Institut for Matematik, DTU: Gymnasieopgave. Det skrå kast. Teori: Erik Øhlenschlæger, Fysik for Diplomingeniører, Gyldendal 1996, side

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Institut for Matematik, DTU: Gymnasieopgave. Det skrå kast. Teori: Erik Øhlenschlæger, Fysik for Diplomingeniører, Gyldendal 1996, side 13-14."

Transkript

1 Det skå kast o ballistiske kue side 1 Institut fo Matematik, DTU: Gymnasieopae Det skå kast Teoi: Eik Øhlenschlæe, Fysik fo Diplomineniøe, Gyldendal 1996, side Fa kastemaskine til pojektile Fiu 1 Skitse af kastemaskine Fiu Rekonstuktion af kastemaskine Vi ha alle pøet at kaste tin op i luften fo at se, ho højt i kan kaste, elle ho lant i kan kaste Gennem histoien ha man but kastemaskine til kisføelse, nå man skulle indtae belejede bye o boe I oldtiden a Achimedes 1 beømt fo sine kismaskine, de ble benyttet i fosaet af byen Syacus mod den omeske belejin I fiu 1 e ist pincippet i en kastemaskine elle blide fa middelaldeen På middelaldecentet på Falste ha man ekonstueet en kastemaskine, se fiu, som du kan se unde afskydnin, his du kie på intenetadessen Tidliee ha man ikke kunnet beene banen fo kasteskytset Det a Galilei, de føst fandt, at et kast kunne sammensættes af en andet beæelse o et lodet fald Deed kunne han ise, at den kue, de femkomme ed et kast, e en paabel Senee opfandt Benjamin Robins 3 det ballistiske pendul, som mulijode pæcise måline af pojektiles hastihede Robins opdaede, at luftmodstanden på et pojektil kunne æe op til 1 ane så sto som tyndekaften på pojektilet Han a en teoi fo banekuen, som et pojektil føle unde luftmodstand Tabelle, de stamme fa Robins ble endnu but unde edenski til beenin af moteanates bane 1 Achimedes, 87-1 BC Gæsk matematike, fysike o ineniø Galiei, Italiensk idenskabsmand o astonom 3 Benjamin Robins, Enelsk matematike o ineniø

2 Det skå kast o ballistiske kue side Kastepaablen Fiu 3 Kastepaablen Vi il nu betate det skå kast uden luftmodstand Beæe en patikel si i et konstant tyndefelt med tyndeacceleationen ettet lodet nedad, se fiu 3, kan acceleationsektoen af patiklen i et xy-koodinatsystem skies a Vi antae, at patiklen state til tiden t med en hastihed, his støelse e o som danne en inkel på α med andet, se fiu 1 Hastihedsektoen til t e da cos α Inteee i acceleationen med hensyn til t finde i hastihedsektoen (t) til (t) + a t cos α - t Befinde patiklen si i punktet (,) til tiden t, finde i stedektoen (t) til (t) cos α t t + ½ a t t - ½ t Rækkeidden x x(t ) af kastet finde i ed at sætte y(t ), hilket ie fo t

3 Det skå kast o ballistiske kue side 3 t, hoefte ækkeidden x blie x cos α x(t ) Af fomlen fo x se i, at fo en ien beyndelsesfat il ækkeidden blie støst, his 1, ds at i skal kaste med en statinkel på α 45 Den støste højde y y((t ) på paablen finde i nå hastiheden i y-etninen y (t ) elle de indsat i y(t) ie t, y y(t ) Af fomlen fo y se i, at fo en ien beyndelsesfat il den maksimale højde blie støst, his 1, ds at i skal kaste med en statinkel på α 9 Opae Fiu 4 Sisimiut bandæsen i aktion Sisimiut bandæsen e bleet kaldt ud til en band på Byskolen Bandmændene holde ståleøet i punktet A med en inkel på α 6 med andet i en højde på 1,5 m oe joden, se fiu 4 Afstanden fa A til skolebyninen e 9 m Højden af skolens byninen e 9 m o bedden 6 m, se fiu 4 På und af andfobuet i Sisimiut på bandtidspunktet e andets hastihed ed mundinen af fa ståleøet 14 m/s

4 Det skå kast o ballistiske kue side 4 Spøsmål 1 Ho på byninens facade il andstålen amme? Unde slukninsabejdet e bandæsnet køt undt i Sisimiuts ade, ho man ennem højttalee ha opfodet folk til at spae på andet Deed stie pludseli hastiheden af andet ed ståleøets mundin til 1 18 m/s Ståleøets inkel i A e stadi α 6 med andet Spøsmål Ho amme andstålen nu? Vi skal i de følende se næmee på den banekue en patikel føle, nå man tae hensyn til luftmodstanden Ballistiske kue o skydeåben Fiu 5 Jatiffel Banen i det skå kast e kun med tilnæmelse paabelfomet Foøe i hastiheden af patiklen, elle betate i et lænee tidsum, il luftmodstandens indflydelse øe si ældende Affye i et pojektil fa et skydeåben, som ist i fiu 5, il pojektilet føle en den ballistisk kue På fiu 6 e ist en skitse af en ballistisk banekue i fohold til sitelinien på Fiu 6 Sitelinien i fohold til den ballistiske kue skydeåbnet Den ballistiske kue afie mee o mee fa paabelfomen jo lænee æk pojektilet ha beæet si Vi il nu opstille beæelseslininen fo et pojektil I uppeopae n 11 så i, at luftmodstanden på et leeme med faten kunne skies på fomen F D c D ½ A ρ, ho c D e modstandskoefficienten, ρ e luftens massefylde o A e leemets tæsnitsaeal

5 Det skå kast o ballistiske kue side 5 Fiu 7 Modstandskoefficientens afhænihed af faten målt i feet/second I fiu 7 e ist modstandskoefficienten fo foskellie type af pojektile som funktion af Af pojektilets fat Standadpojektilet e G1, de nomalt affyes med en mundinshastihed på ca 75 f/s ca 838 m/s Fo dette pojektil e c D,5 Med kalibe på 8 mm o en massefylde af luften på ρ 1, k/m 3 blie F D F D,5 ½ π/4,8 1, N s /m 1, N s /m Ha pojektilet en masse på m 18, en beyndelseshastihed 838 m/s o en hældnin med andet på α,15, ise en beenin ( se MAPLE løsninen), at iflen e Fiu 8 Afielse af den ballistiske kue fa en paabel indskudt på afstanden 3 m, se fiu 8 Faten af pojektilet e efte 3 m faldet til 87 m/s, o det e,37 sekunde om at nå sit mål

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys

Metode til beregning af varmetransmissionskoefficient (U-værdi) for ovenlys Metode til beenin af vametansmissionskoefficient (U-vædi) fo oven Nævæende notat beskive en metode til beenin af vametansmissionskoefficienten fo oven. Pincippet i beeninspoceduen tae udanspunkt i beeninsmetoden

Læs mere

Beregningsprocedure for de energimæssige forhold for forsatsvinduer

Beregningsprocedure for de energimæssige forhold for forsatsvinduer Beeninspocedue fo de eneimæssie fohold fo fosatsvindue Nævæende dokument beskive en pocedue til bestemmelse, af de eneimæssie fohold fo fosatsvindue. Det skal notees, at beeninen e baseet på en foeløbi

Læs mere

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

Matematik på Åbent VUC

Matematik på Åbent VUC Matematik på Åent VUC Lektion 8 Geometi Indoldsfotegnelse Indoldsfotegnelse... Længdemål og omegning mellem længdemål... Omkeds og aeal af ektangle og kvadate... Omkeds og aeal af ande figue... Omegning

Læs mere

FORSØGSVEJLEDNING. Kasteparablen

FORSØGSVEJLEDNING. Kasteparablen Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug

Læs mere

for C-niveau i stx udgave 2

for C-niveau i stx udgave 2 fo C-niea i sx dgae B D h a A C 01 Kasen Jl 1. En sides modsäende inkel... 1. Ensinklede ekane... 1. Od fo sidene i en einkle ekan.... Pyhagoas sçning... 5. Udegn hyoense nä i kende de o kaee. Udegn kaee

Læs mere

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse

43-43 Geometri. Cirkelring. m = π ( r 2. R, r er radierne, t er tykkelsen og m er middelomkreds. Ellipse 4-4 eometi Fiu ikelin Ellipse t Fomle O π ( t m π ( m π ( t, e diene, t e tykkelsen o m e middelomkeds. O π π e den le stokse o den le lillekse. Pelstykke Tpez ektnel O 6 4 ln 8 e øjden på pelstykket o

Læs mere

Geografi 8. klasse 2011/2012

Geografi 8. klasse 2011/2012 Geogafi 8. klasse 2011/2012 Ca. 75 lektione Åsplanen tage udgangspunkt i fælles mål fo faget geogafi. Det femgå af afkydsningslisten på de følgende side, hilke tinmål de il blie behandlet i de enkelte

Læs mere

Beregningsmetode for bestemmelse af forsatsvinduers energimæssige egenskaber

Beregningsmetode for bestemmelse af forsatsvinduers energimæssige egenskaber Beeninsmetode fo bestemmelse af fosatsvindues eneimæssie eenskabe dabejdet af DT i 200 fo eneistyelsen, o justeet i 2005 i fællesskab af DT o Teknoloisk Institut Kontaktpesone: Pofesso Svend Svendsen Danmaks

Læs mere

Kortfattet. for gymnasiet og hf. 2010 Karsten Juul

Kortfattet. for gymnasiet og hf. 2010 Karsten Juul Kotfattet fo gymnasiet og hf 5 00 Kasten Jl Indhold. HÄjde og aeal.... Pythagoas' såtning... 3. Ensinklede tekante...4 4. Cosins og sins i etinklet tekant...6 5. Tangens i etinklet tekant...9 6. Vinkle...

Læs mere

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul

Trekantsberegning. for B- og A- niveau i stx og hf udgave 2. 2014 Karsten Juul Tekansbeegning fo - og - niea i sx og hf dgae l 34 8 014 Kasen Jl Indhold 1. Vinkle... 1. Tekans häjde og aeal... 1.1 HÄjde.... 1. HÄjde-gndlinje-fomel fo ekans aeal... 1.3 Eksemel ho aeal e kend... 1

Læs mere

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger

Projekt 5.2. Anvendelse af Cavalieris princip i areal- og rumfangsberegninger Hvad e matematik? B, i-bog Pojekte: Kapitel 5. Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Pojekt 5.. Anvendelse af Cavalieis pincip i aeal- og umfangsbeegninge Den gundlæggende

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 8 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π og

Læs mere

Procent og eksponentiel vækst - supplerende eksempler

Procent og eksponentiel vækst - supplerende eksempler Eksemple til iveau F, E og D Pocet og ekspoetiel vækst - suppleede eksemple Pocete og decimaltal... b Vækst-fomle... d Fa side f og femefte vises eksemple på bug af vækstfomle. Fomle skives omalt på dee

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

Magnetisk dipolmoment

Magnetisk dipolmoment Kvantemekanik 9 Side 1 af 9 Magnetisk dipolmoment Klassisk Ifølge EM udtyk (8.16) e det magnetiske dipolmoment af en ladning q i en cikulæ bane med adius givet ved μ = IA (9.1) v q > 0 μ L hvo A = π I

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal 1 Opspaing og lån Mike Auebach Odense 2010 Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen. På

Læs mere

Projekt 0.5 Euklids algoritme, primtal og primiske tal

Projekt 0.5 Euklids algoritme, primtal og primiske tal Pojekt 0.5 Euklids algoitme, pimtal og pimiske tal Betegnelse. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige

Læs mere

for B- og A- niveau i stx og hf

for B- og A- niveau i stx og hf fo - og - niea i sx og hf D s 01 Kasen Jl Indhold 1: HÄjde og aeal... 1 1.1 Definiion HÄjde... 1 1. Eksemel En side kan Åe en häjde... 1 1.3 SÅning eal af ekan.... 1 1.4 Eksemel eal e kend... : Pyhagoas'

Læs mere

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00

HTX Holstebro Jacob Østergaard 20. oktober 2008 3. A Fysik A Accelererede Roterende Legemer 19:03:00 1 Fomål 1. At bestemme acceleationen fo et legeme med et kendt inetimoment, nå det ulle ned ad et skåplan - i teoi og paksis.. I teoi og paksis at bestemme acceleationen fo et legeme med kendt inetimoment,

Læs mere

for C-niveau i stx 2013 Karsten Juul

for C-niveau i stx 2013 Karsten Juul fo C-niea i sx 01 Kasen Jl 1. En sides modsäende inkel... 1. Ensinklede ekane... 1. Od fo sidene i en einkle ekan.... Pyhagoas sçning.... Udegn hyoense nä i kende de o kaee. Udegn kaee nä i kende kaee

Læs mere

Cykelfysik. Om udveksling og kraftoverførsel

Cykelfysik. Om udveksling og kraftoverførsel Cykelfysik 1/7 Cykelfysik Om udvekslig og kaftoveføsel Idhold 2. Kaftoveføsel og abejde...2 3. Abejde ved cykelkøsel...4 4. Regeeksemple fo e acecykel...5 5. Det e hådt at køe op ad bakke...6 6. Simple

Læs mere

Annuiteter og indekstal

Annuiteter og indekstal Annuitete og indekstal Mike Auebach Odense, 2010 1 OPSPARING OG LÅN Hvis man betale til en opspaingskonto i en bank, kan man ikke buge entefomlen til at beegne, hvo mange penge, de vil stå på kontoen.

Læs mere

Opsparing og afvikling af gæld

Opsparing og afvikling af gæld Opspaig og afviklig af gæld Opspaig Eksempel 1 Lad os state med at se på et eksempel. 100 Euo idbetales å i tæk på e koto, de foetes med 3 % p.a. Vi ha tidligee beeget e såda kotos udviklig skidt fo skidt:

Læs mere

Bilag 1: Beregningseksempel.

Bilag 1: Beregningseksempel. Bila 1: Beeninekempel. Bilaet ha til fomål at vie beeninpoceduen fo ovenly ved anvendele af et pecifikt pofil. Pofilet o et tvænit af ovenlyet e vit på fiu 1. Det betatede ovenly anvende identike amme/kampofile

Læs mere

Trafik køer. Nogle matematiske modeller 1. Matematiske emner. Trafik køer. Nogle matematiske modeller

Trafik køer. Nogle matematiske modeller 1. Matematiske emner. Trafik køer. Nogle matematiske modeller Tik køe. Nogle memiske modelle Memiske eme Tik køe Nogle memiske modelle Ole Wi-Hse Køge gymsium 008 Tik køe. Nogle memiske modelle Idhold Idhold.... Geeelle deiiioe og begige oe bil ik....3. Aiklig ik-køe

Læs mere

TEORETISK OPGAVE 3. Hvorfor er stjerner så store?

TEORETISK OPGAVE 3. Hvorfor er stjerner så store? TEORETISK OPGAVE 3 Hvofo e stjene så stoe? En stjene e en kuglefomet samling vam gas De fleste stjene skinne pga fusion af hydogen til helium i dees entale omåde I denne opgave skal vi anvende klassisk

Læs mere

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v

Trigonometri. teori mundtlig fremlæggelse C 2. C v. B v. A v Tigonometi teoi mundtlig femlæggelse 2 v v B v B Indhold 1. Sætning om ensvinklede teknte og målestoksfohold (uden bevis)... 2 2. Vinkelsummen i en teknt... 2 3. Pythgos sætning om ETVINKLEDE TEKNTE...

Læs mere

Vektorer i planen. Fem opgavesæt. for gymnasiets standardforsøg i matematik. 2004 Karsten Juul

Vektorer i planen. Fem opgavesæt. for gymnasiets standardforsøg i matematik. 2004 Karsten Juul Vektoe i planen Fem opgavesæt fo gymnasiets standadfosøg i matematik 004 Kasten Juul Vektoe i planen Opgavesæt n 1 af 5 Dette opgavesæt deje sig om det gundlæggende om vektoe VP 1 I et koodinatsystem i

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009

Nr Atom nummer nul Fag: Fysik A Udarbejdet af: Michael Bjerring Christiansen, Århus Statsgymnasium, august 2009 N. -9 Atom numme nul Fag: Fysik A Udabejdet af: Michael Bjeing Chistiansen, Åhus Statsgymnasium, august 9 Spøgsmål til atiklen 1. Hvofo vil det væe inteessant, hvis man fo eksempel finde antikulstof i

Læs mere

Lorentz kraften og dens betydning

Lorentz kraften og dens betydning Lorentz kraften og dens betydning I dette tillæg skal i se, at der irker en kraft på en ladning, der beæger sig i et agnetfelt, og i skal se på betydninger heraf. Før i gør det, skal i dog kigge på begrebet

Læs mere

Med disse betegnelser gælder følgende formel for en annuitetsopsparing:

Med disse betegnelser gælder følgende formel for en annuitetsopsparing: Matema10k C-iveau, Fydelud Side 1 af 10 Auitetsopspaig De fides mage måde at spae op på. Vi vil he se på de såkaldte auitetsopspaig. Emet ka buges som e del af det suppleede stof, og det ka avedes som

Læs mere

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Privatøkonomi og kvotientrækker KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017 Pivatøkonomi og kvotientække KLADDE Thomas Heide-Jøgensen, Rosbog Gymnasium & HF, 2017 Indhold 1 Endelige kvotientække 3 1.1 Hvad e en ække?............................ 3 1.2 Kvotientække..............................

Læs mere

Trigonometri. for 8. klasse. Geert Cederkvist

Trigonometri. for 8. klasse. Geert Cederkvist Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( )

Kvantemekanik 10 Side 1 af 9 Brintatomet I. Sfærisk harmoniske ( ) ( ) ( ) ( ) Kvantemekanik 0 Side af 9 Bintatomet I Sfæisk hamoniske Ifølge udtyk (9.7) e Lˆ Lˆ og de eksistee således et fuldstændigt sæt af = 0 samtidige egenfunktione fo ˆL og L ˆ de som antydet i udtyk (9.8) kan

Læs mere

De dynamiske stjerner

De dynamiske stjerner De dynamiske stjene Suppleende note Kuglesymmetiske gasmasse Figu 1 Betelgeuse (Alfa Oionis) e en ød kæmpestjene i stjenebilledet Oion. Den e så sto, at den anbagt i voes solsystem ville nå næsten ud til

Læs mere

Trekantsberegning. for C-niveau i hf Karsten Juul A D

Trekantsberegning. for C-niveau i hf Karsten Juul A D Tekansbeegning fo -niea i hf 0 01 Kasen Jl aeal...1, 7, 1 aeal og sins...7 beis fo sinsfomlen fo aeal af ekan...7 beis fo sinselaionen...8 cosins... cosins og Nsie... cosins i einkle ekan..., 11, 1 cosinselaionen...9,

Læs mere

Parameterkurver. Kapitel 7:

Parameterkurver. Kapitel 7: Kapitel 7: Parameterkurver 7 Oversigt af tegning af parameterkurver... 116 Oversigt over tegning af parameterkurver... 117 Forskelle mellem tegning af parameterkurver og funktioner... 118 I dette kapitel

Læs mere

Gravitationsfeltet. r i

Gravitationsfeltet. r i Gavitationsfeltet Den stoe bitiske fysike Isaac Newton opdagede i 600-tallet massetiltækningsloven, som sige, at to masse m og i den indbydes afstand påvike hinanden med en kaft af følgende støelse, hvo

Læs mere

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX

HTX. Matematik A. Onsdag den 11. maj Kl GL111 - MAA - HTX HTX Matematik A Onsdag den 11. maj 2011 Kl. 09.00-14.00 GL111 - MAA - HTX 1 2 Side 1 af 7 sider Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte

Læs mere

Løsninger til udvalgte opgaver i opgavehæftet

Løsninger til udvalgte opgaver i opgavehæftet V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør

Læs mere

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1

Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1 Kinematik Kinematik Indhold. Retlinet beægelse.... Jæn retlinet beægelse...3 3. Ujæn beægelse...4 4. Konstant accelereret beægelse...5 5. Tilbagelagt ej ed en konstant accelereret beægelse...8 6. Frit

Læs mere

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen

Indhold (med link til dokumentet her) Introduktion til låntyper. Begreber. Thomas Jensen og Morten Overgård Nielsen Thomas Jensen og Moten Ovegåd Nielsen Annuitetslån I bogens del 2 kan du læse om Pocent og ente (s. 41-66). Vi vil i mateialet he gå lidt videe til mee kompliceede entebeegninge i fobindelse med annuitetslån.

Læs mere

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen

Kontakt: - en anden tid et andet tempo! A13 Hobro. Løgstør. Skive. Bjerregrav Hjarbæk Fjord. Skals A13. Hobro/Randers Viborg. Kulturarvsforbindelsen Hvolis Jenaldelandsby og Kultuavsfobindelsen, Skive Heedsvejen 135 Veste Bjeegav 9632 Møldup www.jenaldelandsby.dk hvolis@vibog.dk A13 Hobo Løgstø Bjeegav Hjabæk Fjod Skals OL Kontakt: - en anden tid et

Læs mere

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:

Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning: Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt

Læs mere

Geovidenskab A. Vejledende opgavesæt nr. 1. Vejledende opgavesæt nr. 1

Geovidenskab A. Vejledende opgavesæt nr. 1. Vejledende opgavesæt nr. 1 Geovidenskab A Vejledende opgavesæt nr. 1 Vejledende opgavesæt nr. 1 Forår 2013 Opgavesættet består af 5 opgaver med tilsammen 16 spørgsmål. Svarene på de stillede spørgsmål indgår med samme vægt i vurderingen.

Læs mere

Bølgeudbredelse ved jordskælv

Bølgeudbredelse ved jordskælv rojekt: Jordskæl Bølgeudbredelse ed jordskæl IAG 2005 Bølgeudbredelse ed jordskæl V skal dette projekt studere bølgeudbredelse ed jordskæl. Her kommer så ldt teor om bølger. Bølger Man tegner næsten altd

Læs mere

Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for Fag, Fysik A, 2a. 2011-2013 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2013 Institution Uddannelse Fag og niveau Lærer(e) Hold Teknisk Gymnasium

Læs mere

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages

Projekt 4. Anlægsøkonomien i Storebæltsforbindelsen hvordan afdrages Pojekt 4. Alægsøkoomie i Stoebæltsfobidelse hvoda afdages lå? Dette pojekt hadle om, hvoda økoomie va skuet samme, da ma byggede Stoebæltsfobidelse. Stoe alægspojekte e æste altid helt elle delvist låefiasieet.

Læs mere

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb:

Hvis man vil lægge 15% til 600, så kan det gøres ved at udregne, hvor meget 15% af 600 er lig med og lægge det til det oprindelige beløb: 0BRetesegig BTæk i femskivigsfaktoe! I dette tillæg skal vi se, at begebet femskivigsfaktoe e yttigt til at fostå og løse foskellige poblemstillige idefo pocet- og etesegig. 3B. Lægge pocet til elle tække

Læs mere

Drømmerejser Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse:

Drømmerejser Ny Prisma Fysik og kemi 8. Skole: Navn: Klasse: Drømmerejser Ny Prisma Fysik og kemi 8 Skole: Navn: Klasse: Opgave 1 En rumraket skal have en bestemt fart for at slippe væk fra Jorden. Hvor stor er denne fart? Der er 5 svarmuligheder. Sæt et kryds.

Læs mere

MOGENS ODDERSHEDE LARSEN MATEMATIK

MOGENS ODDERSHEDE LARSEN MATEMATIK MOGENS ODDERSHEDE LARSEN MATEMATIK fa C- til A- niveau. udgave FORORD Denne bog e beegnet fo studeende, som ha behov fo at epetee elle opgadee dees matematiske viden fa C elle B- niveau til A-niveau Bogen

Læs mere

Bilag 1: Beregningseksempel

Bilag 1: Beregningseksempel Bila : Beeninseksempel Nævæende bila ha til omål at vise beeninspoceden o ovenlys med opdelt. De anvendes til eksemplet et speciikt ovenlyspoil med en osatsløsnin som ennemenes o dokmentees. Det beenede

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere

Forløb om annuitetslån

Forløb om annuitetslån Matema10k C-niveau, Fdenlund Side 1 af 7 Foløb om annuitetslån Dette mateiale fokusee på den tpe lån de betegnes annuitetslån. Emnet kan buges som en del af det suppleende stof, og mateialet kan anvendes

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her:

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her: K Kinematik Den del af fysikken, der handler om at beskrive bevægelser hedder kinematik. Vi kan se på tid, position, hastighed og acceleration, men disse ting må altid angives i forhold til noget. Fysikere

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

2. ordens differentialligninger. Svingninger.

2. ordens differentialligninger. Svingninger. arts 011, LC. ordens differentialligninger. Svingninger. Fjederkonstant k = 50 kg/s s X S 80 kg F1 F S er forlængelsen af fjederen, når loddets vægt belaster fjederen. X er den påtvungne forlængelse af

Læs mere

Beslutning. Gothersgade karréen. Nansensgade 94-96, Gothersgade 155-159, Nørre Farimagsgade 65-71.

Beslutning. Gothersgade karréen. Nansensgade 94-96, Gothersgade 155-159, Nørre Farimagsgade 65-71. Beslutig FÆLLES GÅRDHAVE Gothesgade kaée Nasesgade 94-96, Gothesgade 155-159, Nøe Faimagsgade 65-71. Bogeepæsetatioe ha XX. XX 20XX tuffet byfoyelsesbeslutig om idetig af e fælles gådhave. De fælles gådhave

Læs mere

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål.

Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. a. Buens opbygning Her skal vi se lidt på de kræfter, der påvirker en pil når den affyres og rammer sit mål. Buen påvirker pilen med en varierende kraft, der afhænger meget af buens opbygning. For det

Læs mere

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist.

Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Placering af vindmøller Denne øvelse er lavet af: Lavet af Martin Kaihøj, Jørgen Vind Villadsen og Dennis Noe. Rettet til af Dorthe Agerkvist. Forudsætninger: funktioner (matematik) og primære vindsystemer

Læs mere

Arealet af en sfærisk trekant m.m.

Arealet af en sfærisk trekant m.m. ealet af en sfæisk tekant m.m. Tillæg til side 103 104 i Matematik højniveau 1 fa TRI, af Eik Vestegaad. Sfæisk tokant Givet en kugle. En plan, de passee igennem kuglens centum, skæe kuglen i en såkaldt

Læs mere

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009

Lysets hastighed. Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.12.2009 Lysets hastighed Navn: Rami Kaddoura Klasse: 1.4 Fag: Matematik A Skole: Roskilde tekniske gymnasium, Htx Dato: 14.1.009 Indholdsfortegnelse 1. Opgaveanalyse... 3. Beregnelse af lysets hastighed... 4 3.

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Keplers ellipse. Perihel F' Aphel

Keplers ellipse. Perihel F' Aphel Keplers ellipse Keplers udgangspunkt er ellipsen opfattet som en fladtrykt cirkel. Han har selfølgelig stadigæk brug for brændpunkter mm. Konstruktionen af disse er simpel ud fra ellipsens omskrene rektangel.

Læs mere

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas

Statistisk mekanik 12 Side 1 af 9 Van der Waals-gas Statistisk mekanik Side af 9 Ideale gasmolekyler har pr. definition ingen udstrækning og påirker ikke hinanden med kræfter. En an der Waals-gas, hor der tages højde for såel molekylær udstrækning som er-molekylære

Læs mere

Bilag 1: Beregningseksempel.

Bilag 1: Beregningseksempel. Bila 1: Bereninseksemel. Claus F. Jensen, 5/4-01 Bilae har il ormål a vise bereninsroceduren or e elemen a en lasacade. De anvende elemen er rundlæende idenisk med de i ren 13947 anivne. Der renes i dee

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Densitet (= massefylde, massetæthed, engelsk: mass density )

Densitet (= massefylde, massetæthed, engelsk: mass density ) Densitet ( assefylde, assetæthed, enelsk: ass density ) Eksepel: 100 kbikcentieter rent ld vejer 1928 ra. Det er 19,28 ra pr kbikcentieter. Generelt definerer vi densiteten for et stof ved ρ, hvor er stoffets

Læs mere

1. Alléen & fredningen - som kulturhistorisk ikon - som landskabs element - som rumdannende element - som naturoplevelse

1. Alléen & fredningen - som kulturhistorisk ikon - som landskabs element - som rumdannende element - som naturoplevelse B o r g e r m ø d e d. 1 3. 0 6. 2 0 0 7 D a g s o r d e n A l l é e n & f r e d n i n g e n A l l é e n & f r e d n i n g e n A l l é e n & f r e d n i n g e n A l l é e n & f r e d n i n g e n A l l

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Dmk ekke Uetet Sde f 6 de Skftlg pøe, de 4. deceme, Kuu yk Kuu. //4 Vghed: 4 tme lle hjælpemdle: Ige hjælpemdle "Vægtg": eele edømme om e helhed. Alle kl egude med mde det e get. Alle mellemegge kl mege.

Læs mere

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen,

rekommandation overspændingsafledere til højspændingsnet. Member of DEHN group Udarbejdet af: Ernst Boye Nielsen & Peter Mathiasen, ekommandation ovespændingsafledee til højspændingsnet Udabejdet af: Enst Boye Nielsen & Pete Mathiasen, DESITEK A/S Denne publikation e en ekommandation fo valg af ovespændingsafledee til højspændingsnet

Læs mere

Tilføj supplement. Flemming Johansen (FLJO) Institution: VUC Vejle, Vejle afd. (630248) Placér lektioner

Tilføj supplement. Flemming Johansen (FLJO) Institution: VUC Vejle, Vejle afd. (630248) Placér lektioner Undevisningsbeskivelse Redig e Fag: Tilføj foløb Genee beskivelse Tilføj supplemen abejdsfome Psykologi C, VAF Temin: Juni 2014 Læe(e): Niveau: Flemming Johansen (FLJO) C fokuspunke Insiuion: VUC Vejle,

Læs mere

Kørselsdynamik. 1 Kræfter og energi. 1.1 Arbejde. Vej og Trafikteknik Design UDKAST

Kørselsdynamik. 1 Kræfter og energi. 1.1 Arbejde. Vej og Trafikteknik Design UDKAST Vej og Tafikeknik Design Køselsdynamik 1 Kæfe og enegi I den klassiske fysiks ideale eden, il en paikel, de ikke e udsa fo en esuleende kaf, beæge sig i en fas ening med konsan hasighed. De il ikke opæde

Læs mere

Matematik F2 - sæt 1 af 7, f(z)dz = 0 1

Matematik F2 - sæt 1 af 7, f(z)dz = 0 1 f(z)dz = 0 1 I denne uge er det meningen, at I skal blie fortrolige med komplekse tal og komplekse funktioner af en kompleks ariabel. Vi skal kigge nærmere på, hornår komplekse funktioner er differentiable

Læs mere

Matematik F2 Opgavesæt 1

Matematik F2 Opgavesæt 1 Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Ds ese Uestet Sde sde Stlg pøe pøe, /, / og 3/, Kusus ys Kusus. //4 Vghed: 4 te lle hjælpedle: Ige hjælpedle "Vægtg": Beselse bedøes so e helhed. Alle s sl begudes ed de det e get. Alle elleegge sl eges.

Læs mere

Matematik F2 Opgavesæt 1

Matematik F2 Opgavesæt 1 Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Oplevelser for alle! Bowl n Fun Horsens Strandkærvej 87 8700 Horsens Tlf. 75 64 56 55 Vi har online booking - læs mere på www.bowlnfun.

Oplevelser for alle! Bowl n Fun Horsens Strandkærvej 87 8700 Horsens Tlf. 75 64 56 55 Vi har online booking - læs mere på www.bowlnfun. Oplevelse fo alle! Bowl n Fun Hosens Standkævej 87 8700 Hosens Tlf. 75 64 56 55 Vi ha online ooking - læs mee på www.owlnfun.dk 2 Familieuffet & Bowling Søndag fa kl. 17.00 Bøn unde 12 å ½ pis TILBUD Hve

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Sabatiers princip (elevvejledning)

Sabatiers princip (elevvejledning) Sabaties pincip (elevvejledning) Væ på toppen af vulkanen Sammenligning af katalysatoe Fomål I skal måle hvo godt foskellige stoffe vike som katalysato fo udvikling af oxygen fa hydogenpeoxid. I skal sammenligne

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q1-1 To mekanikopgaver (10 points) Læs venligst den generelle vejledning i en anden konvolut inden du går i gang. Del A. Den skjulte metalskive (3.5 points) Vi betragter et sammensat legeme bestående af

Læs mere

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007

Alt hvad du nogensinde har ønsket at vide om... Del 2. Frank Nasser 2006-2007 Alt hvad du nogensinde ha ønsket at vide om... VEKTORER Del 2 Fank Nasse 2006-2007 - 1 - Indledning Vi skal i denne lille note gennemgå det basale teoi om vektoe i planen og i ummet. Stoffet e pæcis det

Læs mere

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas

Statistisk mekanik 6 Side 1 af 11 Hastighedsfordeling for ideal gas. Enatomig ideal gas Statistisk ekanik 6 Side 1 af 11 Enatoig ideal gas etragt en enatoig ideal gas bestående af N uskelnelige olekyler ed asse, der befinder sig i en beholder ed rufang V. For at kunne bestee tilstandssuen

Læs mere

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE?

KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? KAPACITET AF RUF SYSTEMET KAN DET LADE SIG GØRE? Af Torben A. Knudsen, Sud. Poly. & Claus Rehfeld, Forskningsadjunk Cener for Trafik og Transporforskning (CTT) Danmarks Tekniske Uniersie Bygning 115, 800

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 2stx111-MAT/B-24052011 Tirsdag den 24. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y

GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y GEOMETRI Generelt om inkler Nottion for inkler: u, A, BAC Topinkler er lige store, x y Komplementinkler er inkler, der tilsmmen er 90 u + 90 Supplementinkler er inkler, der tilsmmen er 180 (I stedet for

Læs mere

11: Det skjulte univers

11: Det skjulte univers : Det skjulte unives Jeg nævnte tilbage i kapitel 2, at de e en foklaing på, at univeset ha den oveodnede stuktu, som det ha. Men dengang manglede vi foudsætningene fo at fostå foklaingene. Siden ha elativitetsteoien

Læs mere

Kvantepartikel i centralpotential

Kvantepartikel i centralpotential Kvantemekanik 11 Side 1 af 7 Bintatomet II Kvantepatike i centapotentia Det kan vises at bevægesesmængdemomentets støese dets pojektion på en akse samt enegien af en kvantepatike i et centapotentia e samtidigt

Læs mere

ELVISK. It-supporter, Datatekniker infrastruktur. & Datatekniker programmering. Brug e r. er v. jl f. ve r løs. af Ne. Elev Virksomhed Skole.

ELVISK. It-supporter, Datatekniker infrastruktur. & Datatekniker programmering. Brug e r. er v. jl f. ve r løs. af Ne. Elev Virksomhed Skole. Po amu dvik lin Desin up k c Ba ed Sikkeh S e v el øs nin af Ne t m Poam væ k Da ta e e i n se ba Bu e s e vi ce Se m Poam ve løs nin e Fe e i n n di jl f in Softwae ae Hadw D at aba se Si k he d ERHVERVSUDDANNELSER

Læs mere

Uddannelsesordning for uddannelsen til Gastronom

Uddannelsesordning for uddannelsen til Gastronom Uddannelsesodning fo uddannelsen til Gastonom Udstedelsesdato: 9. juni 2011 Udstedt af Det faglige Udvalg fo Gastonomuddannelsen i henhold til bekendtgøelse n. 329 af 28. apil 2009 om uddannelsene i den

Læs mere

Projekt 0.5 Euklids algoritme og primiske tal

Projekt 0.5 Euklids algoritme og primiske tal Pojekt 0.5 Euklids algoitme og pimiske tal BETEGNELSER. Mængden af hele tal (positive, negative og nul) betegnes. At et tal a e et helt tal angives med: aî, de læses a tilhøe. Nå vi ha to vilkålige hele

Læs mere

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7.

Fri vækstmodel t tid og P (t) kvantitet. dp dt = kp Løsninger P (t) = Ce kt C fastlægges ved en begyndelsesværdi. Oversigt [S] 7.1, 7.2, 7.3, 7.4, 7. Oversigt [S] 7., 7.2, 7.3, 7.4, 7.5 Nøgleord og begreber Vækstmodel Bevægelsesligninger Retningsfelt Separable ligninger Logistisk ligning Eksponentiel vækst Begyndelsesværdiproblem Calculus - 2006 Uge

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere