MODEL FOR EN VIRKSOMHED

Størrelse: px
Starte visningen fra side:

Download "MODEL FOR EN VIRKSOMHED"

Transkript

1 MODEL FOR EN VIRKSOMHED Virksoheden ønsker at aksiere sit overskud. Produktionen tilrettelægges for en uge ad gangen og der produceres det antal enheder, der kan afsættes. Overskud = Indtægter Okostninger. INDTÆGTER Afsætningen er afhængig af stykprisen. Denne saenhæng kan udtrykkes ved en efterspørgselsfunktion so angiver den ængde varer so virksohedens kunder efterspørgerog dered den ængde so virksoheden kan sælge- so funktion af prisen. Denne saenhæng er ikke altid lineær en lad os antage at der gælder = - 6p Hvor p angiver den pris virksoheden kan få for sine varer og angiver antallet af enheder Efterspørgselfunktionen = -6p p Ex: p = kr da efterspørges 4 enheder p = 5 kr da efterspørges enheder For virksoheden er det hensigtsæssigt at kende prisen so funktion af efterspørgslen. Vi isolerer derfor p = 6 p p = 25 6

2 Denne funktion kaldes den ovendte efterspørgselsfunktion p 5 5 den ovendte efterspørgselsfunktion Virksohedens indtægter kan nu beregnes so den producerede ængde ganget ed prisen p ved denne ængde Indtægter = p = (25 ) 6 Lad os antage at okostningerne ved produktionen er lig ed det producerede antal enheder ganget ed stykokostningerne (okostninger ved produktion af en enhed). Stykokostningerne kan i dette eksepel sættes til 4 kr. Okostningerne s er da givet ved s() = 4 Vi kan nu opskrive et udtryk for overskuddet o o ( ) = (25 ) 4 =

3 overskud overskudsfunktionen For at virksoheden kan få det størst ulige udbytte skal denne funktion aksieres. Da funktionen er et andengradspolynoiu vil størsteværdien antages i den tilhørende parabels toppunkt. Dette beregnes til = 68 Den ugentlige produktion bør altså fastsættes til 68 enheder hvilket giver et overskud på o(68)=289. I tilfælde hvor overskudsfunktionen er ere kopliceret benyttes differentialregning til optieringen. 2 I vort tilfælde fås : o'( ) = 85 6 = = 68 En fortegnsundersøgelse godtgør at der er tale o et aksiu. Hvordan bestees efterspørgselsfunktionen? Firaet kan lave en arkedsundersøgelse og får herved repræsentative data, der angiver saenhængen elle pris og efterspørgsel. De saenhørende værdier kan afbildes i et koordinatsyste og forskriften bestees ved en regression. Firaet har nu en brugbar approksiation til efterspørgselsfunktionen. Funktionen behøver selvfølgelig ikke være lineær. Forelt kan vi skrive efterspørgselsfunktionen og dens centrale egenskaber so (p) hvor (p) < (p> og > ) hvor differentialkvotienten angiver hvorledes den efterspurgte ængde ændres når prisen ændres. Det fregår at er en aftagende funktion ( jo højere pris jo indre salg) Hvilke konsekvenser har det for virksoheden hvis der indføres begrænsninger på kapacitet og pris? 2) Antag at den ugentlige produktion aksialt kan være 5 enheder. Hvad er den optiale produktionsstørrelse?

4 der gælder altså 5 Fra tidligere har vi o'( ) = 85 = = o /////////// ////////////// Da er voksende i hele intervallet fås størst overskud for =5 (5) = (68) = 289 Altså et tab for virksoheden på 25 kr. 2) Antag lovgivningen angiver en aks.pris på 7 kr. Hvilke konsekvenser får det for virksoheden? < p 7 (7) = 6 7 = 88 < p = dvs 7 88 p = 25 6 > = 3 < < 88 o ( ) = < < 88 o'( ) = 85 8 > 88 o'( ) = 85 = = o ////// o stigende aftagende

5 overskud overskudsfunktionen Maksialt overskud for = 88 o(88) = 264 Overskuddet indskes altså ed = 25 3) Hvor stor skulle produktionen være hvis aksprisen var 35 kr.? o ( ) = 35 4 = 5 Overskuddet er altså altid negativt derfor ingen produktion. Hvilken rolle spiller stykokostningerne for produktionen? s = stykokostning (okostning/enhed) o ( ) = p s= (25 ) s 6 8s s 25 o'( ) = 25 8 s = = s > 25 8 < s < 25 '( s) = s > 25

6 Differentialkvotienten viser at stigende stykokostninger edfører aftagende optial produktionsstørrelse. Lad os til sidst se på,hvordan odellen for en virksohed kan anvendes til at analysere virkninger af forskellige indgreb fra det offentliges side. Specifikt kan vi undersøge hvorledes virksohedens adfærd påvirkes af henholdsvis en skat på overskuddet ( selskabsskat ) og en os. Lad os igen antage, at (p)=-6p og s()=4 Overskudsfunktionen er da igen givet ved o ( ) = (25 ) 4 6 En skat på overskuddet svarer til, at virksoheden skal betale en fast procentdel, f.eks 34%, af overskuddet i skat. Overskuddet efter skat ( nettooverskuddet ) er derfor givet ved no( ) =.66 o( ) Det ses uiddelbart, at den værdi af, so aksierer bruttooverskuddet, o(),å være den sae so den, der aksierer nettooverskuddet, no(). En overskudsskat vil derfor ikke påvirke virksohedens adfærd- kun dens overskud. Lad os nu se på effekten af en os på 25%. Den pris, forbrugeren betaler er prisen inklusive os, hvoriod den pris, virksoheden odtager for varen, er prisen eksklusive os. Forbrugeren betaler derfor.25 p, når virksoheden odtager p. da efterspørgslen afhænger af den pris, so forbrugeren skal betale, er det.25 p der skal indsættes på p s plads i efterspørgselsfunktionen. Vi får altså

7 p ( ) =.25 p 6 Den ovendte efterspørgselsfunktion er nu givet ved : p ( ) = Virksohedens overskudsfunktion kan derfor skrives so: o ( ) = ( ) 4 2 = + 6 Den optiale produktionsstørrelse findes so tidligere ved at finde nulpunkter for o'( ): o'( ) = +6 = = 6 2 Fortegnsvariationen bliver så : 6 o ()////// o() voksende ax aftagende De optiale værdier kan derefter saenfattes i følgende tabel, hvor S=.25 p() er skatteindtægterne fra osen. : p p + os o S Uden os Med os Den pris, so forbrugeren vil betale ( prisen inklusive os ), afhænger kun af den ængde, der sælges Når der pålægges en os, vil den pris, virksoheden odtager ( prisen eksklusive os ) ved salg af en given ængde, derfor reduceres. Det påvirker virksohedens arginalindtægter negativt. Hvis den vælger at sælge en ekstra enhed, får den nu kun den lave pris eksklusive os, hvor den før osen fik hele den pris, forbrugeren betalte. De arginale okostninger er deriod uforandrede.

8 Effekten af en os arginalokostninger arginalindtægter Mosen bevirker en reduktion i de arginale indtægter, so gør, at disse hurtigere bliver lig ed de arginale okostninger. Virksoheden vil derfor vælge at sænke produktionen i forhold til situationen uden os. Satidig er den pris forbrugerne betaler højere på grund af den indre produktionsstørrelse. Ekseplet viser, at det havde været billigere for både forbruger og virksohed hvis virksoheden blot betalte 5 til staten. Meget taler altså for en overskudsskat i stedet for en os.

Bestem den optimale pris- og mængdekombination til det skandinaviske marked i det kommende år.

Bestem den optimale pris- og mængdekombination til det skandinaviske marked i det kommende år. Dette opgavesæt indeholder løsningsforslag til opgavesættet: Stedprøve 5. aj 003 Det skal her understreges, at der er tale o et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der skal

Læs mere

Opgave 1. Sommereksamen 29. maj 2002. Spørgsmål 1.1: Sommereksamen 29. maj 2002. Dette sæt indeholder løsningsforslag til:

Opgave 1. Sommereksamen 29. maj 2002. Spørgsmål 1.1: Sommereksamen 29. maj 2002. Dette sæt indeholder løsningsforslag til: Soereksaen 9. aj 00 Dette sæt indeholder løsningsforslag til: Soereksaen 9. aj 00 Det skal her understreges, at der er tale o et løsningsforslag. Nogle af opgaverne er rene beregningsopgaver, hvor der

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale Mateatik Højere teknisk eksaen Forberedelsesateriale htx141-mt/-605014 Mandag den 6. aj 014 Forord Forberedelsesateriale til prøverne i ateatik Der er afsat 10 tier på dage til arbejdet ed forberedelsesaterialet

Læs mere

Konkludere nuanceret ud fra tabeller. Foretage relevante beregninger ud fra absolutte tal, indsætte i tabel og diagram. Brug af lommeregner og Excel.

Konkludere nuanceret ud fra tabeller. Foretage relevante beregninger ud fra absolutte tal, indsætte i tabel og diagram. Brug af lommeregner og Excel. Emne Samfundsfag Matematik Procentregning (vækst, andel) og indekstal Diagrammer ud fra Excel Vækstrate og logaritmisk skala Renten Ricardos tese om komparative fordele Efterspørgsel, udbud og prisdannelse

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx111-mat/a-305011 Mandag den 3. maj 011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Erhvervsøkonomi Efterår 2006 Afleveringsopgave nr. 1

Erhvervsøkonomi Efterår 2006 Afleveringsopgave nr. 1 Erhvervsøkonoi Efterår 006 Afleveringsopgave nr. Opgave : Sko-Let Aps Opgave 8.3 Sko-Let A/S i Økonoistyring og budgettering af Jens Oksen Jensen og Ole Christensen. Spørgsål.: Hvad er det forventede breakeven-punkt

Læs mere

Prisdannelse. Udbud, efterspørgsel og elasticitet. Thomas Schausen og Morten Damsgaard-Madsen

Prisdannelse. Udbud, efterspørgsel og elasticitet. Thomas Schausen og Morten Damsgaard-Madsen Prisdannelse Udbud, efterspørgsel og elasticitet Af Thoas Schausen og Morten Dasgaard-Madsen Et tværfagligt undervisningsateriale i ateatik og safundsfag fra Materialet er udarbejdet ed støtte fra Undervisningsinisteriet,

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Lorentz kraften og dens betydning

Lorentz kraften og dens betydning Lorentz kraften og dens betydning I dette tillæg skal i se, at der irker en kraft på en ladning, der beæger sig i et agnetfelt, og i skal se på betydninger heraf. Før i gør det, skal i dog kigge på begrebet

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) SIPE

Læs mere

Heliumballoner og luftskibe Projektbeskrivelse og produktkrav

Heliumballoner og luftskibe Projektbeskrivelse og produktkrav liuballoner og luftskibe Projektbeskrivelse og produktkrav Forålet ed projektet er at undersøge fysikken i heliuballoner ved at anvende ateatiske odeller og perspektivere den naturfaglige indsigt ed luftfartens

Læs mere

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =

Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x = MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver

Læs mere

Matematik B. Højere handelseksamen. Vejledende opgave 1

Matematik B. Højere handelseksamen. Vejledende opgave 1 Matematik B Højere handelseksamen Vejledende opgave 1 Efterår 011 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen af denne delprøve

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Priskontrol og velfærd: Maksimalpriser eller mindste priser leder ofte til at der opstår overskudsefterspørgsel

Priskontrol og velfærd: Maksimalpriser eller mindste priser leder ofte til at der opstår overskudsefterspørgsel riskontrol og velfærd: Maksimalpriser eller mindste priser leder ofte til at der opstår overskudsefterspørgsel eller overskudsudbud på markedet. Eksempel maksimalpris på maks : Overskudsefterspørgsel maks

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Elektromagnetisme 10 Side 1 af 12 Magnetisme. Magnetisering

Elektromagnetisme 10 Side 1 af 12 Magnetisme. Magnetisering Elektroagnetise 10 Side 1 af 12 Magnetisering Magnetfelter skabes af ladninger i bevægelse, altså af elektriske strøe. I den forbindelse skelnes elle to typer af agnetfeltskabende strøe: Frie strøe, der

Læs mere

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner Eksamensspørgsmål net B, vinter 0-sommer 03 Spørgsmål : Lineære funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014 Matematik B Højere handelseksamen hhx142-mat/b-18082014 Mandag den 18. august 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/a-19122011 Mandag den 19. december 2011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C PEJE (Pernille

Læs mere

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner Eksamensspørgsmål mabe, sommer 014 Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne a ud fra to

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh10-mat/a-1608010 Mandag den 16. august 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består af

Læs mere

Støjredegørelse vedr. støj fra virksomheden ASA-TOR i nyt lokalplanområde, lokalplanforslag 263.

Støjredegørelse vedr. støj fra virksomheden ASA-TOR i nyt lokalplanområde, lokalplanforslag 263. NOTAT Projekt Lokalplanforslag 263, Birkende Støjredegørelse vedr. støj fra eksisterende virksohed i nyt lokalplanoråde Kunde Kerteinde Koune Notat nr. 01 21-04-2015 Til Fra Kopi til Mikkel Aagaard Rasussen,

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler kl Mandag den 15. august 2011 kl hhx112-mat/b

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler kl Mandag den 15. august 2011 kl hhx112-mat/b Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx112-mat/b-15082011 Mandag den 15. august 2011 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Prøvens varighed er

Læs mere

PIPES FOR LIFE PIPELIFE DRÆNRØR. Drænrør. Drænrør

PIPES FOR LIFE PIPELIFE DRÆNRØR. Drænrør. Drænrør PIPES FOR LIFE PIPELIFE DRÆNRØR Drænrør Drænrør PIPES FOR LIFE PIPELIFE Pipelife drænrör I en tid, hvor konkurrencen bliver stadig hårdere, kræver en fortsat god økonoi, at landbrugets produktionsressourcer

Læs mere

Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi

Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi Claus Thustrup Kreiner OPGAVE 1 1.1 Forkert. En isokvant angiver de kombinationer af inputs, som resulterer i en given

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik C Kenneth Berg k710hhxa1 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a

Matematik A. Højere handelseksamen. Mandag den 18. august 2014 kl hhx142-mat/a Matematik A Højere handelseksamen hhx14-mat/a-1808014 Mandag den 18. august 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Lineære funktioner

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Lineære funktioner Eksamensspørgsmål mabe, sommer 03 Spørgsmål : Lineære funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne a ud fra

Læs mere

Hold HH1z grundforløbet 2013 HH1d forår 2014 HH2c/d skoleåret 2014/15 eleverne kommer fra flere forskellige hold på HH1. Grundlæggende matematik

Hold HH1z grundforløbet 2013 HH1d forår 2014 HH2c/d skoleåret 2014/15 eleverne kommer fra flere forskellige hold på HH1. Grundlæggende matematik Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer e-mailadresse Termin hvori undervisningen afsluttes: maj-juni 2015

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller 1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om

Læs mere

NOTAT. 1. Vurdering af stormflodsrisiko mellem Seden Strandby og Gels Å

NOTAT. 1. Vurdering af stormflodsrisiko mellem Seden Strandby og Gels Å NOTAT Projekt Risikostyringsplan for Odense Fjord Kunde Odense Koune Notat nr. 06 Dato 2014-11-07 Til Fra Kopi til Carsten E. Jespersen Henrik Mørup-Petersen STVH 1. Vurdering storflodsrisiko elle Seden

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Studieplan. Stamoplysninger. Oversigt over planlagte undervisningsforløb. Periode August 15 December 15 Institution Vejen Business College.

Studieplan. Stamoplysninger. Oversigt over planlagte undervisningsforløb. Periode August 15 December 15 Institution Vejen Business College. Studieplan Stamoplysninger Periode August 15 December 15 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik-B Sabine Lindemann Petersen MatematikBhh1315-VØ Oversigt

Læs mere

Matematik A. Højere handelseksamen. Skriftlig prøve (5 timer) Delprøven uden hjælpemidler

Matematik A. Højere handelseksamen. Skriftlig prøve (5 timer) Delprøven uden hjælpemidler Matematik A Højere handelseksamen Skriftlig prøve (5 timer) Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med lige stor vægtning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Klasse/hold Fag og niveau Lærer at2hhcmkb11 Matematik B Birgit Paulsen Oversigt over undervisningsforløb 1 Beskrivende statistik 2 Funktioner generelt 3 Lineære funktioner 4 Andengradsfunktioner

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Appetitvækker : Togdynamik.

Institut for Matematik, DTU: Gymnasieopgave. Appetitvækker : Togdynamik. Togaik side 1 Institut for Mateatik, DTU: Gynasieopgave Appetitvækker : Togaik. Teori: Erik Øhlenschlæger, Grundlæggende Fysik 1 For Adgangskursus og HTX, Gyldendal 1993,. udgave, siderne 73-75, 94-95

Læs mere

Vismandsspillet og makroøkonomi

Vismandsspillet og makroøkonomi Vismandsspillet og makroøkonomi Dette notat om makroøkonomi er skrevet af Henrik Adrian, Helge Gram Christensen, Morten Gjeddebæk og Ernst Jensen på et udviklingsseminar mellem matematik og samfundsfag

Læs mere

1 Monopoler (kapitel 24)

1 Monopoler (kapitel 24) Monopoler (kapitel 24). Et monopol de neres som et marked hvor kun én virksomhed opererer. (a) Virksomheden bestemmer prisen p for godet. Herefter beslutter forbrugerne hvor meget de efterspørger og output

Læs mere

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013

Matematik A. Højere handelseksamen. Mandag den 16. december 2013 kl. 9.00-14.00. hhx133-mat/a-16122013 Matematik A Højere handelseksamen hhx133-mat/a-161013 Mandag den 16. december 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh11-mat/b-70501 Mandag den 7. maj 01 kl. 9.00-1.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B MANY (Mads Schulz

Læs mere

I cementpasta indgår udover cement og vand ofte tilsætninger (flyveaske, mikrosilica, kalkfiller o.a.). Desuden indeholder beton luft.

I cementpasta indgår udover cement og vand ofte tilsætninger (flyveaske, mikrosilica, kalkfiller o.a.). Desuden indeholder beton luft. 6 Proportionering Af Gitte Norann Munch-Petersen, Ingeniørskolen i Horsens Beton kan beskrives so bestående af tilslagsaterialer - sand og sten - der er liet saen ed ceentpasta priært ceent og vand. Ved

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj 2011 Institution Handelsskolen Tradium, Hobro afd. Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik A Kenneth Berg k708hhxa3 Oversigt over gennemførte undervisningsforløb

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014 Matematik B Højere handelseksamen hhx143-mat/b-15122014 Mandag den 15. december 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014

Matematik A. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-14.00. hhx143-mat/a-15122014 Matematik A Højere handelseksamen hh143-mat/a-151014 Mandag den 15. december 014 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

House of Technology Opfølgningsplan 2015

House of Technology Opfølgningsplan 2015 Opfølgning og evaluering på sidste års indsatser udfyldes. Derefter udvælges indst 5 indsatser inden for prioriteringsoråderne til forbedring jvf. skolens kvalitetscirkel ud fra dataindsalingen i 2014

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C MIHY (Michael

Læs mere

Ofte stillede spørgsmål til anvendelsen af flyveaske i beton i Sverige

Ofte stillede spørgsmål til anvendelsen af flyveaske i beton i Sverige Ofte stillede spørgsål til anvendelsen af flyveaske i beton i Sverige 1. Hur gör danska betongtillverkare på vintern, använder do ingen aska eller? Danske betonproducenter anvender også aske o vinteren.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau HHX Matematik C Lærer(e) LSP ( Liselotte Strange-Pedersen

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne for en

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2012 Institution ZBC Ringsted Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Jacob Debel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Fair Trade på kaffemarkedet

Fair Trade på kaffemarkedet DET SAMFUNDSVIDENSKABELIGE FAKULTET KØBENHAVNS UNIVERSITET Fair Trade på kaffearkedet - økonoisk blindbyde eller nødvendig håndsrækning? Maria Pauliina Hansen Nr. 175/2006 Projekt- & Karrierevejledningen

Læs mere

Egenlast: Tagkonstruktionen + stål i tag - renskrevet

Egenlast: Tagkonstruktionen + stål i tag - renskrevet Egenlast: Tagkonstruktionen + stål i tag - renskrevet Tagets langsider udregnes: 6.708203934 $12.5 $2 167.7050984 2 Tagets antages at være elletungt (http://www.ringstedspaer.dk/konstruktioner.ht) og derved

Læs mere

GUX. Matematik. A-Niveau. Fredag den 29. maj 2015. Kl. 9.00-14.00. Prøveform b GUX151 - MAA

GUX. Matematik. A-Niveau. Fredag den 29. maj 2015. Kl. 9.00-14.00. Prøveform b GUX151 - MAA GUX Matematik A-Niveau Fredag den 9. maj 015 Kl. 9.00-14.00 Prøveform b GUX151 - MAA 1 Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Fredag den 17. august 2012. kl. 9.00-14.00 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx1-mat/a-170801 Fredag den 17. august 01 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Entreprise 4. Byggegrube

Entreprise 4. Byggegrube Entreprise Byggegrube Denne entreprise dækker over etableringen af en byggegrube og dens fysiske afgrænsninger. I entreprisen er de indledende overvejelser og detailprojekteringen af byggegruben beskrevet,

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) Hold LTN

Læs mere

Midttrafiks miljøsynsmanual

Midttrafiks miljøsynsmanual Midttrafiks iljøsynsanual Indholdsfortegnelse 1. Miljøsynsanual 2. Appendix 1 til iljøsynsanualen 3. Miljøsynsrapport Forord Midttrafiks Miljøsynsanual Busselskabet har frit valg elle at anvende iljøsynsetoden

Læs mere

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren

Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave

Læs mere

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 15. august 2011 kl. 9.00-14.00. kl. 9.00-10.00. hhx112-mat/a-15082011

Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 15. august 2011 kl. 9.00-14.00. kl. 9.00-10.00. hhx112-mat/a-15082011 Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx11-mat/a-1508011 Mandag den 15. august 011 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.

Læs mere

Pålidelig Når pligten kalder

Pålidelig Når pligten kalder EN DK Pålidelig Når pligten kalder Tria TM Den prisvenlige frontlæsser til deltidslandanden. P P 4P 6P 8P ÅLIDEL Tria: PÅLIDELIG OG SÆRDELES KONKURRENCEDYGTIG. En virkelig pålidelig, produktiv og enkel

Læs mere

Vedr.: OML-beregninger Akafa

Vedr.: OML-beregninger Akafa Loos Scandinavia A/S Østergårdsvej 4 6372 Bylderup-Bov Att.: Kjeld P. Callesen sottrup@tdcadsl.dk Vor ref. HAP WH sag nr. 07057 Dato: Skanderborg, den 29. august 2007 Vedr.: OML-beregninger Akafa Der er

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2013 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Lene Thygesen

Læs mere

ØKONOMISKE PRINCIPPER I

ØKONOMISKE PRINCIPPER I ØKONOMISKE PRINCIPPER I 1. årsprøve, 1. semester Forelæsning 9 Pensum: Mankiw & Taylor kapitel 8 Claus Thustrup Kreiner www.econ.ku.dk/ctk/principperi Velfærdsstatens hovedformål Tilvejebringelse af offentlige

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj Juni 2013 Roskilde

Læs mere

Bilag I. ~ i ~ Oversigt BILAG II MATEMATISK APPENDIKS. The Prisoner s Dilemma THE PRISONER S DILEMMA INTRODUKTION I RELATION TIL SAMORDNET PRAKSIS

Bilag I. ~ i ~ Oversigt BILAG II MATEMATISK APPENDIKS. The Prisoner s Dilemma THE PRISONER S DILEMMA INTRODUKTION I RELATION TIL SAMORDNET PRAKSIS Oversigt BILAG I I THE PRISONER S DILEMMA INTRODUKTION I RELATION TIL SAMORDNET PRAKSIS I I II BILAG II III GENNEMSIGTIGHEDENS BETYDNING III MATEMATISK APPENDIKS V GENERELT TILBAGEDISKONTERINGSFAKTOREN

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 10/11 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik, niv C Laila

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:

Læs mere

Matematik A-niveau Delprøve 1

Matematik A-niveau Delprøve 1 Matematik A-niveau Delprøve 1 Opgave 1 løsning: Andengradsligningen løses: x 2 + 2x 35 = 0 Den løses for diskriminanten. d = b 2 4ac Tallene indsættes. d = 2 2 4 1 ( 35) = 144 Vi regner for x. x = b ±

Læs mere

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1

-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1 En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop

Læs mere

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f

Læs mere

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b

Matematik B. Højere handelseksamen. Mandag den 16. december 2013 kl hhx133-mat/b Matematik B Højere handelseksamen hhx133-mat/b-161013 Mandag den 16. december 013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

Skatteregler for udbytte hæmmer risikovilligheden

Skatteregler for udbytte hæmmer risikovilligheden Skatteregler for udbytte hæmmer risikovilligheden Denne analyse sammenligner afkastet ved en investering på en halv million kroner i risikobehæftede aktiver fremfor i mere sikre aktiver. De danske beskatningsregler

Læs mere