MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, Formålet med MASO. Department of Mathematics University of Copenhagen

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "MASO Uge 11. Lineær optimering. Jesper Michael Møller. Uge 46, 2010. Formålet med MASO. Department of Mathematics University of Copenhagen"

Transkript

1 MASO Uge 11 Lineær optimering Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 46, 2010 Formålet med MASO

2 Oversigt 1 Generelle lineære programmer 2

3 Definition Et generelt lineært program er et optimeringsproblem (P) som går ud på at optimere en lineær objektfunktion f under lineære bibetingelser givet ved ligheder eller uligheder. Definition En mulig løsning er en vektor x som opfylder alle bibetingelser i (P) Den optimale værdi sup(p) af et maksimeringsproblem (P) er sup f (x) taget over alle mulige løsninger x En optimal løsning til et maksimeringsproblem (P) er en mulig løsning x så f (x ) = sup(p) Den optimale værdi inf(p) af et minimeringsproblem (P) er inf f (x) taget over alle mulige løsninger x En optimal løsning til et minimeringsproblem (P) er en mulig løsning x så f (x ) = inf(p)

4 Antagelser I I = {1,..., m} J J = {1,..., n} A er en (I J)-matrix b, y er I-søjlevektorer c, x er J-søjlevektorer Observationer c t x = j J c jx j er et tal y t b = i I y ib i er et tal Ax = ( j J a ijx j er en I-søjlevektor )i I y t A = ( i I y ia ij er en J-rækkevektor )j J

5 Et generelt lineært maksimeringsprogram har formen (P) Maksimér c t x under bibetingelser [I ]Ax [I ]b, [I I ]Ax = [I I ]b, [J ]x 0 og det duale program er (P ) Minimér y t b under bibetingelser y t A[J ] c t [J ], y t A[J J ] = c t [J J ], y t [I ] 0 Example (Generelt lineært program) (P) Maksimér x 1 + 5x 2 2x 3 under bibetingelserne 2x 1 + 3x 2 3 x 1 + 2x 2 x 3 = 4 x 1 0, x 2 0

6 Tableau for generelle lineære programmer I = {1,..., i} {1,..., m} = I J = {1,..., j} {1,..., n} = J... x 1... x j x j+1... x n y 1 a a 1j a 1j+1... a 1n b y i a i1... a ij a ij+1... a in b i y i+1 a i a i+1j a i+1j+1... a i+1n = b i y m a m1... a mj a mj+1... a mn = b m c 1... c j = c j+1... = c n Rækker: Bibetingelser i (P) Søjler: Bibetingelser i (P ) 5cm

7 Netop én af følgende fire situationer vil altid gælde: (I) (P) og (P ) har optimale løsninger og sup(p) = inf(p ). (II) M(P), M(P ) = og sup(p) =. (III) M(P) =, M(P ) og inf(p ) = (IV) M(P) =, M(P ) = Følgende fem betingelser er ækvivalente: 1 (P) og (P ) har optimale løsninger og sup(p) = inf(p ) 2 M(P) og M(P ) 3 (P) har en optimal løsning 4 (P ) har en optimal løsning 5 M(P) og sup(p) < 6 M(P ) og inf(p ) >

8 : Normaltilfældet (I) Hvis x M(P) og y M(P ) er mulige løsninger så er følgende betingelser ækvivalente: 1 x og y er optimale løsninger til (P) og (P ) 2 c t x = sup(p) = inf(p ) = y t b 3 c t x y t b 4 c t x = y t b 5 c t x = y t Ax = y t b ( 6 c t y t A ) x = 0, y t( Ax b ) = 0 ( 7 cj ) ( ) y i a ij xj = 0, j J, og y i a ij x j b i = 0, i I 8 i I ( cj ) y i a ij xj = 0, j J ( ), og y i a ij x j b i = 0, i I i I 9 j J : x j > 0 = i I y ia ij = c j, i I : y i > 0 = j J a ijx j = b i j J j J

9 Beviset for anvender Farkas lemma Netop et af følgende to tilfælde indtræffer: (I) Der findes x R n så Ax = b, x 0. (II) Der findes y R m så y t A 0, y t b < 0 Variant af Farkas lemma Netop et af følgende to tilfælde indtræffer: (I) Der findes x R n så Ax b, x 0. (II) Der findes y R m så y t A 0, y t b < 0, y 0.

10 Kanoniske lineære programmer Et kanonisk lineært maksimeringsprogram har formen (P) Maksimér c t x under bibetingelser Ax = b, x 0 og det duale program har formen (P) Minimér y t b under bibetingelser y t A c t Basisløsninger for kanoniske programmer Hvis (P) har en optimal løsning, så har (P) en optimal basisløsning x hvor de benyttede søjler er lineært uafhængige. {A[j] j J, x j > 0}

11 Generelt program Kanonisk program Det kanoniske program associeret til det generelle program (P) (P) t c x Max [J J ]c u under bibetingelser 0 v ( A A[J J ] E[I ] ) x x u, u 0 v v Her er u = (u j ) j J J, v = (v i ) i I, [J J ]c er J J rækkerne i c, E[I ] er I -søjlerne i I I enhedsmatricen E, og A[J J ] er J J søjlerne i A.

12 Standard lineære programmer Et standard lineært maksimeringsprogram har formen (P) Maksimér c t x under bibetingelser Ax b, x 0 og det duale minimeringsprogram er (P ) Minimér y t b under bibetingelser y t A c t, y t 0

13 Generelt program Standard program Standard programmet associeret til det generelle program (P) ( c Max [J J ]c ( A A[J J ] [I I ]A [I I ]A[J J ] hvor u = (u j ) j J J. ) t ( ) x under bibetingelser u ) ( ) ( x u b [I I ]b ), ( ) x 0 u

14 Duale lineære standardprogrammer (P) Maksimér x 1 + x 2 under bibetingelserne x 1 + 2x 2 4 x 1 x 2 y x 1 + 2x 2 12 x 1 + x 2 1 y 2 y og x 1 0, x 2 0 (P ) Minimér 4y y 2 + y 3 under bibetingelserne og y 1 0, y 2 0. y 1 + 4y 2 y 3 1 2y 1 + 2y 2 + y 3 1

15 Example (Lineært program på standardform) (P) Maksimér x 1 + x 2 under bibetingelserne x 1 + 2x 2 4 4x 1 + 2x 2 12 x 1 + x 2 1 og x 1 0, x 2 0. Mængden af mulige løsninger er et polyeder. (x1, x 2 ) = (8/3, 2/3) er en optimal løsning og den optimale værdi er sup(p) = 8/3 + 2/3 = 10/3.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.

LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer. LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

Statisk Optimering. Jesper Michael Møller

Statisk Optimering. Jesper Michael Møller Statisk Optimering Jesper Michael Møller Matematisk Institut, Universitetsparken 5, DK 2100 København E-mail address: moller@mathkudk URL: http://wwwmathkudk/~moller Indhold Kapitel 1 Ikke-lineær optimering

Læs mere

Ugeseddel 12(10.12 14.12)

Ugeseddel 12(10.12 14.12) Ugeseddel (..) Matematisk Programmering Niels Lauritzen..7 FORELÆSNINGER I ugen. 7. gennemgik vi algoritmer til løsning af heltalsprogrammer ved hjælp af simplex algoritmen. Dette er heltalsprogrammeringsugesedlen

Læs mere

MASO Uge 5. Topologi i euklidiske rum. Jesper Michael Møller. Uge 5. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 5. Topologi i euklidiske rum. Jesper Michael Møller. Uge 5. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 5 Topologi i euklidiske rum Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 5 Formålet med MASO Oversigt Åbne og afsluttede mængder Det indre, det ydre, afslutningen,

Læs mere

MASO Uge 6. Følger i euklidiske rum Ekstremværdisætningen. Jesper Michael Møller. Department of Mathematics University of Copenhagen.

MASO Uge 6. Følger i euklidiske rum Ekstremværdisætningen. Jesper Michael Møller. Department of Mathematics University of Copenhagen. MASO Uge 6 Følger i euklidiske rum Ekstremværdisætningen Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 6 Formålet med MASO Oversigt Følger i R n Konvergens, delfølger Det

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

G r u p p e G

G r u p p e G M a t e m a t i s k o p t i m e r i n g ( E k s t r e m a, t e o r i o g p r a k s i s ) P 3 p r o j e k t G r u p p e G 3-1 1 7 V e j l e d e r : N i k o l a j H e s s - N i e l s e n 1 4. d e c e m b

Læs mere

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen

MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største

Læs mere

Optimering af New Zealands økonomi. Gruppe G3-115

Optimering af New Zealands økonomi. Gruppe G3-115 Optimering af New Zealands økonomi Gruppe G3-115 Det Teknisk-Naturvidenskabelige Fakultet Matematik og Matematik-Økonomi Frederik bajersvej 7G Telefon 99409940 http://math.aau.dk Titel: Tema: Optimering

Læs mere

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

6.1 Reelle Indre Produkter

6.1 Reelle Indre Produkter SEKTION 6.1 REELLE INDRE PRODUKTER 6.1 Reelle Indre Produkter Definition 6.1.1 Et indre produkt på et reelt vektorrum V er en funktion, : V V R således at, for alle x, y V, I x, x 0 med lighed x = 0, II

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Noter til kursusgang 8, IMAT og IMATØ

Noter til kursusgang 8, IMAT og IMATØ Noter til kursusgang 8, IMAT og IMATØ matematik og matematik-økonomi studierne 1. basissemester Esben Høg 25. oktober 2013 Institut for Matematiske Fag Aalborg Universitet Esben Høg Noter til kursusgang

Læs mere

Chapter 6: Følsomhedsanalyse og dualitet i LP

Chapter 6: Følsomhedsanalyse og dualitet i LP Chapter 6: Følsomhedsanalyse og dualitet i LP ) Følsomhedsanalyse -> kriteriekoeffricienter -> RHSs ) Dualitet -> økonomisk fortolkning af dualvariable -> anvendelse af dual løsning til identifikation

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Operationsanalyse 1 Obligatorisk opgave 2

Operationsanalyse 1 Obligatorisk opgave 2 Operationsanalyse Obligatorisk opgave Anders Bongo Bjerg Pedersen. juni Opgave (i) Vi tilføjer først slack-variable til (P ): Minimize Z = x + x + x subject to x + x + x x 4 = x x + x x 5 = x + x x x =

Læs mere

Optimering i Moderne Portefølje Teori

Optimering i Moderne Portefølje Teori Aalborg universitet P3-3. semestersprojekt Optimering i Moderne Portefølje Teori 15. december 2011 AAUINSTITUT FOR MATEMATISKE FAG TITEL: Optimering - Lineær programmering - Moderne Portefølje Teori PROJEKT

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 7, 2009 Produceret af Hans J Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael Rørdam 1 Definition kritisk punkt: funktion f(x, y) er et kritisk punkt

Læs mere

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser

Analyse 2. Bevis af Fatous lemma (Theorem 9.11) Supplerende opgave 1. Øvelser Analyse 2 Øvelser Rasmus Sylvester Bryder 24. og 27. september 203 Bevis af Fatous lemma (Theorem 9.) Hvis (u j ) j er en følge af positive, målelige, numeriske funktioner (dvs. med værdier i [, ]) over

Læs mere

3.1 Baser og dimension

3.1 Baser og dimension SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V

Læs mere

Lineær programmering. Maksimer c T u.b.b. A b hvor > 0. Vores metode er også nytteløs her. Ekstrema- teori og praksis

Lineær programmering. Maksimer c T u.b.b. A b hvor > 0. Vores metode er også nytteløs her. Ekstrema- teori og praksis Lineær programmering Ekstrema- teori og praksis Maksimer c T u.b.b. A b hvor > 0 Vores metode er også nytteløs her MAT3, EFTERÅR 2011 GROUP G3-112 INSTITUT FOR MATEMATISKE FAG AALBORG UNIVERSITET 16. DECEMBER

Læs mere

Operationsanalyse. Hans Keiding

Operationsanalyse. Hans Keiding Operationsanalyse Hans Keiding Forord 7 Kapitel 1. Hvad er Operationsanalyse? 9 1. Indledning 9 2. Operationsanalysens historie 10 3. Operationsanalytiske problemer og metode 10 4. Litteratur 12 Kapitel

Læs mere

Chapter 7: Transport-, assignment- & transshipmentproblemer

Chapter 7: Transport-, assignment- & transshipmentproblemer Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid

Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid 6 april Løsning af N P -hårde problemer Løs til optimalitet i eksponentiel tid Find tilnærmet løsning i polynomiel tid Oversigt Grænseværdier (repetition) Branch-and-bound algoritmens komponenter Eksempler

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Lineær Algebra - Beviser

Lineær Algebra - Beviser Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner

Læs mere

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed

Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Matematik: Struktur og Form Spænd. Lineær (u)afhængighed Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 8 Linearkombinationer. Spænd Definition Givet et antal vektorer a1,...,

Læs mere

Optimeringsmatematik og matematik-økonomi studiet

Optimeringsmatematik og matematik-økonomi studiet Optimeringsmatematik og matematik-økonomi studiet og specielt anvendelser af matematisk programmering Esben Høg Institut for Matematiske Fag Aalborg Universitet Oktober 2012 EH (Institut for Matematiske

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Hvad skal vi lave i dag?

Hvad skal vi lave i dag? p. 1/1 Hvad skal vi lave i dag? Repeterer lidt om diskrete sv. Standardfordelinger (binomial, Poisson, geometrisk) Stokastiske vektorer Diskrete stokastiske vektorer p. 2/1 Repetition Heltallige sv er

Læs mere

Lineær algebra: Matrixmultiplikation. Regulære og singulære

Lineær algebra: Matrixmultiplikation. Regulære og singulære Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Kursusgang 3 Matrixalgebra fortsat

Kursusgang 3 Matrixalgebra fortsat Kursusgang 3 fortsat - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12. september 2008 1/31 Nødvendige betingelser En nødvendig betingelse

Læs mere

Hilbert rum. Chapter 3. 3.1 Indre produkt rum

Hilbert rum. Chapter 3. 3.1 Indre produkt rum Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Samtlige 3 problemtyper tilhører klassen 8/>A9<5 069A :<9,6/7=.

Samtlige 3 problemtyper tilhører klassen 8/>A9<5 069A :<9,6/7=. Chapter 7: Transport-, assignment- & transshipmentproblemer 1) Formulering af de 3 problemtyper 2) Algoritme for det balancerede transportproblem 3) Algoritme for assignmentproblemet Samtlige 3 problemtyper

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Matematik og Form: Matrixmultiplikation. Regulære og singu

Matematik og Form: Matrixmultiplikation. Regulære og singu Matematik og Form: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2012 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C

Læs mere

DesignMat Kvadratiske matricer, invers matrix, determinant

DesignMat Kvadratiske matricer, invers matrix, determinant DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix

Læs mere

Oversigt [LA] 11, 12, 13

Oversigt [LA] 11, 12, 13 Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Lineær algebra: Spænd. Lineær (u)afhængighed

Lineær algebra: Spænd. Lineær (u)afhængighed Lineær algebra: Spænd. Lineær (u)afhængighed Institut for Matematiske Fag Aalborg Universitet 2011 Linearkombinationer. Spænd Definition Givet et antal vektorer a 1,..., a p R n. En vektor v = c 1 a 1

Læs mere

Oversigt [LA] 1, 2, 3, [S] 9.1-3

Oversigt [LA] 1, 2, 3, [S] 9.1-3 Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation

Læs mere

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y).

= λ([ x, y)) + λ((y, x]) = ( y ( x)) + (x y) = 2(x y). Analyse 2 Øvelser Rasmus Sylvester Bryder 17. og 20. september 2013 Supplerende opgave 1 Lad λ være Lebesgue-målet på R og lad A B(R). Definér en funktion f : [0, ) R ved f(x) = λ(a [ x, x]). Vis, at f(x)

Læs mere

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra

Matrx-vektor produkt Mikkel H. Brynildsen Lineær Algebra Matrx-vektor produkt [ ] 1 2 3 1 0 2 1 10 4 Rotationsmatrix Sæt A θ = [ ] cosθ sinθ sinθ cosθ At gange vektor v R 2 med A θ svarer til at rotere vektor v med vinkelen θ til vektor w: [ ][ ] [ ] [ ] cosθ

Læs mere

Note om interior point metoder

Note om interior point metoder MØK 2016, Operationsanalyse Interior point algoritmer, side 1 Note om interior point metoder Som det er nævnt i bogen, var simplex-metoden til løsning af LP-algoritmer nærmest enerådende i de første 50

Læs mere

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet

Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller

Læs mere

Matematik for økonomer 3. semester

Matematik for økonomer 3. semester Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@math.aau.dk http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix

Læs mere

Matematik og FormLineære ligningssystemer

Matematik og FormLineære ligningssystemer Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix

Læs mere

Oversigt [LA] 3, 4, 5

Oversigt [LA] 3, 4, 5 Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Module 1: Lineære modeller og lineær algebra

Module 1: Lineære modeller og lineær algebra Module : Lineære modeller og lineær algebra. Lineære normale modeller og lineær algebra......2 Lineær algebra...................... 6.2. Vektorer i R n................... 6.2.2 Regneregler for vektorrum...........

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Jobtildeling under flere kriterier

Jobtildeling under flere kriterier Jobtildeling under flere kriterier Aarhus Universitet Danmark roed@imf.au.dk Oplægget bygger på et samarbejde med Lars Relund Nielsen og Kim Allan Andersen (Handelshøjskolen i Århus). Jobtildeling under

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

Eksamensnoter til Analyse 1

Eksamensnoter til Analyse 1 ksamensnoter til Analyse 1 Martin Geisler gimpster@daimi.au.dk Sommer 23 Indledning Disse noter gennemgår de 26 spørgsmål stillet til den mundtlige eksamen i Analyse 1 ved Aarhus Universitet sommeren 23.

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 4 januar, 2 Kl 9-3 Nærværende eksamenssæt består af 8 nummererede

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative

Chapter 5: Simplex metoden til løsning af LP. -> max problem alle uligheder af typen ì alle højresider ikke-negative alle variable ikke-negative Chapter 5: Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen ì alle

Læs mere

Lineær Algebra, TØ, hold MA3

Lineær Algebra, TØ, hold MA3 Lineær Algebra, TØ, hold MA3 Lad mig allerførst (igen) bemærke at et vi siger: En matrix, matricen, matricer, matricerne. Og i sammensætninger: matrix- fx matrixmultiplikation. Injektivitet og surjektivitet

Læs mere

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers

Læs mere

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.

Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix. Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse

Læs mere

Tirsdag 12. december David Pisinger

Tirsdag 12. december David Pisinger Videregående Algoritmik, DIKU 2006/07 Tirsdag 12. december David Pisinger Resume sidste to gang Sprog L : mængden af instanser for et afgørlighedsproblem hvor svaret er 1. P = {L : L genkendes af en algoritme

Læs mere

Den lineære normale model

Den lineære normale model Den lineære normale model Ingredienser: V : N-dimensionalt vektorrum. X : Ω V : stokastisk variabel. L : ægte underrum af V, dimension k., : fundamentalt indre produkt på V. Vi laver en hel familie af

Læs mere

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515)

Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM515) Skriftlig Eksamen Introduktion til lineær og heltalsprogrammering (DM55) Institut for Matematik & Datalogi Syddansk Universitet Tirsdag den Juni 009, kl. 9 Alle sædvanlige hjælpemidler (lærebøger, notater

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2

z 1 = z 1z 1z 1 z 1 2 = z z2z 1 z 2 2 M å l e p u n k t R i e m a n n s k G e o m e t r i E 8 J a ko b L i n d b l a d B l a ava n d 2 5 3 6 7 5 27 oktober 28 I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e r s i t e t indledning

Læs mere

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001.

Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni 2000 og Juni 2001. Løsninger til udvalgte Eksamensopgaver i Lineær Algebra Juni og Juni. Preben Alsholm 9. november 9 Juni Opgave 3 f : P (R) R 3 er givet ved f (P (x)) P () a + P () b, hvor a (,, ) og b (, 3, ). Vi viser,

Læs mere

Simplex metoden til løsning af LP

Simplex metoden til løsning af LP Chapter : Simplex metoden til løsning af LP Formål: Udvikling af generel metode til løsning af enhver type LP. Metoden udvikles først for LP i standard form -> max problem alle uligheder af typen Ÿ alle

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver

Optimeringsteori. Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver Optimeringsteori Tenna Andersen, Tina Sørensen, Majbritt Lundborg, Søren Foged, Jeppe Gravers, Kenneth Andersen & Oskar Aver 20/12/2012 Institut for Matematiske Fag Matematik-Økonomi Fredrik Bajers Vej

Læs mere

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion

Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Løsning af cup-afviklings-problemet ved hjælp af lift-and-project. Jens Kristian Jensen

Løsning af cup-afviklings-problemet ved hjælp af lift-and-project. Jens Kristian Jensen Løsning af cup-afviklings-problemet ved hjælp af lift-and-project Jens Kristian Jensen Indhold Forord 4 Indledning 5. Lineær programmering.............................. 5.. Facetter..................................

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Operationsanalyse MØK

Operationsanalyse MØK Operationsanalyse MØK 2015II Eksamensopgave, Rettevejledning, side 1 Operationsanalyse MØK Eksamensopgave, 4. januar 2016 Rettevejledning 1. Vi har at gøre med et transportproblem, der kan skrives på formen

Læs mere

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.

1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal. SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret

Læs mere

C++-program til løsning af LP-problemer vha. simplex-baseret metode

C++-program til løsning af LP-problemer vha. simplex-baseret metode Handelshøjskolen i København Statistikgruppen Erhvervsøkonomi-matematik-studiets 4. semester 2003 C++-program til løsning af LP-problemer vha. simplex-baseret metode Lene Hansen leha01ad Morten Høgholm

Læs mere

P2-gruppedannelsen for Mat og MatØk

P2-gruppedannelsen for Mat og MatØk Institut for Matematiske Fag Aalborg Universitet Danmark 1-02-2012 Vejledere Bo Hove E-mail: bh@thisted-gymnasium.dk 3 Mat grupper (semesterkoordinator) E-mail: diego@math.aau.dk. Web page: http://people.math.aau.dk/~diego/

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

LINALG JULENØD 2013 SUNE PRECHT REEH

LINALG JULENØD 2013 SUNE PRECHT REEH LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som

Læs mere

Wigner s semi-cirkel lov

Wigner s semi-cirkel lov Wigner s semi-cirkel lov 12. december 2009 Eulers Venner Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Diagonalisering af selvadjungeret matrix Lad H være en n n matrix med komplekse

Læs mere

Undervisningsnotat. Matricer

Undervisningsnotat. Matricer Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet

Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem

Læs mere

F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e. M e d fo k u s på Pag e R a n k.

F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e. M e d fo k u s på Pag e R a n k. F i l o s o f i e n o g m at e m at i k k e n b ag G o o g l e M e d fo k u s på Pag e R a n k. J a ko b L i n d b l a d B l a ava n d I n s t i t u t fo r M at e m at i s k e Fag A a r h u s U n i v e

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2 Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket

Læs mere