Potensfunktioner og dobbeltlogaritmisk papir

Størrelse: px
Starte visningen fra side:

Download "Potensfunktioner og dobbeltlogaritmisk papir"

Transkript

1 1 Potensfunktioner og dobbeltlogaritmisk papir OBS: til skriftlig eksamen skal du kun kunne aflæse på en graf, der allerede er indtegnet på dobbeltlogaritmisk papir. Du kan ikke komme ud for at skulle tegne graferne selv. Til mundtlig eksamen skal du kunne fortælle om brugen af dobbeltlogaritmisk papir. I I-Bogen kan du se, hvordan grafen for en potensfunktion ser ud, når vi tegner den i et ganske almindeligt koordinatsystem. Graferne krummer. I noten her, skal vi se, hvordan grafen ser ud, hvis den tegnes i et helt specielt koordinatsystem. Fordelen ved det ny koordinatsystem er at grafen for en potensfunktion kan tegnes som en linje. Almindelige koordinat-akser: Det, der gør den nye slags koordinatsystem specielt, er selve akserne (altså -aksen og -aksen). En almindelig akse har konstante afstande. Man bruger en fast enhed, og det betyder, at der er lige langt fra 1 til 2, som der er fra 24 til 25 eller fra 107 til 108. Enheden kan være f.eks. 1cm. En sådan akse kan f.eks. se således ud: (Her er enheden mindre end 1 cm ) Logaritmiske koordinat-akser: På en logaritmisk akse svarer en fast afstand til et bestemt forhold. I matematik betyder forhold at vi dividerer tallene med hinanden. Forholdet mellem 2 og 6 er 3 fordi giver 3. På en logaritmisk akse skal afstanden fra 2 til 6 være den samme som afstanden fra 6 til 18 fordi forholdet mellem 2 og 6 er det samme som forholdet mellem 6 og 18: På en logaritmisk skala skal der være lige så langt mellem alle talpar, som har forholdet 1:3. Lad os vælge en fast længde fra 2 til 6. Hver gang vi går den længde mod højre skal vi gange med 3:

2 2 Man kan også lave den logaritmiske akse ud fra andre forhold imellem tallene. Vi kan f.eks. tegne den logaritmiske akse ud fra forholdet 1:10. Lad os vælge en fast afstand fra 1 til 10. Vi skal gange med 10 når vi går denne afstand mod højre: Overvej selv, hvad der skal stå på den næste plads I et dobbeltlogaritmisk koordinatsystem er både - og -aksen er logaritmiske. Potensfunktioners grafer i de to slags koordinatsystmer. Lad os nu se, hvilken forskel det gør for grafen for en potensfunktion, at den tegnes i et dobbeltlogaritmisk koordinatsystem i stedet for et almindeligt koordinatsystem. Eksempel Lad os kigge potensfunktionen med regneforskrift. Først tegnes grafen i et helt almindeligt koordinatsystem. Den krummer kraftigt opad (konveks) fordi a>1.

3 3 Nu tegnes grafen for samme funktion så i et dobbeltlogaritmisk koordinatsystem: Læg mærke til akserne på grafen nedenfor. Der er ikke lige langt mellem tallene på x-aksen, men hvis du måler fra 1 til 2 og fra 4 til 8 vil du se, at det er samme afstand, så den er logaritmisk. (Fast afstand til fast forhold) På y-aksen skal du huske at 10 0 betyder 1, at 10 1 = 10 osv. D.v.s. der er lige langt fra 1 til 10 som fra 10 til 100. y-aksen er altså magen til den logaritmiske akse vi tegnede på forrige side. Vi kan se, at grafen for vores potensfunktion danner en ret linje i et dobbeltlogaritmisk koordinatsystem. Og det gælder ikke bare for den potensfunktion, vi kigger på her, men for alle potensfunktioner. Grafen for en potensfunktion er en ret linje, når den tegnes i et dobbeltlogaritmisk koordinatsystem! Denne viden kan bruges på to måder: 1. En ret linje tegnet i et dobbeltlogaritmisk koordinatsystem viser altid en potensudvikling. Man kan så aflæse to punkter og bestemme funktionens regneforskrift. 2. Man kan kontrollere, om en række givne punkter kan beskrives ved en potensfunktion, ved at tegne punkterne ind i et dobbeltlogaritmisk koordinatsystem og se, om det giver en ret linje. På næste side er træningsopgaver:

4 4 Træningsopgaver I de følgende opgaver, skal du prøve at arbejde med et dobbeltlogaritmisk koordinatsystem. Opgave 1 Pattedyrs stofskifte afhænger potensielt af deres vægt. Grafen ovenfor viser en model af den sammenhæng, der er mellem vægten målt i kg og stofskiftet målt i liter ilt pr. time. Grafen er tegnet i dobbeltlogaritmisk koordinatsystem. a) Udfyld de tomme pladser i skemaet: (første y-værdi kan være svær at aflæse præcist) ,8 8 b) Vælg to af punkterne (helst de, der var mest præcise at aflæse) og brug disse til at bestemme en regneforskrift for den tegnede model. c) Bestem stofskiftet for et pattedyr på 15 kg ifølge modellen. Opgaven er ikke til aflevering. (Men på sidste side er en facitliste )

5 5 Opgave 2 Benyt dobbeltlogaritmisk papir til at vise at følgende punkter med god tilnærmelse kan beskrives vha. en potensfunktion Her skal du tegne punkterne ind i et dobbeltlogaritmisk koordinatsystem og se, om de nogenlunde danner en ret linje. OBS! Dobbeltlogaritmisk papir kan downloades til print på hjemmesiden. Hvis opgaven driller er du velkommen til at sende dit svar ind på konferencen og få tips. FACIT TIL OPGAVE 1 a) ,36 0,8 2 8 b), hvor er vægten i kg og er stofskiftet i liter ilt/time. c) 2,8 liter ilt/time

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Variabelsammenhænge og grafer

Variabelsammenhænge og grafer Variabelsammenhænge og grafer Indhold Variable... 1 Funktion... 1 Grafen for en funktion... 2 Proportionalitet... 4 Ligefrem proportional eller blot proportional... 4 Omvendt proportionalitet... 4 Intervaller...

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul

Lineære sammenhænge. Udgave 2. 2009 Karsten Juul Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær

Læs mere

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6

Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Logaritmiske koordinatsystemer med TI-Nspire CAS version 3.6 Indholdsfortegnelse: Enkelt logaritmisk koordinatsystem side 1 Eksempel på brug af enkelt logaritmisk koordinatsystem ud fra tabel side 2 Dobbelt

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Kapitel 3 Lineære sammenhænge

Kapitel 3 Lineære sammenhænge Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk

Læs mere

Projekt 5.3. Kropsvægt og andre biologiske størrelser hos pattedyr

Projekt 5.3. Kropsvægt og andre biologiske størrelser hos pattedyr Projekt 5.3. ropsvægt og andre biologiske størrelser hos pattedyr (Projektet er en let bearbejdelse af et materiale, der indgår i Væksthæftet, udgivet af matematiklærerforeningen, og som er stillet til

Læs mere

Om at finde bedste rette linie med Excel

Om at finde bedste rette linie med Excel Om at finde bedste rette linie med Excel Det er en vigtig og interessant opgave at beskrive fænomener i naturen eller i samfundet matematisk. Dels for at få en forståelse af sammenhængende indenfor det

Læs mere

Funktioner. Funktioner Side 150

Funktioner. Funktioner Side 150 Funktioner Brug af grafer koordinatsystemer... 151 Lineære funktioner ligefrem proportionalitet... 157 Andre funktioner... 163 Kært barn har mange navne... 165 Funktioner Side 15 Brug af grafer koordinatsystemer

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner koordinatsystemer Brug af grafer koordinatsystemer Lineære funktioner Andre funktioner ligninger med ubekendte Lavet af Niels Jørgen Andreasen, VUC Århus. Redigeret af Hans Pihl, KVUC

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Thomas Pedersen

Læs mere

Lommeregnerkursus 2008

Lommeregnerkursus 2008 Mikkel Stouby Petersen Lommeregnerkursus 008 Med gennemregnede eksempler og øvelser Materialet er udarbejdet til et kursus i brug af TI-89 Titanium afholdt på Odder Gymnasium. april 008 1. Ligningsløsning

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Vejledende løsning. Ib Michelsen. hfmac123

Vejledende løsning. Ib Michelsen. hfmac123 Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r

Læs mere

Regneark Excel fortsat

Regneark Excel fortsat Regneark Excel fortsat Indhold SÅDAN TEGNES GRAFER I REGNEARK EXCEL... 1 i Excel 97-2003... 1 I Excel 2007... 1 ØVELSE... 2 I Excel 97-2003:... 2 I Excel 2007... 3 OM E-OPGAVER 12A... 4 Sådan tegnes grafer

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Kom godt i gang med I-bogen

Kom godt i gang med I-bogen Kom godt i gang med I-bogen At åbne bogen Det allerførste, du skal gøre, for at kunne arbejde med i-bogen, er at aktivere den. Det gøres ved at oprette en konto på systime.dk og derefter aktivere bogen

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 1 Introduktion... side 3 2 Grundlæggende færdigheder... side 4 2a Finde konstanterne a og b i en formel... side

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Svarark. 2. Biler på Øresundsbron. Antal biler. Tidspunkt. Navn Kursistnr. VUC

Svarark. 2. Biler på Øresundsbron. Antal biler. Tidspunkt. Navn Kursistnr. VUC Svarark Matematik trin 1 - Øresundsregionen - maj 2002 Navn Kursistnr. VUC 2. Biler på Øresundsbron v v Brug eventuelt nedenstående til løsning af opgave 2.2. Din løsning kan også afleveres på almindeligt

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

koordinatsystemer og skemaer

koordinatsystemer og skemaer brikkerne til regning & matematik koordinatsystemer og skemaer basis preben bernitt brikkerne til regning & matematik Koordinatsystemer og skemaer, basis 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Eksponentielle modeller

Eksponentielle modeller Eksponentielle modeller Fag: Matematik A og Informationsteknologi B Vejledere: Jørn Christian Bendtsen og Karl G Bjarnason Side 1 af 20 Indholdsfortegnelse Introduktion 1.Indledning... 3 2. Formål... 3

Læs mere

Opstilling af model ved hjælp af differentialkvotient

Opstilling af model ved hjælp af differentialkvotient Opstilling af model ved hjælp af differentialkvotient N 0,35N 0, 76t 2010 Karsten Juul Til eleven Dette hæfte giver dig mulighed for at arbejde sådan med nogle begreber at der er god mulighed for at der

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13 En funktion beskriver, hvordan en afhængig variabel afhænger af en uafhængig variabel. Læringsmål Forstå koordinatsystemet Vide hvad 1. og 2. aksen er Vide at x er 1. akse og y er 2. akse Forståelsen for

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.

Læs mere

Regning med funktioner - TAVLENOTER

Regning med funktioner - TAVLENOTER Sammensat funktion [Elevsamtaler] Jens Thostrup, GUX Nuuk 1 FACIT b) 1 og 3 er de eneste løsninger, der optræder i tabellen Jens Thostrup, GUX Nuuk 2 Regningsarter for funktioner Sumfunktion: (f+g)(x)

Læs mere

Brugervejledning til Graph

Brugervejledning til Graph Graph (brugervejledning) side 1/17 Steen Toft Jørgensen Brugervejledning til Graph Graph er et gratis program, som ikke fylder meget. Downloades på: www.padowan.dk/graph/. Programmet er lavet af Ivan Johansen,

Læs mere

Rumfang af væske i beholder

Rumfang af væske i beholder Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 23. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6. Regression Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6.0 Indledning til funktioner eller matematiske modeller Mange gange kan

Læs mere

Vektorer i planen. Et oplæg Karsten Juul

Vektorer i planen. Et oplæg Karsten Juul Vektorer i planen Et oplæg 3 4 4 2 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der skal gennemgås før man begynder på en lærebogs fremstilling af emnet vektorer. Formålet med øvelserne er

Læs mere

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C LINEÆR SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsamling... side 2 2 Grundlæggende færdigheder... side 3 2a Finde konstanterne a og b i en formel... side 3 2b Indsætte x-værdi og

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2015/2016 Institution Frederiksberg HF Kursus Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Sebastian

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Årsplan matematik 7.klasse 2014/2015

Årsplan matematik 7.klasse 2014/2015 Årsplan matematik 7.klasse 2014/2015 Emne Indhold Mål Tal og størrelser Arbejde med brøktal som repræsentationsform på omverdenssituationer. Fx i undersøgelser. Arbejde med forskellige typer af diagrammer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014/2015 Institution Frederiksberg HF Kursus Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Sebastian

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2010 Institution Handelsskolen Sjælland Syd, Campus Vordingborg Uddannelse Fag og niveau Lærer(e)

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jarl Mølgaard

Læs mere

Øvelse 1 (mennesker) fælles

Øvelse 1 (mennesker) fælles Øvelse 1 (mennesker) fælles LAV INDDELING AF DISSE ORD Mænd Kvinder Gymnasieelever Teenagere Øvelse 2 (dyr) par LAV INDDELING AF DISSE ORD Hund Pattedyr Krybdyr Menneske Chow chow Kæledyr Øvelse 3 (funktioner)

Læs mere

INTRODUKTION Maple Funktioner Regression

INTRODUKTION Maple Funktioner Regression INTRODUKTION Maple Funktioner Regression x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse PAPIR, BLYANT OG COMPUTER... 3 LEKTIELÆSNING... 3 3 FØRSTE MATEMATIKMODULER... 3 KOM I GANG MED MAPLE...

Læs mere

PIRANA - MAteMAtIk 4 PIRANA

PIRANA - MAteMAtIk 4 PIRANA Facitliste - Matematik 4 Facitliste Dette er facitlisten til Pirana - Matematik 4. De fleste stykker i bogen har indlagt diverse tjek, så de rettes direkte i bogen. Facit på de stykker er ikke her i facitlisten.

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx123-mat/a-07122012 Fredag den 7. december 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Målestoksforhold. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 25 Ekstra: 10 Mdt mat: 1 Point:

Målestoksforhold. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 25 Ekstra: 10 Mdt mat: 1 Point: Navn: Klasse: Matematik Opgave Kompendium Målestoksforhold Følgende gennemgås: Målestoksforhold Regnetrekanten Fra virkelighed til tegning Skitse & målestokstegning Fra tegning til virkelighed At finde

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Funktioner. Ib Michelsen

Funktioner. Ib Michelsen Funktioner Ib Michelsen Ikast 2008 Version 2008, 1.004 07-12-08, 22:25:25, G:\f15.odt Inkl eksp.kap rettet Inkl. rentesregning Side 91-176 inkl (86 sider) Potensregning mangler Indholdsfortegnelse Sammenhænge

Læs mere

Matematik A, STX. Vejledende eksamensopgaver

Matematik A, STX. Vejledende eksamensopgaver Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution HF & VUC Nordsjælland Helsingør afdeling Uddannelse Fag og niveau HF Matematik C

Læs mere

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4

Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 BH Test for normalfordeling i WordMat Indhold Grupperede observationer... 1 Ugrupperede observationer... 3 Analyse af normalfordelt observationssæt... 4 Grupperede observationer Vi tager udgangspunkt i

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Rabia Jeelani

Læs mere

Mine noter om funktioner C. Ib Michelsen

Mine noter om funktioner C. Ib Michelsen Mine noter om funktioner C Ib Michelsen Ikast 2006 Indholdsfortegnelse Funktioner...72 Generelt om funktioner...74 Variable...74 Talpar i tabeller...76 Grafer i koordinatsystemet...78 Det almindelige

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne?

Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? Hvorfor kører Michael Rasmussen så hurtigt op ad bakke? Og hvorfor vinder Tom Boonen spurterne? - en fortælling om potensfunktioner 133 Af Seniorforsker Ken H. Andersen, DTU Aqua Tour de France søndag

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Opgave A Sæt de overstående symboler ind i en matematisk sammenhæng der gør dem forståelige. Det kan være som en sætning eller med tal og bogstaver

Læs mere

Undervisningsbeskrivelse for: 1mac16fs 0815 ma

Undervisningsbeskrivelse for: 1mac16fs 0815 ma Undervisningsbeskrivelse for: 1mac16fs 0815 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C fleks sommereksamen Termin: Juni 2016 Uddannelse: HF Lærer(e):

Læs mere

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k

Antal timer 19 5 7 10 0 6 6 3 7 6 4 14 6 5 12 10 Køn k m k m m k m k m k k k m k k k Statistik 5 Statistik er en meget omfattende matematisk disciplin, og den anvendes i meget stor udstrækning i vores moderne samfund. Den handler om at analysere et (ofte meget stort) talmateriale. Det

Læs mere

Analytisk Geometri. Frank Nasser. 11. juli 2011

Analytisk Geometri. Frank Nasser. 11. juli 2011 Analytisk Geometri Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA

GUX. Matematik. A-Niveau. August 2015. Kl. 9.00-14.00. Prøveform a GUX152 - MAA GUX Matematik A-Niveau August 05 Kl. 9.00-4.00 Prøveform a GUX5 - MAA Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne til 0 med i alt 5 spørgsmål. De 5 spørgsmål indgår med lige vægt

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

Eksponentielle modeller

Eksponentielle modeller Eksponentielle modeller Matematik og Informationsteknologi 06-12-2010 HTX; klasse 2.4 Mathias Sørensen, Martin Schmidt, Andreas Mikkelsen Vejleder: Matematik: Jørn Bendtsen Informationsteknologi: Karl

Læs mere

Formler og diagrammer i OpenOffice Calc

Formler og diagrammer i OpenOffice Calc Formler i Calc Regneudtryk Sådan skal det skrives i Excel Facit 34 23 =34*23 782 47 23 =47/23 2,043478261 27³ =27^3 19683 456 =KVROD(456) 21,3541565 7 145558 =145558^(1/7) 5,464829073 2 3 =2*PI()*3 18,84955592

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx11-mat/a-310501 Torsdag den 31. maj 01 kl. 9.00-14.00 Side 1 af 7 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

GUX Matematik Niveau B prøveform b Vejledende sæt 1

GUX Matematik Niveau B prøveform b Vejledende sæt 1 GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve

Læs mere