokus er på at opbygge værktøjer til

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere

Rettevejledning til Georg Mohr-Konkurrencen runde

Rettevejledning til Georg Mohr-Konkurrencen runde Rettevejledning til Georg Mohr-Konkurrencen 2006 2. runde Det som skal vurderes i bedømmelsen af en opgave, er om deltageren har formået at analysere problemstillingen, kombinere de givne oplysninger til

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe102-mat/b-31082010 Tirsdag den 31. august 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

praktiskegrunde Regression og geometrisk data analyse (2. del) Ulf Brinkkjær

praktiskegrunde Regression og geometrisk data analyse (2. del) Ulf Brinkkjær praktiskegrunde Praktiske Grunde. Nordisk tidsskrift for kultur- og samfundsvidenskab Nr. 3 / 2010. ISSN 1902-2271. www.hexis.dk Regression og geometrisk data analyse (2. del) Ulf Brinkkjær Introduktion

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Ugesedler til sommerkursus

Ugesedler til sommerkursus Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A

Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007. Matematik Niveau A Højere Handelseksamen Handelsskolernes enkeltfagsprøve Maj 2007 07-0-1 Matematik Niveau A Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende omtrentlige

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forsøg med digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forsøg med digitale eksamensopgaver med adgang til internettet frs101-matn/a-605010 Onsdag den 6 maj 010 kl 0900-1400 Opgavesættet er delt i to dele Delprøve 1: timer med autoriseret

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - kkb@math.aau.dk http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere